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Abstract. In this paper, we will introduce the notion of harmonic stability for
complete minimal hypersurfaces in a complete Riemannian manifold. The first rsult

we proved is that a complete harmonic stable minimal surface in a Riemannian
manifold with non-negative Ricci curvature is conformally equivalent to either a
plane R2 or a cylinder R × S1, which generalizes a theorem due to Fischer-Colbrie

and Schoen [12].
The second one is that an n≥ 2-dimensional complete harmonic stable minimal

hypersurface M in a complete Riemannian manifold with non-negative sectional cur-
vature has only one end if M is non-parabolic. The third one which we have proved

is that there exist no non-trivial L2-harmonic one forms on a complete harmonic
stable minimal hypersurface in a complete Riemannian manifold with non-negative
sectional curvature. Since the harmonic stability is weaker than stability, we obtain
a generalization of a theorem due to Miyaoka [20] and Palmer [21].

1. Introduction

The investigation of complete minimal immersed hypersurfaces in a Riemannian

manifold has flourished in the last century and a much better understanding of their

global geometric and topological structures has been obtained. In the following,

we will agree that a minimal hypersurface means an oriented minimal immersed

hypersurface. The classical Bernstein theorem asserts that an entire minimal graph

in a 3-dimensional Euclidean space R3 must be a plane. As a generalization of
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Bernstein theorem, Almgren [1], De Giorgi [9], Fleming [13] and Simons [25] proved

that an entire n-dimensional minimal graph in an n+1-dimensional Euclidean space

Rn+1 (n ≤ 7) must be a hyperplane. But, for n ≥ 8, Bombieri, De Giorgi and

Guisti [3] found nonlinear entire minimal graphs in Rn+1.

Since minimal graphs are area-minimizing , it is natural to consider stable mini-

mal hypersurfaces in Rn+1. It is well known that do Carmo and Peng [10], in 1979,

proved that a complete stable minimal surface in R3 must be a plane (cf. Pogorelov

[22]). At the same time, Fischer-Colbrie and Schoen [12], independently, showed

that a complete stable minimal surface M in a complete 3-dimensional Riemannian

manifold N with nonnegative scalar curvature must be either conformally a plane

or conformally a cylinder R×S1. In particular, when N = R3, they obtained that

M must be a plane.

On the other hand, from the generalized Bernstein theorem, it is asked by Yau

[29] whether one can prove that a complete stable minimal hypersurface in Rn+1

(n ≤ 7) is a hyperplane. Although much hard work on this problem was done, it

remains still open. For example, Shen and Zhu [24] proved that a complete stable

minimal hypersurface in Rn+1 with finite total curvature must be a hyperplane.

The first author and Wan in [8] proved that a complete minimal hypersurface in

R4 with constant scalar curvature is a hyperplane.

In 1997, Cao, Shen and Zhu [4] found a topological obstruction for complete

stable minimal hypersurfaces in Rn+1, namely, they proved that a complete sta-

ble minimal hypersurface in Rn+1 (n ≥ 3) must have only one end. Here we

should remark that the condition n ≥ 3 is essential in the proof of their theorem.

Furthermore, Li and Wang [17] generalized their theorem to complete minimal hy-

persurfaces with finite index in Rn+1. They also gave an estimate of the number

of ends of such hypersurfaces. But their estimate of the number of ends depends

on the geometric structure on a compact subset in the hypersurface.

In [19], Mei and Xu introduced a notion of harmonic stability and harmonic index

for a complete minimal hypersurface in Rn+1. For a complete minimal hypersurface

in Rn+1, (n ≥ 3), they proved that the condition of harmonic stability is weaker
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than the condition of stability. Under the weaker condition, they proved that the

theorem of Cao, Shen and Zhu still holds.

In fact, they proved that the number of ends for an n-dimensional, (n ≥ 3),

complete minimal hypersurface M with finite harmonic index h(M) in Rn+1 is not

bigger than h(M) + 1. Thus, we know that, in ordor to give an estimate of the

number of ends, the harmonic index h(M) is of advantage to the index.

