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MAXIMAL SPACE-LIKE HYPERSURFACES IN H4
1 (−1)

WITH ZERO GAUSS-KRONECKER CURVATURE

Qing-Ming Cheng and Young Jin Suh

Abstract. In this paper, we study complete maximal space-like
hypersurfaces with constant Gauss-Kronecker curvature in an anti-
de Sitter space H4

1(−1). It is proved that complete maximal space-
like hypersurfaces with constant Gauss-Kronecker curvature in an
anti-de Sitter space H4

1(−1) are isometric to the hyperbolic cylinder

H2(c1)×H1(c2) with S = 3 or they satisfy S ≤ 2, where S denotes
the squared norm of the second fundamental form.

1. Introduction

Let Mn
s (c) be an n-dimensional connected semi-Riemannian manifold

of index s(≥0) and of constant curvature c. It is called a semi-definite
space form of index s. When s = 1, Mn

1 (c) is said to be a Lorentz space
form. Such Lorentz space forms Mn

1 (c) can be divided into three kinds
of semi-definite space forms: the de Sitter space Sn

1 (c), the Minkowski
space Rn

1 , or the anti-de Sitter space Hn
1 (c), according to the sign of its

sectional curvature c > 0, c = 0, or c < 0 respectively.
In connection with the negative settlement of the Bernstein problem

due to Calabi [4] and Cheng-Yau [8], Chouque-Bruhat et al. [9] proved
the following theorem independently.

Theorem A. Let M be a complete space-like hypersurface in an
(n+1)-dimensional Lorentz space form Mn+1

1 (c), c≥0. If M is maximal,
then it is totally geodesic.
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As a generalization of this result, complete space-like hypersurfaces
with constant mean curvature in a Lorentz manifold have been investi-
gated by Akutagawa [1], Li [11], Montiel [12], Nishikawa [13], Baek and
the present authors [3], and Choi, Yang and the second author [16].

On the other hand, some generalizations of Theorem A for submani-
folds with codimension p≥1 were given by Ishihara [10], Nakagawa and
the first author [7], and the first author [5]. Among them Ishihara [10]
proved that an n-dimensional complete maximal space-like submanifolds
with codimension p in an (n + p)-dimensional semi-definite space form
Mn+p

p (c), c≥0 is totally geodesic.
Now let us consider a complete maximal space-like hypersurface in

an anti-de Sitter space Hn+1
1 (−1) and denote by S the squared norm of

the second fundamental form of this hypersurface. Then Ishihara [10]
has also proved that the squared norm S satisfies 0 ≤ S ≤ n and the
hyperbolic cylinders Hn−k(c1)×Hk(c2), k = 1, 2, . . . , n−1 are the only
complete maximal space-like hypersurfaces in an anti-de Sitter space
Hn+1

1 (−1) satisfying S ≡ n.
Then it could be natural to investigate complete maximal space-like

hypersurfaces in Hn+1
1 (−1), which do not satisfy S ≡ n. When n = 3,

the first author [6] gave several characterizations for such hypersurfaces
and it was proved that hyperbolic cylinders H2(c1) × H1(c2) are the
only complete maximal space-like hypersurfaces in H4

1(−1) with nonzero
constant Gauss-Kronecker curvature.

For the case that Gauss-Kronecker curvature is zero we have no result
until now. Since totally geodesic maximal space-like hypersurfaces were
known to have zero Gauss-Kronecker curvature, the following problem
was proposed by the first author [5].

Problem. [6] Is it true that every complete maximal space-like hy-
persurface in H4

1(−1) with zero Gauss-Kronecker curvature is totally
geodesic?

In this paper, we shall give two characterizations of such hypersur-
faces, which imply the above problem may be solved affirmatively.

Theorem 1. Let M3 be a complete maximal space-like hypersurface
in an anti-de Sitter space H4

1(−1) with zero Gauss-Kronecker curvature.
Then, M3 satisfies S ≤ 2, where S denotes the squared norm of the
second fundamental form.

