
Communications in
Analysis and Geometry
Volume 24, Number 1, 45–58, 2016

Rigidity theorems of λ-hypersurfaces

Qing-Ming Cheng, Shiho Ogata, and Guoxin Wei

Since n-dimensional λ-hypersurfaces in the Euclidean space R
n+1

are critical points of the weighted area functional for the weighted
volume-preserving variations, in this paper, we study the rigidity
properties of complete λ-hypersurfaces. We give some gap theo-
rems of complete λ-hypersurfaces with polynomial area growth.
By making use of the generalized maximum principle for L
of λ-hypersurfaces, we prove a rigidity theorem of complete λ-
hypersurfaces.

1. Introduction

Let X : M → R
n+1 be a smooth n-dimensional immersed hypersurface in

the (n+ 1)-dimensional Euclidean space R
n+1. In [4], Cheng and Wei have

introduced notation of the weighted volume-preserving mean curvature flow,
which is defined as the following: a family X(·, t) of smooth immersions

X(·, t) : M → R
n+1

with X(·, 0) = X(·) is called a weighted volume-preserving mean curvature
flow if

(1.1)
∂X(t)

∂t
= −α(t)N(t) +H(t)

holds, where

α(t) =

∫
M H(t)〈N(t), N〉e− |X|2

2 dμ∫
M 〈N(t), N〉e− |X|2

2 dμ
,
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H(t) = H(·, t) and N(t) denote the mean curvature vector and the normal
vector of hypersurface Mt = X(Mn, t) at point X(·, t), respectively and N
is the unit normal vector of X : M → R

n+1. One can prove that the flow
(1.1) preserves the weighted volume V (t) defined by

V (t) =

∫
M
〈X(t), N〉e− |X|2

2 dμ.

The weighted area functional A : (−ε, ε)→ R is defined by

A(t) =

∫
M

e−
|X(t)|2

2 dμt,

where dμt is the area element of M in the metric induced by X(t). Let X(t) :
M → R

n+1 with X(0) = X be a variation of X. If V (t) is constant for any
t, we call X(t) : M → R

n+1 a weighted volume-preserving variation of X.
Cheng and Wei [4] have proved that X : M → R

n+1 is a critical point of the
weighted area functional A(t) for all weighted volume-preserving variations
if and only if there exists constant λ such that

(1.2) 〈X,N〉+H = λ.

An immersed hypersurface X(t) : M → R
n+1 is called a λ-hypersurface if

the equation (1.2) is satisfied.

Remark 1.1. If λ = 0, then the λ-hypersurface is a self-shrinker of the
mean curvature flow. Hence, the λ-hypersurface is a generalization of the
self-shrinker.

Example 1.1. The n-dimensional sphere Sn(r) with radius r > 0 is a com-
pact λ-hypersurface in R

n+1 with λ = n
r − r.

Example 1.2. For 1 ≤ k ≤ n− 1, the n-dimensional cylinder Sk(r)× R
n−k

with radius r > 0 is a complete and non-compact λ-hypersurface in R
n+1

with λ = k
r − r.

Example 1.3. The n-dimensional Euclidean space R
n is a complete and

non-compact λ-hypersurface in R
n+1 with λ = 0.

Definition 1.1. IfX : M → R
n+1 is an n-dimensional hypersurface in R

n+1,
we say that M has polynomial area growth if there exist constant C and d
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such that for all r ≥ 1,

(1.3) Area(Br(0) ∩X(M)) =

∫
Br(0)∩X(M)

dμ ≤ Crd,

where Br(0) is a standard ball in R
n+1 with radius r and centered at the

origin.

In [4], Cheng and Wei have studied properties of complete λ-hypersurfaces
with polynomial area growth. They have proved that a complete and non-
compact λ-hypersurface X : M → R

n+1 in the Euclidean space R
n+1 has

polynomial area growth if and only if X : M → R
n+1 is a complete proper

hypersurface. Furthermore, there is a positive constant C such that for r ≥ 1,

(1.4) Area(Br(0) ∩X(M)) =

∫
Br(0)∩X(M)

dμ ≤ Crn+
λ2

2
−2β− inf H2

2 ,

where β = 1
4 inf(λ−H)2.