We should remark that the condition n ≥ 3 is essential in the proof of theorems

due to Mei and Xu. Though in [19] they want to use the Sobolev type inequality,

but for n = 2 the Sobolev type inequality does not hold again. On the other hand,

it is natural to extend the theorems of do Carmo and Peng [10] and Fischer-Colbrie

and Schoen [12] to the case of harmonic stability.

In this paper, we introduce the notion of harmonic stability for complete minimal

hypersurfaces in a complete Riemannian manifold. In section 3, we will consider

the case n = 2 and generalize a theorem due to do Carmo and Peng [10] and

Fischer-Colbrie and Schoen [12] to the case of harmonic stability. Moreover, in

section 5, we will study its general case and prove that a complete harmonic stable

minimal hypersurface M in a complete Riemannian manifold with non-negative

sectional curvature have only one end if M is non-parabolic.

When the ambient manifold is Rn+1, from [19](see also [4]) the harmonic stability

yields that M is non-parabolic. Moreover, in section 4, we will prove that there

does not exist any non-trivial L2-harmonic one forms on a complete harmonic

stable minimal hypersurface in a complete Riemannian manifold with non-negative

sectional curvature. Since the harmonic stability is weaker than stability, we also

obtain a generalization of a theorem due to Miyaoka [20] and Palmer [21] .

2. Preliminaries

Let M be a minimal hypersurfaces in a complete Riemannian manifold Nn+1.

We define a bilinear form as follows:

(2.1) I(X,Y ) =
∫

M

{S〈X,Y 〉 + RicN (ν, ν)〈X,Y 〉 − 〈∇X,∇Y 〉}dM,

for any X,Y ∈ Γc(TM), which is a set of tangent vector fields with compact

support in M , where S denotes the squared norm of the second fundamental form
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A, ∇ is the induced connection, RicN (ν, ν) denotes the Ricci curvature of N in

the direction of the unit normal vector ν to M . The harmonic index of M , which

is denoted by h(M), is defined as the maximal dimension of the vector spaces on

which I(·, ·) is positive definite. If the harmonic index h(M) is zero, M is called

harmonic stable.

A minimal hypersurface M in a complete Riemannian manifold Nn+1 is called

stable if

(2.2)
∫

M

{Sf2 + RicN (ν, ν)f2}dM ≤
∫

M

|∇f |2dM,

holds for any f ∈ C∞
0 (M) (cf. Schoen and Yau [23]).

When the ambient space Nn+1 = Rn+1, Mei and Xu in [19] proved that a

complete stable minimal hypersurface must be harmonic stable. In the following,

we shall prove that the assertion is also true for any ambient space. Although the

proof is similar to one in [19], for completeness, we also write it out.

Proposition 1. An n-dimensional complete stable minimal hypersurface M in a

complete Riemannian manifold Nn+1 is harmonic stable.

Proof. If M is not harmonic stable, then there exists a vector field X ∈ Γc(TM)

such that

(2.3)
∫

M

{S|X|2 + RicN (ν, ν)|X|2}dM >

∫
M

|∇X|2dM

is satisfied. Let ε > 0 be a positive real number. Since X has compact support,

we know that there exist a r > 0 such that suppX ⊂ Bp(r), where p ∈ supp X is

a fixed point and Bp(r) is a geodesic ball with radius r centred at p. We choose a

smooth cut off function ϕ such that

(2.4)


ϕ = 1, in Bp(r),

ϕ = 0, in M\Bp(r + 1),

|∇ϕ| ≤ 2, on M.



