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Abstract It is our purpose to study complete self-shrinkers in Euclidean space. By making
use of the generalizedmaximumprinciple forL-operator,wegive a complete classification for
2-dimensional complete self-shrinkerswith constant squared normof the second fundamental
form inR3. Ding andXin (Trans AmMath Soc 366:5067–5085, 2014) have proved this result
under the assumption of polynomial volume growth, which is removed in our theorem.
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1 Introduction

Let X : Mn → Rn+1 be an n-dimensional hypersurface in the n + 1-dimensional Euclidean
space Rn+1. If the position vector X evolves in the direction of the mean curvature H , then
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it gives rise to a solution to mean curvature flow:

X (·, t) : Mn → Rn+1

satisfying X (·, 0) = X (·) and
∂X (p, t)

∂t
= H(p, t), (p, t) ∈ M × [0, T ), (1.1)

where H(p, t) denotes the mean curvature vector of hypersurface Mt = X (Mn, t) at point
X (p, t). The Eq. (1.1) is called the mean curvature flow equation. The study of the mean cur-
vature flow from the perspective of partial differential equations commenced with Huisken’s
paper [10] on the flow of convex hypersurfaces.

One of the most important problems in the mean curvature flow is to understand the pos-
sible singularities that the flow goes through. A key starting point for singularity analysis is
Huisken’s monotonicity formula because the monotonicity implies that the flow is asymp-
totically self-similar near a given type I singularity and thus, is modeled by self-shrinking
solutions of the flow.

An n-dimensional hypersurface X : M → Rn+1 in the (n + 1)-dimensional Euclidean
space Rn+1 is called a self-shrinker if it satisfies

H + ⟨X, N ⟩ = 0,

where H and N denote the mean curvature and the unit normal vector of the hypersur-
face, respectively. It is known that self-shrinkers play an important role in the study of the
mean curvature flow because they describe all possible blow up at a given singularity of the
mean curvature flow. For classifications of complete self-shrinkers, Abresch and Langer [1],
Huisken [11,12] and Colding andMinicozzi [6] have obtained very important results. In fact,
Abresch and Langer [1] classified closed self-shrinker curves inR2 and showed that the round
circle is the only embedded self-shrinkers. Huisken [11,12] and Colding and Minicozzi [6]
have proved that if X : M → Rn+1 is an n-dimensional complete embedded self-shrinker in
Rn+1 with H ≥ 0 and with polynomial volume growth, then X : M → Rn+1 is isometric to
either Rn , the round sphere Sn(

√
n), or a cylinder Sm(

√
m) × Rn−m , 1 ≤ m ≤ n − 1.

A natural problem is whether there exist complete self-shrinkers with volume growth
faster than polynomial growth. In fact, the theorem 5.1 in [9] by Halldorsson has proved that
there exist complete self-shrinker curves " in R2, which is contained in an annulus around
the origin and whose image is dense in the annulus. On the other hand, Ding and Xin [7]
and Cheng and Zhou [5] have proved that a complete self-shrinker has polynomial volume
growth if and only if it is proper. Since these complete self-shrinker curves " are not proper,
for any integer n > 0, " × Rn−1 is a complete self-shrinker in Rn+1, which does not have
polynomial volume growth. Thus, we have the following:

Proposition 1.1 For any integer n > 0, there exist n-dimensional complete self-shrinkers
without polynomial volume growth in Rn+1.

In [2],Cao andLi haveproved that if ann-dimensional complete self-shrinker X : M → Rn+1

with polynomial volume growth satisfies S ≤ 1, then X : M → Rn+1 is isometric to either
Rn , the round sphere Sn(

√
n), or a cylinder Sm(

√
m) × Rn−m , 1 ≤ m ≤ n − 1, where S

denotes the squared norm of the second fundamental form (cf. [14]). Furthermore, Ding and
Xin [8] have studied 2-dimensional complete self-shrinkers with polynomial volume growth
and with constant squared norm of the second fundamental form (cf. [4] and [8] for any
dimension). They have proved.
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Theorem DX Let X : M → R3 be a 2-dimensional complete self-shrinker with polynomial
volume growth in R3. If the squared norm S of the second fundamental form is constant, then
X : M → R3 is isometric to one of the following:

(1) R2,
(2) a cylinder S1(1) × R,
(3) the round sphere S2(

√
2).

In this paper, we want to remove the assumption of polynomial volume growth in the above
theorem of Ding and Xin and to prove that the above result of Ding and Xin holds by making
use of a different method.

Theorem 1.1 Let X : M → R3 be a 2-dimensional complete self-shrinker in R3. If the
squared norm S of the second fundamental form is constant, then X : M → R3 is isometric
to one of the following:

(1) R2,
(2) a cylinder S1(1) × R,
(3) the round sphere S2(

√
2).

2 Proof of Theorem 1.1

Let X : M2 → R3 be a 2-dimensional surface in R3. We choose a local orthonormal frame
field {eA}3A=1 in R3 with dual co-frame field {ωA}3A=1, such that, restricted to M2, e1, e2 are
tangent to M2. Hence, we have

dX =
2∑

i=1

ωi ei , dei =
2∑

j=1

ωi j e j + ωi3e3.