In this paper, we study the rigidity theorems of complete λ-hypersurfaces.
We will prove the following:

Theorem 1.1. Let X : M → R
n+1 be an n-dimensional complete λ-

hypersurface with polynomial area growth in the Euclidean space Rn+1. Then
either

1) X : M → R
n+1 is isometric to the sphere Sn(r) with radius r > 0 or

2) X : M → R
n+1 is isometric to the Euclidean space R

n or

3) X : M → R
n+1 is isometric to the cylinder S1(r)× R

n−1 or

4) X : M → R
n+1 is isometric to the cylinder Sn−1(r)× R or

5) X : M → R
n+1 is isometric to the cylinder Sk(

√
k)× R

n−k for 2 ≤
k ≤ n− 2 or

6) there exists p ∈M such that the squared norm S of the second funda-
mental form and the mean curvature H of X : M → R

n+1 satisfy
(1.5)(√

S(p)− H2(p)

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H(p)− λ)2 > 1 +

nλ2

4(n− 1)
.

Corollary 1.1. Let X : M → R
n+1 be an n-dimensional complete λ-

hypersurface with polynomial area growth in the Euclidean space R
n+1. If
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the squared norm S of the second fundamental form and the mean curvature
H of X : M → R

n+1 satisfies

(1.6)

(√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H − λ)2 ≤ 1 +

nλ2

4(n− 1)
,

then X : M → R
n+1 is isometric to one of the following:

1) the sphere Sn(r) with radius r ≤ √n,

2) the Euclidean space R
n,

3) the cylinder S1(r)× R
n−1 with radius r > 0 and n = 2 or with radius

r ≥ 1 and n > 2,

4) the cylinder Sn−1(r)× R with radius r > 0 and n = 2 or with radius
r ≤ √n− 1 and n > 2,

5) the cylinder Sk(
√
k)× R

n−k for 2 ≤ k ≤ n− 2.

Remark 1.2. If λ = 0, that is, X : M → R
n+1 is an n-dimensional com-

plete self-shrinker, the condition (1.6) becomes S ≤ 1. Hence, the above the-
orem is a generalization of Cao and Li [1] and Le and Sesum [11] to λ-
hypersurfaces. On study of complete self-shrinkers, see [2], [3], [5], [6], [7, 8],
[9, 10].

Theorem 1.2. Let X : M → R
n+1 be an n-dimensional complete λ-

hypersurface with polynomial area growth in the Euclidean space R
n+1. If

(1.7)

(
H − λ

2

)2

≥ n+
λ2

4
,

then (H − λ
2 )

2 ≡ n+ λ2

4 and M is isometric to the sphere Sn(r) with radius
r > 0.

For compact case, we give the following:

Proposition 1.1. Let X : M → R
n+1 be an n-dimensional compact λ-

hypersurface in the Euclidean space R
n+1. If

(1.8)

(
H − λ

2

)2

≤ n+
λ2

4
,

then (H − λ
2 )

2 ≡ n+ λ2

4 and M is isometric to the sphere Sn(r) with radius
r > 0.
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If we do not assume that X : M → R
n+1 has polynomial area growth, we

can prove the following:

Theorem 1.3. Let X : M → R
n+1 be an n-dimensional complete λ-

hypersurface in the Euclidean space R
n+1. If the squared norm S of the

second fundamental form and the mean curvature H of X : M → R
n+1 sat-

isfy

(1.9) sup
{
(

√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)
)2 +

1

n
(H − λ)2

}
< 1 +

nλ2

4(n− 1)
,

then X : M → R
n+1 is isometric to one of the following:

1) the sphere Sn(r) with radius r <
√
n,

2) the Euclidean space R
n.

Remark 1.3. If λ = 0, that is, X : M → R
n+1 is an n-dimensional com-

plete self-shrinker, the condition (1.9) becomes supS < 1. The above theorem
is a generalization of Cheng and Peng [2] to λ-hypersurfaces.