COMPLETE HARMONIC STABLE MINIMAL HYPERSURFACES 5

We consider a function fε = ϕ(|X|2 + ε)
1
2 ∈ C∞

0 (M). Since M is stable, we have

(2.5)
∫

M

{Sf2
ε + RicN (ν, ν)f2

ε }dM ≤
∫

M

|∇fε|2dM

holds. From

(2.6) ∇fε = ∇ϕ(|X|2 + ε)
1
2 +

1
2
ϕ

∇|X|2

(|X|2 + ε)
1
2
,

we have

(2.7) |∇fε|2 = |∇ϕ|2(|X|2 + ε) + ϕ∇ϕ · ∇|X|2 +
1
4

(ϕ∇|X|2)2

(|X|2 + ε)
.

Hence,

0 ≥
∫

M

{S(|X|2 + ε)ϕ2 + (|X|2 + ε)ϕ2RicN (ν, ν)}dM

−
∫

M

(|X|2 + ε)|∇ϕ|2dM −
∫

M

ϕ∇ϕ · ∇|X|2dM −
∫

M

1
4

(ϕ∇|X|2)2

(|X|2 + ε)
dM

≥
∫

M

{S|X|2ϕ2 + |X|2ϕ2RicN (ν, ν)}dM −
∫

M

ϕ2|∇X|2dM

+ ε

∫
M

{Sϕ2 + ϕ2RicN (ν, ν)}dM − ε

∫
M

|∇ϕ|2dM.

Here we used |X|2|∇ϕ|2 = 0 from the definition of ϕ and the inequality 〈∇X,X〉 ≤
|∇X||X|. Since ε is arbitrary and ϕ = 1 on support set of X, by taking sufficiently

small ε > 0, we have, from (2.3),∫
M

{S|X|2 + |X|2RicN (ν, ν)}dM −
∫

M

|∇X|2dM

+ ε

∫
M

{Sϕ2 + ϕ2RicN (ν, ν)}dM − ε

∫
M

|∇ϕ|2dM > 0.

Thus, it is a contradiction. Therefore, we infer that M is harmonic stable. ¤

Let M be a complete Riemannian manifold. For two curves c1, c2 : [0,∞) → M ,

they are called cofinal if, for every compact set K ⊂ M , there exists some t > 0

such that c1(t1) and c2(t2) lie in the same connected component of M\K for all

t1 > t and t2 > t. An end of M is defined as an equivalent class of cofinal curves.
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An end E of a complete Riemannian manifold M is called non-parabolic if E

admits a positive Green’s function with Neumann boundary condition (see Li and

Tam [15]). From an assertion of Li and Tam, we know that an end E is non-

parabolic if and only if there exists a non-constant bounded harmonic function on

E with its infimum occuring at infinity.

The following Proposition 2 will be used in order to prove our theorem 5.1 . Its

proof can be found in [18].

Proposition 2. Let M be an n-dimensional complete Riemannian manifold and

F is an end of M given by an unbounded connected component of M\Bp(1). Assme

that f is a subharmonic function defined on F which does not achieve its maximum

on ∂F . Let us define F (r) = Bp(r)∩F and s(r) = sup∂Bp(r)∩F f . For any sequence

{ri} with ri → ∞, there exist a subsequence, which is also denoted by {ri}, and

a sequence of positive constants {ci} such that the solutions {ui} to the boundary

value problem

(2.8)


∆ui = 0, in F (ri),

ui = 0, on ∂F,

ui = ci, on ∂F (ri)\∂F,

converges to a positive harmonic function u on compact subsets of F with boundary

value u = 0 on ∂F . Furthermore, the sequence {ci} is bounded by 0 < ci ≤ Cs(ri)

for some constant 0 < C < ∞ and

(2.9)
∫

F (ri)

|∇ui|2dM = ci.

Let Nn+1 be a complete Riemannian manifold with non-negative sectional cur-

vature. For a fixed point p ∈ N , let γ : [0,∞) → N be a normal geodesic ray

emanating from p. The Busemann function βγ with respect to γ is defined by

(2.10) βγ(x) = lim
t→∞

(t − d(x, γ(t))).