We restrict these forms to M2, then
ω3 = 0 (2.1)

and

ωi3 =
2∑

j=1

hi jω j , hi j = h ji ,

where hi j denote components of the second fundamental form of X : M2 → R3. Take e1, e2
such that, at any fixed point,

hi j = λiδi j ,

where λ1 and λ2 are the principal curvatures of X : M2 → R3. Thus, the Gauss curvature K
and the mean curvature H are given by

K = λ1λ2, H = λ1 + λ2.

For a smooth function f , the L-operator is defined by

L f = & f − ⟨X,∇ f ⟩, (2.2)

where & and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respec-
tively. In order to prove our results, the following generalized maximum principle for
L-operator on self-shrinkers is very important, which is proved by Cheng and Peng in [3]:
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Lemma 2.1 (Generalizedmaximum principle forL-operator) Let X : Mn → Rn+p (p ≥ 1)
be a complete self-shrinker with Ricci curvature bounded from below. Let f be any C2-
function bounded from above on this self-shrinker. Then, there exists a sequence of points
{pk} ⊂ Mn, such that

lim
k→∞

f (X (pk)) = sup f, lim
k→∞

|∇ f |(X (pk)) = 0, lim sup
k→∞

L f (X (pk)) ≤ 0.

Proof of Theorem 1.1 Since X : M2 → R3 is a complete self-shrinker, we have

H + ⟨X, N ⟩ = 0. (2.3)

By a simple calculation, we have

1
2
LS =

∑

i, j,k

h2i jk + S(1 − S),

where S = ∑2
i, j=1 h

2
i j is the squared norm of the second fundamental form and hi jk denote

components of the first covariant derivative of the second fundamental form. Since S is
constant, we have ∑

i, j,k

h2i jk + S(1 − S) = 0. (2.4)

If S = 1, then we know hi jk ≡ 0. Hence, X : M2 → R3 is isometric to the round sphere
S2(

√
2) or the cylinder S1(1)×R from the results of Lawson [13]. If S < 1, from the theorem

of Cheng and Peng [3], we know that X : M2 → R3 is isometric to R2.
Next, we prove that S ≤ 1 holds. By a direct computation, we have

1
2
L|X |2 = 2 − |X |2. (2.5)

Since S is constant, we know that the Gauss curvature satisfies

K = λ1λ2 ≥ −λ21 + λ22
2

= − S
2
.

Therefore, the Gauss curvature is bounded from below. Since −|X |2 ≤ 0 is bounded from
above,we can apply the generalizedmaximumprinciple forL-operator to the function−|X |2.
Thus, there exists a sequence {pk} in M2 such that

lim
k→∞

|X |2(pk) = inf |X |2, lim
k→∞

|∇|X |2(pk)| = 0, lim inf
k→∞

L|X |2(pk) ≥ 0. (2.6)

From (2.5) and (2.6), we have
inf |X |2 ≤ 2. (2.7)

Since |∇|X |2| = ∑2
i=1⟨X, ei ⟩2 holds, we have from (2.6)

lim
k→∞

|∇|X |2(pk)| = lim
k→∞

2∑

i=1

⟨X, ei ⟩2(pk) = 0.

Hence, we get from (2.3)

inf |X |2 = lim
k→∞

H2(pk), lim
k→∞

|∇H |(pk) = 0. (2.8)
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Since S is constant, from the definition of the mean curvature H and (2.3), we obtain, for
j = 1, 2,

lim
k→∞

(
h11 j (pk)+ h22 j (pk)

)
= 0,

lim
k→∞

(
λ1(pk)h11 j (pk)+ λ2(pk)h22 j (pk)

)
= 0.

(2.9)

Since S is constant and from (2.4), we know that {λ j (pk)} and {hii j (pk)} are bounded
sequences. Thus, we can assume

lim
k→∞

hii j (pk) = h̄i i j , lim
k→∞

λ j (pk) = λ̄ j ,

for i, j = 1, 2. From (2.9), we obtain
{
h̄11 j + h̄22 j = 0,
λ̄1h̄11 j + λ̄2h̄22 j = 0.

(2.10)

If λ̄1 ̸= λ̄2 is satisfies, according to (2.10), we infer

h̄i i j = 0

for i, j = 1, 2. According to Codazzi equations, we have
∑

i, j,k

h̄2i jk = 0.

From (2.4), we have S = 1 or S = 0. Hence S ≤ 1.
If λ̄1 = λ̄2 holds, we have

S = λ̄21 + λ̄22 =
(
λ̄1 + λ̄2

)2

2
= limk→∞ H2(pk)

2
.

According to (2.7) and (2.8), we have

S ≤ 1.

Hence, S = 0 or S = 1. According to the theorem of Lawson [13], we know that Mn is
isometric to the round sphere S2(

√
2), the cylinder S1(1) × R or R2. ⊓0
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