2. Proofs of theorems for λ-hypersurfaces

In order to prove our theorems, we prepare several fundamental formulas. Let
X : Mn → R

n+1 be an n-dimensional connected hypersurface of the (n+ 1)-
dimensional Euclidean space R

n+1. We choose a local orthonormal frame
field {eA}n+1

A=1 in R
n+1 with dual coframe field {ωA}n+1

A=1, such that, restricted
to Mn, e1, · · · , en are tangent to Mn. Then we have

dX =
∑
i

ωiei, dei =
∑
j

ωijej + ωin+1en+1

and

den+1 =
∑
i

ωn+1iei.

We restrict these forms to Mn, then

ωn+1 = 0, ωn+1i = −
n∑

j=1

hijωj , hij = hji,

where hij denotes component of the second fundamental form of X : Mn →
R
n+1. H =

∑n
j=1 hjj is the mean curvature and II =

∑
i,j hijωi ⊗ ωjN is
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the second fundamental form of X : Mn → R
n+1 with N = en+1. Let

hijk = ∇khij and hijkl = ∇l∇khij ,

where ∇j is the covariant differentiation operator. Gauss equations, Codazzi
equations and Ricci formulas are given by

Rijkl = hikhjl − hilhjk,(2.1)

hijk = hikj ,(2.2)

hijkl − hijlk =

n∑
m=1

himRmjkl +

n∑
m=1

hmjRmikl,(2.3)

where Rijkl is component of the curvature tensor. For a function F , we de-
note covariant derivatives of F by F,i = ∇iF, F,ij = ∇j∇iF . For λ-
hypersurfaces, an elliptic operator L is given by

(2.4) Lf = Δf − 〈X,∇f〉,

where Δ and ∇ denote the Laplacian and the gradient operator of the λ-
hypersurface, respectively. The L operator is introduced by Colding and
Minicozzi in [6] for self-shrinkers and by Cheng and Wei [4] for λ-
hypersurfaces.

The following lemma due to Colding and Minicozzi [6] is needed in order
to prove our results.

Lemma 2.1. Let X : M → R
n+1 be a complete hypersurface. If u, v are

C2 functions satisfying

(2.5)

∫
M
(|u∇v|+ |∇u||∇v|+ |uLv|)e− |X|2

2 dμ < +∞,

then we have

(2.6)

∫
M

u(Lv)e− |X|2
2 dμ = −

∫
M
〈∇u,∇v〉e− |X|2

2 dμ.

Proof of Theorem 1.1. Since 〈X,N〉+H = λ, one has

H,i =
∑
j

hij〈X, ej〉,(2.7)

H,ik =
∑
j

hijk〈X, ej〉+ hik +
∑
j

hijhjk(λ−H).
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From the Codazzi equation (2.2), we infer

ΔH =
∑
i

H,ii =
∑
i

H,i〈X, ei〉+H + S(λ−H).

Hence, we get

LH = ΔH −
∑
i

〈X, ei〉H,i = H + S(λ−H),(2.8)

1

2
LH2 = |∇H|2 +H2 + S(λ−H)H.(2.9)

By making use of the Ricci formulas, the Gauss equations and the Codazzi
equations, we have

Lhij = Δhij −
∑
k

〈X, ek〉hijk

=
∑
k

hijkk −
∑
k

〈X, ek〉hijk

= (1− S)hij + λ
∑
k

hikhkj .

Therefore, we obtain

1

2
LS =

1

2

{
Δ
∑
i,j

(hij)
2 −

∑
k

〈X, ek〉
(∑

i,j

(h2ij)
)
,k

}

=
∑
i,j,k

h2ijk + (1− S)
∑
i,j

h2ij + λ
∑
i,j,k

hikhkjhji

=
∑
i,j,k

h2ijk + (1− S)S + λf3,

where f3 =
∑

i,j,k hijhjkhki.
Taking {e1, e2, · · · , en} such that

hij = λiδij

at a point p and putting μi = λi − H
n , we have

f3 =
∑
i

λ3
i =

∑
i

(
μi +

H

n

)3

= B3 +
3

n
HB +

1

n2
H3
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with B =
∑

i μ
2
i = S − H2

n and B3 =
∑

i μ
3
i . Thus, we have

1

2
LB =

1

2
LS − 1

2
LH

2

n

=
∑
i,j,k

h2ijk −
1

n
|∇H|2 + (1− S)S + λf3 − H2

n
− S(λ−H)

H

n

=
∑
i,j,k

h2ijk −
1

n
|∇H|2 + (1−B)B − 1

n
H2B + λB3 +

2

n
λHB.