COMPLETE HARMONIC STABLE MINIMAL HYPERSURFACES 7

We know that βγ is bounded. The Busemann function β with respect to the point

p is defined by

(2.11) β(x) = sup
γ

βγ(x).

It is well known that the Busemann function β(x) is a convex exhaustion function

of N and satisfies |∇β| ≤ 1.

Let M be an n-dimensional minimal hypersurface in Nn+1, then the restriction

of the Busemann function β onto M is a subharmonic function with respect to the

induced metric (See Li and Wang [18]).

The following Lemma 1 will be used many time in order to prove our theorems

in this paper (See Cheng and Nakagawa [7]).

Lemma 1. Let M be an n-dimensional hypersurface in a Riemannian manifold

Nn+1. Then, at any point p ∈ M , for any unit vector v ∈ TpM , we have

RicM (v, v) ≥
n∑

α=2

KN (v, eα)

+ 2(n − 1)H2 − n − 1
n

S − n − 2
n

√
n − 1

n

√
n2H2(S − nH2),

where H and S denote the mean curvature and the squared norm of the second

fundamental form A of M , respectively , and {e1 = v, e2, · · · , en} is an orthonormal

frame of TpM and KN denotes the sectional curvature of the ambient manifold

Nm+1.

Proof. Since M is a hypersurface, at any point p ∈ M , we can choose an orthonor-

mal frame {e1, e2, · · · , en} such that

hij = λiδij ,

where hij ’s are components of the second fundamental form of M and λi’s denote

principal curvatures of M .Thus, for any j, we have

(2.12) hjjnH −
n∑

i=1

hijhji = nHλj − λ2
j .
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From
∑n

j=1(λj − H) = 0 and
∑n

j=1(λj − H)2 = S − nH2, we have, for any j,

(2.13) (λj − H)2 ≤ n − 1
n

(S − nH2).

Thus, we infer

λ2
j − nHλj(2.14)

=(λj − H)2 − (n − 2)H(λj − H) − (n − 1)H2

≤− 2(n − 1)H2 +
n − 1

n
S +

n − 2
n

√
n − 1

n

√
n2H2(S − nH2).

Hence, we have

hjjnH −
n∑

i=1

hijhji(2.15)

≤ −2(n − 1)H2 +
n − 1

n
S

+
n − 2

n

√
n − 1

n

√
n2H2(S − nH2).

For any unit vector v ∈ TpM , choosing an orthonormal frame {e1 = v, e2, · · · , en}
of TpM , we have, from Gauss equation,

(2.16) RicM (v, v) =
n∑

α=2

KN (v, eα) + h11nH −
n∑

i=1

hi1h1i.

From (2.15) and (2.16), we obtain

RicM (v, v) ≥
n∑

α=2

KN (v, eα)

+ 2(n − 1)H2 − n − 1
n

S − n − 2
n

√
n − 1

n

√
n2H2(S − nH2).

This completes the proof of Lemma 1. ¤
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3. Harmonic stable minimal surfaces

In this section, we want to generalize a theorem due to do Carmo and Peng [10]

and Fischer-Colbrie and Schoen [12] to a complete hypersurface M2 in a Riemann-

ian manifold N3. Namely, we will give a classification of complete harmonic stable

minimal surfaces in a complete Riemannian manifold with non-negative Ricci cur-

vature as follows:

Theorem 3.1. Let M2 be a complete harmonic stable minimal surface in a com-

plete Riemannian manifold N3 with non-negative Ricci curvature. Then M must

be conformally equivalent to either a plane R2 or a cylinder R × S1

Proof. Let M̃ be the universal covering of M . Then, if M is harmonic stable, then

M̃ is also harmonic stable.