From Theorem 1 and the result due to the first author [6], we obtain
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Corollary. Let M3 be a complete maximal space-like hypersurface
in an anti-de Sitter space H4

1(−1) with constant Gauss-Kronecker curva-
ture. Then, M3 is isometric to the hyperbolic cylinder H2(c1)×H1(c2)
with S = 3 or M3satisfies S ≤ 2.

If a maximal space-like hypersurface in H4
1 (−1) is not assumed to be

complete, we can assert the following:

Theorem 2. Let M3 be a maximal space-like hypersurface in an
anti-de Sitter space H4

1(−1) with zero Gauss-Kronecker curvature. If
the principal curvature functions are constant along the curvature line
corresponding to the zero principal curvature, then M3 is totally geo-
desic.

2. Preliminaries

We consider Minkowski space Rn+2
2 as the real vector space Rn+2

endowed with the Lorentzian metric 〈¦, .〉 given by

(2.1) 〈x, y〉 =
n∑

i=1

xiyi − xn+1yn+1 − xn+2yn+2

for x, y εRn+2. Then, for c > 0, the anti-de Sitter space Hn+1
1 (−c) can

be defined as the following hyperquadric of Rn+2
2

Hn+1
1 (−c) =

{
xεRn+2

2 : |x|2 = −1
c

}
.

In this way, the anti-de Sitter space Hn+1
1 (−c) inherits from 〈, 〉 a metric

which makes it an indefinite Riemannian manifold of constant sectional
curvature −c. For indefinite Riemannian manifolds, refer to B. O′Neill
[15].

Moreover, if x ∈ Hn+1
1 (−c), we can put

TxHn+1
1 (−c) = {v ∈ Rn+2

2 |〈v, x〉 = 0}.

If ∇L and ∇̄ denote the metric connections of Rn+2
2 and Hn+1

1 (−c)
respectively, we have

(2.2) ∇L
v w − ∇̄vw = c〈v, w〉x
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for all vector fields v, w which are tangent to Hn+1
1 (−c). Let

(2.3) φ : Mn → Hn+1
1 (−c)

be a connected space-like hypersurface immersed in Hn+1
1 (−c) and let ∇

be the Levi-Civita connection corresponding to the Riemannian metric
g induced on Mn from 〈, 〉. Then the second fundamental form ~h and
the Weingarten endomorphism A of φ are given by

(2.4) ∇̄vw −∇vw = ~h(v, w),

(2.5) ∇̄vN = −Av and ~h(v, w) = −g(Av,w)N,

where v, w are vector fields tangent to Mn and N is a unit timelike
vector field normal to Mn. So, the mean curvature H of the immersion
φ is given by nH = traceA.

Let us denote by R the curvature tensor field of M . The Gauss
equation is given by

(2.6)
R(v, w)u

=− c{g(w, u)v − g(v, u)w} − {g(Aw, u)Av − g(Av, u)Aw},

where v, w and u are vector fields tangent to Mn. The Codazzi equation
is expressed by

(2.7) (∇vA)w = (∇wA)v.

From (2.6), we have

(2.8) n(n− 1)(r + c) = S − (nH)2,

where S = |~h|2 and n(n − 1)r denotes the squared norm of the second
fundamental form and the scalar curvature of Mn, respectively.

We take a local field of orthonormal differentiable frames e1, . . . , en

on Mn such that

(2.9) Aei = λiei, for i = 1, 2, . . . , n.

These λi’s are called principal curvatures of Mn.
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Next we consider the case of n = 3. Since ∇eiej are tangent to M3

and e1, e2, e3 is a local field of orthonormal differentiable frames, we
know that there are 9 functions a1, a2, . . . , a9 such that
(2.10)
∇e1e1 = a1e2 + a2e3, ∇e1e2 = −a1e1 + a3e3, ∇e1e3 = −a2e1 − a3e2,

(2.11)
∇e2e1 = −a4e2 + a6e3, ∇e2e2 = a4e1 + a5e3, ∇e2e3 = −a6e1 − a5e2,

(2.12)
∇e3e1 = a9e2 − a7e3, ∇e3e2 = −a9e1 − a8e3, ∇e3e3 = a7e1 + a8e2.

The following Generalized Maximum Principle due to Omori and Yau
will be used in order to prove our theorems.