Since ∑
i

μi = 0,
∑
i

μ2
i = B,

it is not hard to prove

(2.10) |B3| ≤ n− 2√
n(n− 1)

B
3

2

and the equality holds if and only if at least, n− 1 of μi are equal.
Thus, we have

1

2
LB ≥

∑
i,j,k

h2ijk −
1

n
|∇H|2

+ (1−B)B − 1

n
H2B − |λ| n− 2√

n(n− 1)
B

3

2 +
2

n
λHB

=
∑
i,j,k

h2ijk −
1

n
|∇H|2

+B

(
1−B − 1

n
H2 − |λ| n− 2√

n(n− 1)
B

1

2 +
2

n
λH

)

=
∑
i,j,k

h2ijk −
1

n
|∇H|2

+B

(
1 +

nλ2

4(n− 1)
− 1

n
(H − λ)2 − (

√
B + |λ| n− 2

2
√

n(n− 1)
)2

)
.

Since X : M → R
n+1 has polynomial area growth, according to the results

of Cheng and Wei in [4], we can apply the lemma 2.1 to functions 1 and
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B = S − H2

n . Hence, we have

0 ≥
∫
M

{∑
i,j,k

h2ijk −
1

n
|∇H|2

}
e−

|X|2
2 dμ

+

∫
M

B

(
1 +

nλ2

4(n− 1)
− 1

n
(H − λ)2 − (

√
B + |λ| n− 2

2
√

n(n− 1)
)2

)
e−

|X|2
2 dμ.

From the Codazzi equations and the Schwarz inequality, we have

∑
i,j,k

h2ijk = 3
∑
i �=k

h2iik +
∑
i

h2iii +
∑

i �=j �=k �=i

h2ijk,
1

n
|∇H|2 ≤

∑
i,k

h2iik,

∑
i,j,k

h2ijk −
1

n
|∇H|2 ≥ 2

∑
i �=k

h2iik +
∑

i �=j �=k �=i

h2ijk ≥ 0

and the equality holds if and only if hijk = 0 for any i, j, k. Therefore, we get
either B ≡ 0 and X : M → R

n+1 is totally umbilical; or there exists p ∈M
such that (√

S(p)− H2(p)

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H(p)− λ)2(2.11)

> 1 +
nλ2

4(n− 1)
;

or for any point of M

∑
i,j,k

h2ijk −
1

n
|∇H|2 = 0,

(√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H − λ)2 = 1 +

nλ2

4(n− 1)
.

Hence, we know that the second fundamental form is parallel, X : M →
R
n+1 is an isoparametric complete hypersurface. If λ = 0, then X : M →

R
n+1 is isometric to the sphere Sn(

√
n), the Euclidean space Rn, the cylinder

Sk(
√
k)× R

n−k. If λ �= 0, then we have from (2.10) that the number of the
distinct principal curvatures is two and one of them is simple, X : M →
R
n+1 is isometric to the sphere Sn(r), the Euclidean space R

n, the cylinder
S1(r)× R

n−1, the cylinder Sn−1(r)× R. The proof of the theorem 1.1 is
completed. �
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Proof of Corollary 1.1. For Sn(r), we have

H =
n

r
, S =

n

r2
, λ = H − r =

n− r2

r
,

then

(√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H − λ)2 − 1− nλ2

4(n− 1)
(2.12)

= −(n− r2)2

nr2
+

r2

n
− 1

=
1

r2
(r2 − n).

For S1(r)× R
n−1, we have

H =
1

r
, S =

1

r2
, λ = H − r =

1− r2

r
,

then

(√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H − λ)2 − 1− nλ2

4(n− 1)
(2.13)

=
n− 2

nr2
(1− r2 + |1− r2|).

For Sn−1(r)× R, we have

H =
n− 1

r
, S =

n− 1

r2
, λ = H − r =

n− 1− r2

r
,

then

(√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1

n
(H − λ)2 − 1− nλ2

4(n− 1)
(2.14)

=
n− 2

nr2
(r2 − (n− 1) + |r2 − (n− 1)|).