In fact, by lifting function S and RN to M̃ , we define, for any compactly sup-

ported vector filed X on M̃ , a vector field X̄(x) by X̄(x) =
∑

j X̄j(x)ēj where {ēj}
is an orthonormal frame on TxM such that X̄j(x) satisfy

(3.1) |X̄j |2(x) =
∑

x̃∈π−1(x)

|Xj |2(x̃),

where X(x̃) = Xjej(x̃) and {ej} is an orthonormal frame on Tx̃M̃ . Then X̄ is a

compactly supported vector field on M and |X̄|2 =
∑

x̃∈π−1(x) |X|2(x̃).∫
M̃

{1
2
S|X|2 + RN |X|2 − KM |X|2}dM̃(3.2)

=
∫

M

{1
2
S|X̄|2 + RN |X̄|2 − KM |X̄|2}dM

≤
∫

M

|∇X̄|2dM.

On the other hand, from Schwarz’s inequality, we infer

|X̄j |2|∇X̄j |2(x)(3.3)

= |
∑

x̃∈π−1(x)

Xj∇Xj(x̃)|2

≤
∑

x̃∈π−1(x)

|Xj |2(x̃)
∑

x̃∈π−1(x)

|∇Xj |2(x̃)

= |X̄j |2
∑

x̃∈π−1(x)

|∇Xj |2(x̃).
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Hence,

(3.4) |∇X̄j |2(x) ≤
∑

x̃∈π−1(x)

|∇Xj |2(x̃).

We choose ēj and ej such that ∇ēj = 0 at x and ∇ej = 0 at x̃, respectively. Then,

we have, at x,

(3.5) |∇X̄|2 =
∑

|∇X̄j |2

and, at x̃,

(3.6) |∇X|2 =
∑

|∇Xj |2.

Since x and x̃ are arbitrary, we have

(3.7)
∫

M

|∇X̄|2dM ≤
∫

M̃

|∇X|2dM̃.

Thus, we know that M̃ is harmonic stable if M is harmonic stable.

By the uniformization theorem, M̃ must be conformally equivalent to either the

unit disk D2 or the plane R2. If M̃ is conformally equivalent to the unit disk, we

know that there exist non-constant bounded functions with finite Dirichlet integral

on M̃ since the harmonic property in the dimension 2 is invariant under conformal

transformation. Let u be such a harmonic function. We know that du is a harmonic

one form. From the Bochner-Weitzenbock formula, we have

(3.8)
1
2
∆|∇u|2 = RicM̃ (∇u,∇u) + |∇2u|2.

Fix a point p ∈ M̃ , let Bp(r) denote the geodesic ball with radius p and centered

at p. We choose a cut off function ϕr with compact support such that

(3.9)


ϕr = 1, in Bp(r),

ϕr = 0, in M̃\Bp(r + 1),

|∇ϕr| ≤ 1, on M̃.

We consider vector field Xr = ϕr∇u. Since M̃ is harmonic stable, we know∫
M̃

{S|Xr|2 + RicN (ν, ν)|Xr|2}dM̃ ≤
∫

M̃

|∇Xr|2dM̃.(3.10)
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∫
M̃

|∇Xr|2dM̃

=
∫

M̃

{|∇ϕr|2|∇u|2 + 2〈ϕrdϕr ⊗∇u,∇(∇u)〉 + ϕ2
r|∇∇u|2}dM̃

=
∫

M̃

{|∇ϕr|2|∇u|2 + 2〈ϕrdϕr ⊗∇u,∇(∇u)〉

+ ϕ2
r(

1
2
∆|∇u|2 − RicM̃ (∇u,∇u))}dM̃

=
∫

M̃

{|∇ϕr|2|∇u|2 − ϕ2
rRicM̃ (∇u,∇u)}dM̃

≤
∫

M̃

{|∇ϕr|2|∇u|2 +
1
2
Sϕ2

r|∇u|2}dM̃.

Here we used Lemma 1 and M is minimal. Therefore, we infer∫
M̃

{1
2
Sϕ2

r|∇u|2 + RicN (ν, ν)ϕ2
r|∇u|2}dM̃(3.11)

≤
∫

M̃

|∇ϕr|2|∇u|2dM̃.