Generalized Maximum Principle. (Omori [14] and Yau [17]) Let
Mn be a complete Riemannian manifold whose Ricci curvature is bound-
ed from below and f ∈ C2(M) a function bounded from above on Mn.
Then for any ε > 0, there exists a point p ∈ Mn such that

f(p) ≥ sup f − ε, ‖gradf‖(p) < ε, ∇i∇if(p) < ε,

for i = 1, 2, . . . , n.

3. Proofs of Theorems

In order to prove our theorems, we shall prepare two lemmas, firstly.

Lemma 1. Let M3 be a space-like hypersurface in an anti-de Sitter
space H4

1(−1). If the principal curvatures λi’s are different from each
others on an open subset U of M3, then on U, we have the following:

e1(λ2) = a4(λ2 − λ1), e1(λ3) = a7(λ3 − λ1),

e2(λ1) = a1(λ1 − λ2), e2(λ3) = a8(λ3 − λ2),

e3(λ1) = a2(λ1 − λ3), e3(λ2) = a5(λ2 − λ3),

a9(λ1 − λ2) = a3(λ2 − λ3) = a6(λ1 − λ3),

where the above functions ai, i = 1, . . ., 9 are given in section 2.
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Proof. Since these principal curvatures λi’s are different from each
other on the open subset U of M , then on U, λi’s are differentiable
functions. From Codazzi equation (2.7), we have

(∇e1A)e2 = (∇e2A)e1.

From (2.9), we obtain

∇e1(λ2e2)−A∇e1e2 = ∇e2(λ1e1)−A∇e2e1,

e1(λ2)e2 + λ2∇e1e2 −A∇e1e2 = e2(λ1)e1 + λ1∇e2e1 −A∇e2e1.

From (2.10) and (2.11), we infer

e1(λ2)e2 + λ2(−a1e1 + a3e3) + a1λ1e1 − a3λ3e3

= e2(λ1)e1 + λ1(−a4e2 + a6e3) + a4λ2e2 − a6λ3e3.

Hence, we have

e1(λ2) = a4(λ2 − λ1), e2(λ1) = a1(λ1 − λ2), a3(λ2 − λ3) = a6(λ1 − λ3).

Similarly, we can prove the other also holds. Now we complete the proof
of Lemma 1. ¤

Since M3 is maximal and the Gauss-Kronecker curvature is zero, we
can assume λ1 = λ = −λ2, λ3 = 0. Then we are able to state the
following:

Lemma 2. Let M3 be a maximal space-like hypersurface with zero
Guass-Kronecker curvature in an anti-de Sitter space H4

1(−1). If S is
not zero on an open subset U of M3, then on U, we have

e1(a4) + e2(a1) = λ2 − 1 + a2
1 + a2

2 + 2a2
3 + a2

4,(3.1)

e3(a1) +
1
2
e1(a3) = a1a2 − 1

2
a3a4,(3.2)

e3(a4)− 1
2
e2(a3) = a2a4 +

1
2
a1a3,(3.3)

e3(a2) = −1 + a2
2 − a2

3,(3.4)

e1(a2) = e2(a3), e1(a3) = −e2(a2), e3(a3) = 2a2a3,(3.5)

where λ = λ1 6= 0.
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Proof. Since M3 is maximal and the Gauss-Kronecker curvature is
zero, we may assume λ1 = λ = −λ2 6=0, λ3 = 0. According to Lemma 1,
we have

(3.6) e1(λ) = 2a4λ, e2(λ) = 2a1λ, e3(λ) = a2λ,

and

(3.7) a5 = a2, 2a9 = −a3 = a6, a7 = a8 = 0.

From (2.10), (2.11), and (2.12), we can obtain the following formulas

[e1, e2] = −a1e1 + a4e2 + 2a3e3,(3.8)

[e1, e3] = −a2e1 − 1
2
a3e2,(3.9)

[e2, e3] =
1
2
a3e1 − a2e2.(3.10)

From the definition of the curvature tensor and the Gauss equation (2.6),
we have

(3.11) ∇e1∇e2e2 −∇e2∇e1e2 −∇[e1,e2]e2 = R(e1, e2)e2 = (λ2 − 1)e1.