Combining the theorem 1.1, (2.12), (2.13) and (2.14), we can finish the proof
of the Corollary 1.1. �
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Proof of Theorem 1.2. By a direct calculation, one obtains

1

2
Δ|X|2 =< ΔX,X > +

∑
i

< X,i, X,i >(2.15)

= H < N,X > +n

= n+
λ2

4
−
(
H − λ

2

)2

.

Since the assumption of polynomial area growth, we have∫
M
(Δ|X|2)e− |X|2

2 dμ < +∞,

∫
M
|∇|X|2|2e− |X|2

2 dμ < +∞,

then we can apply the lemma 2.1 to function 1 and |X|2 and obtain

1

4

∫
M
|∇|X|2|2e− |X|2

2 dμ =
1

2

∫
M
(Δ|X|2)e− |X|2

2 dμ

=

∫
M

(
n+

λ2

4
−
(
H − λ

2

)2
)
e−

|X|2
2 dμ.

From (H − λ
2 )

2 ≥ n+ λ2

4 , we get

(2.16)

(
H − λ

2

)2

= n+
λ2

4
, < X,X >= r2,

namely, M is isometric to the sphere Sn(r) with radius r > 0. It completes
the proof of the theorem 1.2. �
Proof of Proposition 1.1. Integrating (2.15) over M and using the Stokes
formula, one concludes

(2.17)

∫
M

(
n+

λ2

4
−
(
H − λ

2

)2
)
dμ = 0,

then it follows from (H − λ
2 )

2 ≤ n+ λ2

4 that

(2.18)

(
H − λ

2

)2

= n+
λ2

4

and M is isometric to the sphere Sn(r) with radius r > 0. It completes the
proof of the proposition 1.1. �
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By making use of the same assertions as in Cheng and Peng [2], we know
that the following generalized maximum principle holds.

Theorem 2.1. (Generalized maximum principle for L-operator ) Let X :
Mn → R

n+1 be a complete λ-hypersurface with Ricci curvature bounded from
below. Let f be any C2-function bounded from above on this λ-hypersurface.
Then, there exists a sequence of points {pk} ⊂M , such that

(2.19)

lim
k→∞

f(X(pk)) = supf,

lim
k→∞

|∇f |(X(pk)) = 0,

lim sup
k→∞

Lf(X(pk)) ≤ 0.

Proof of Theorem 1.3. From the proof in the theorem 1.1, we have

1

2
LB ≥

∑
i,j,k

h2ijk −
1

n
|∇H|2

+B

(
1 +

nλ2

4(n− 1)
− 1

n
(H − λ)2 − (

√
B + |λ| n− 2

2
√

n(n− 1)
)2

)

and ∑
i,j,k

h2ijk −
1

n
|∇H|2 ≥ 2

∑
i �=k

h2iik +
∑

i �=j �=k �=i

h2ijk ≥ 0.

Hence, we obtain

1

2
LB ≥ B

(
1 +

nλ2

4(n− 1)
− 1

n
(H − λ)2 − (

√
B + |λ| n− 2

2
√

n(n− 1)
)2

)
.

Since

sup

{
(

√
S − H2

n
+ |λ| n− 2

2
√

n(n− 1)
)2 +

1

n
(H − λ)2

}
< 1 +

nλ2

4(n− 1)
,

we know H2 and S are bounded. Hence, from the Gauss equations, we infer
that the Ricci curvature is bounded from below. Applying the generalized
maximum principle for L of λ-hypersurfaces to function B, there exists a
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sequence of points {pk} ⊂M such that

0 ≥ supB

(
1 +

nλ2

4(n− 1)
− sup

{
1

n
(H − λ)2 + (

√
B + |λ| n− 2

2
√

n(n− 1)
)2
})

.

Hence, supB = 0, that is, S ≡ H2

n . It follows from (2.12) thatX : M → R
n+1

is isometric to

1) the sphere Sn(r) with radius r <
√
n or

2) the Euclidean space R
n.

It completes the proof of the theorem 1.3. �
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