From the definition of ϕr, we have∫
Bp(r)

{1
2
S|∇u|2 + RicN (ν, ν)|∇u|2}dM̃ ≤

∫
Bp(r+1)\Bp(r)

|∇u|2dM̃.

Since ∇u is a L2-harmonic vector field and r is arbitrary, we have

(3.12)
∫

M̃

{1
2
S|∇u|2 + RicN (ν, ν)|∇u|2}dM̃ = 0.

Since N has non-negative Ricci curvature, we have S ≡ 0 and RicN (ν, ν) = 0 on

M̃ because u is a non-constant harmonic function. Hence M̃ is totally geodesic

and RicN (ν, ν) = 0 on M̃ . Thus, from Gauss equation, we know that M̃ has

non-negative Gauss curvature. From Blanc-Fiala-Huber’s theorem in [13], we infer

that there are no non-trivial bounded harmonic functions on M̃ . This is a contra-

diction. Hence, M̃ is conformally equivalent to the plane R2. Making use of the

uniformization theorem again, we conclude that M must be conformally equivalent

to the plane R2 or the cylinder R × S1. ¤
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4. L2-harmonic one forms on minimal hypersurfaces

It is well known that in order to study structures of topology and curvature of

non-compact Riemannian manifolds, harmonic function theory plays an important

role. Furthermore, in L2-Hodge theory, we know that harmonic differential forms

also play an important role in the investigation of the topology of non-compact Rie-

mannian manifolds. Palmer [21] proved that there are no non-trivial L2-harmonic

1-forms on complete stable minimal hypersurfaces in a Euclidean space. More-

over, Miyaoka [20] extended his result to complete stable minimal hypersurfaces

in a complete Riemannian manifold with non-negative sectional curvature. In this

section, we obtain the following:

Theorem 4.1. Let M be a complete harmonic stable minimal hypersurface in a

complete Riemannian manifold Nn+1 with non-negative sectional curvature. Then,

there exist no nontrivial L2-harmonic 1-forms on M .

Proof. Since M is harmonic stable, then for any vector field X ∈ Γc(TM), we have

(4.1)
∫

M

{S|X|2 + RicN (ν, ν)|X|2}dM ≤
∫

M

|∇X|2dM.

If ω is a nontrivial L2-harmonic 1-form, we know that its dual vector field X is a

L2-harmonic vector field. We choose a cut off function as follows:

(4.2)


ϕr = 1, in Bp(r),

ϕr = 0, in M\Bp(r + 1),

|∇ϕr| ≤ 1 and 0 ≤ ϕr ≤ 1, on M.

Hence, ϕrX ∈ Γc(TM). Thus,

(4.3)
∫

M

{S|ϕrX|2 + RicN (ν, ν)|ϕrX|2}dM ≤
∫

M

|∇(ϕrX)|2dM.

Since the sectional curvature of N is non-negative, we have

(4.4) RicN (ν, ν) ≥ 0.

Therefore,

(4.5)
∫

M

S|ϕrX|2dM ≤
∫

M

|∇(ϕrX)|2dM.
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By a direct computation, we infer

(4.6) |∇(ϕrX)|2 = |∇ϕr|2|X|2 + ϕ2
r|∇X|2 + ϕr∇ϕr · ∇|X|2.

Since X is harmonic vector field, from Bochner-Weitzenböck formula, we have

(4.7)
1
2
∆|X|2 = |∇X|2 + RicM (X,X).

From Lemma 1 in section 2, we have

(4.8) RicM (X,X) ≥ −n − 1
n

S|X|2,

because M is minimal and N has non-negative sectional curvature. Thus, we infer∫
M

S|ϕrX|2dM(4.9)

≤
∫

M

{|∇ϕr|2|X|2 + ϕ2
r|∇X|2 + ϕr∇ϕr · ∇|X|2}dM

=
∫

M

[
|∇ϕr|2|X|2 + ϕ2

r{
1
2
∆|X|2 − RicM (X,X)}

+ ϕr∇ϕr · ∇|X|2
]
dM

≤
∫

M

{|∇ϕr|2|X|2 +
n − 1

n
Sϕ2

r|X|2}dM.

Here we used the Stokes’ formula, (4.7) and (4.8). Hence, we obtain

(4.10)
1
n

∫
M

S|ϕrX|2dM ≤
∫

M

|∇ϕr|2|X|2dM.

From the definition of ϕr, we have

(4.11)
1
n

∫
Bp(r)

S|X|2dM ≤
∫

Bp(r+1)\Bp(r)

|∇ϕr|2|X|2dM.

Since
∫

M
|X|2dM < ∞, we have

(4.12)
∫

M

S|X|2dM = 0.

Hence, S ≡ 0 on M . Namely, M is totally geodesic. From Gauss equation, we know

that M has non-negative sectional curvature since N has nonnegative sectional

curvature. Hence, the Ricci curvature of M is non-negative. From (4.7), we have

(4.13)
1
2
∆|X|2 = |∇X|2 + RicM (X,X) ≥ |∇X|2.
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Then from Sato’s inequality |∇X| ≥ |∇|X||, we have

(4.14) |X|∆|X| =
1
2
∆|X|2 − |∇|X||2 ≥ |∇X|2 − |∇|X||2 ≥ 0.

Thus, |X| is subharmonic function. A theorem of Yau in [28] yields |X| = 0. This

is a contradiction. Hence, there exist no nontrivial L2-harmonic 1-forms on M .

This finishes the proof of Theorem 4.1. ¤

Since if M is stable, from Proposition 1, M is harmonic stable, we have the

following Corollary, which is a generalization of the theorem due to Palmer [21]

and was proved by Miyaoka in [20].

Corollary 4.1. Let M be a complete stable minimal hypersurface in a complete

Riemannian manifold Nn+1 with non-negative sectional curvature. Then, there

exist no nontrivial L2-harmonic 1-forms on M .

Corollary 4.2. Let M be a complete harmonic stable minimal hypersurface in a

complete Riemannian manifold Nn+1 with non-negative sectional curvature. Then,

there exist no nontrivial harmonic functions with finite energy on M .

Proof. If u is a harmonic function with finite energy on M , then du is a L2-harmonic

1-form on M . From Theorem 4.1, we know that du = 0. Hence, u is constant.

Thus, there exist no nontrivial harmonic functions with finite energy on M . ¤

5. Harmonic stable minimal hypersurfaces

In this section we consider more general case than the result given in section 4.

That is, we want to give a result for a harmonic stable minimal hypersurface in a

complete Riemannian manifold as follows:

Theorem 5.1. Let M be a complete harmonic stable proper minimal hypersurface

in a complete Riemannian manifold Nn+1 with non-negative sectional curvature.

If M is nonparabolic, then M must have only one nonparabolic end.

Proof. For the construction of harmonic functions, we shall use the same assertion

as in [18]. Since M is nonparabolic, then M has a nonparabolic end, denoted
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by E. If M has only one end E, then there is nothing to do. We suppose that

M has at least two ends. Assume that E and F are two ends of M , given by

unbounded connected components of M\Bp(1). Since M is proper, we know that

the Busemann function β is unbounded in F and |∇β| ≤ 1. Since N has non-

negative sectional curvature, we know that β is a convex exhaustion function of

N .

In particular, the restriction of β on M is a subharmonic function with respect

to the induced metric because M is minimal. Hence, β satisfies the conditions in

Proposition 2 in section 2. Since |∇β| ≤ 1, we know that s(r) is at most linear

growth. Hence, there exists a sequence of harmonic functions {ui} defined on

F (ri) = F ∪Bp(ri) that converges to a positive harmonic function u defined on F .

Moreover, they satisfies

(5.1)


∆ui = 0, in F (ri),

ui = 0, on ∂F,∫
∂F

∂ui

∂r
= 1.

Since E is nonparabolic, there exists a sequence of harmonic functions {vi} defined

on E(ri) = E ∪Bp(ri) that converges to a positive harmonic function u defined on

E. Moreover, they satisfies

(5.2)


∆vi = 0, in E(ri),

vi = 0, on ∂E,∫
∂E

∂vi

∂r
= 1.

Let us define function fi on Bp(ri) by

(5.3) fi =


vi, in E(ri),

− ui, in F (ri),

0 in Bp(ri)\(E(ri) ∪ F (ri)).

fi is harmonic function on E(ri) ∪ F (ri) and

(5.4)
∫

∂Bp(1)

∂fi

∂r
= 0.
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We consider boundary value problem

(5.5)

{
∆wi = 0, in Bp(ri),

wi = fi, on ∂Bp(ri).

The solution wi minimizes Dirichlet integral. Hence,∫
Bp(ri)

|∇wi|2dM(5.6)

≤
∫

Bp(ri)

|∇fi|2dM

=
∫

E(ri)

|∇vi|2dM +
∫

F (ri)

|∇ui|2dM

≤ 2Cri.

On the other hand, fi converges to the function

(5.7) f =


v, in E,

− u, in F,

0 in M\(E ∪ F ).

There exists a constant C1 > 0 independent of i such that the sequence {wi}
converges to a harmonic function w on M satisfying

(5.8) |w − f | ≤ C1.

We consider a function

(5.9) φ(x) =


1, in Bp(r),

ri − d(p, x)
ri − r

, in Bp(ri)\Bp(r),

0 in M\Bp(r),

where d(p, x) is the distance function from p and 0 < r < ri. Thus,

(5.10) φ(x)∇wi ∈ Γc(TM).

Since M is harmonic stable, we have

(5.11)
∫

M

{S|φ∇wi|2 + RicN (ν, ν)|φ∇wi|2}dM ≤
∫

M

|∇(φ∇wi)|2dM.
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Since wi is harmonic in Bp(ri), we have, in Bp(ri),

(5.12)
1
2
∆|∇wi|2 = |∇∇wi|2 + RicM (∇wi,∇wi).

Therefore, we infer

|∇(φ∇wi)|2

= |∇φ|2|∇wi|2 + φ∇φ · ∇|∇wi|2 + φ2|∇∇wi|2

= |∇φ|2|∇wi|2 + φ∇φ · ∇|∇wi|2 + φ2{1
2
∆|∇wi|2 − RicM (∇wi,∇wi)}

Hence, we have, from Lemma 1,∫
M

|∇(φ∇wi)|2dM(5.13)

=
∫

M

{|∇φ|2|∇wi|2 − φ2RicM (∇wi,∇wi)}dM

≤
∫

M

{|∇φ|2|∇wi|2 +
n − 1

n
Sφ2|∇wi|2}dM.

Thus, we obtain ∫
M

S|φ∇wi|2dM ≤ n

∫
M

|∇φ|2|∇wi|2dM(5.14)

=
∫

Bp(ri)\Bp(r)

1
(ri − r)2

|∇wi|2dM

=
1

(ri − r)2
2Cri.

Letting i → ∞, we have

(5.15)
∫

Bp(r)

S|∇wi|2dM = 0.

Since r is arbitrary, we conclude |∇w|2S = 0. Since w is a non-constant harmonic

function, we know that S = 0 on M . Hence, M is totally geodesic. From Gauss

equation, we infer that M has non-negative sectional curvature, because N has non-

negative sectional curvature. From the splitting theorem of Cheeger and Gromoll

[6], we know M = R×P , which contradicts the assumption that M is nonparabolic.

Hence, M must have only one end. ¤
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