From (2.10) and (2.11), we have

∇e1∇e2e2 −∇e2∇e1e2 −∇[e1,e2]e2

(3.12)

= ∇e1(a4e1 + a2e3)−∇e2(−a1e1 + a3e3)−∇(−a1e1+a4e2+2a3e3)e2

=
{
e1(a4) + e2(a1)− a2

1 − a2
2 − 2a2

3 − a2
4

}
e1 +

{
e1(a2)− e2(a3)

}
e3.

From (3.11) and (3.12), we infer

e1(a4) + e2(a1) = λ2 − 1 + a2
1 + a2

2 + 2a2
3 + a2

4, e1(a2) = e2(a3).

Making use of a similar proof, we can obtain

e1(a3) = −e2(a2),

e3(a1) +
1
2
e1(a3) = a1a2 − 1

2
a3a4,

e3(a2) = −1 + a2
2 − a2

3,
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e3(a4)− 1
2
e2(a3) = a2a4 +

1
2
a1a3,

e3(a3) = 2a2a3,

from

∇e1∇e2e1 −∇e2∇e1e1 −∇[e1,e2]e1 = R(e1, e2)e1 = (1− λ2)e2,

∇e1∇e3e1 −∇e3∇e1e1 −∇[e1,e3]e1 = R(e1, e3)e1 = e3,

∇e2∇e3e2 −∇e3∇e2e2 −∇[e2,e3]e2 = R(e2, e3)e2 = e3

and
∇e3∇e1e3 −∇e1∇e3e3 −∇[e1,e3]e1 = R(e3, e1)e3 = e1.

Thus, the proof is completed. ¤

Proof of Theorem 1. From a result due to Ishihara [10], we know
S ≤ 3. If sup S = 0, then our theorem is true. Next we consider the
case of sup S > 0. Then let us construct an open subset U of M3 in such
a way that

U = {p ∈ M3; S(p) > 0}.
Since the Gauss-Kronecker curvature is zero and M3 is maximal, we can
assume

λ1 = λ, λ2 = −λ and λ3 = 0.

Thus, on such an open subset U, these principal curvatures λ1, λ2 and
λ3 are different from each other. Hence, they are differentiable on U.

Now we are able to assume that λ > 0 on U. From the Gauss equation,
we know that the sectional curvature is bounded from below by −1.
Applying the Generalized Maximum Principle due to Omori [14] and
Yau [17] in section 2 to the function S, we know that there exists a
sequence {pk} ⊂ M3 such that

lim
k→∞

S(pk) = supS, lim
k→∞

‖grad S‖(pk) = 0,(3.13)

lim
k→∞

sup∇i∇iS(pk) ≤ 0, for i = 1, 2, 3.(3.14)

Since sup S > 0, we can assume {pk} ⊂ U . On U, S = λ2
1+λ2

2+λ2
3 = 2λ2.

Hence, we have

(3.15) sup S = lim
k→∞

S(pk) = 2 lim
k→∞

λ(pk)2.
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From (3.13) and

(3.16) e1(λ) = 2a4λ, e2(λ) = 2a1λ, e3(λ) = a2λ,

we have

(3.17) lim
k→∞

a1(pk) = 0, lim
k→∞

a2(pk) = 0, lim
k→∞

a4(pk) = 0.

From (3.14) and S = 2λ2, λ > 0, we have

(3.18)
lim

k→∞
sup e1e1 (λ)(pk) ≤ 0, lim

k→∞
sup e2e2(λ)(pk) ≤ 0,

lim
k→∞

sup e3e3(λ)(pk) ≤ 0.

From (3.16), we have

e1e1(λ) = 2e1(a4)λ + 2a4e1(λ),

e2e2(λ) = 2e2(a1)λ + 2a1e2(λ),

e3e3(λ) = e3(a2)λ + a2e3(λ).

Thus, we obtain

lim
k→∞

sup e1(a4)(pk) ≤ 0 and lim
k→∞

sup e2(a1)(pk) ≤ 0.

From the formula (3.1) in Lemma 2, we have

lim
k→∞

λ(pk)2 ≤ 1.

Hence, we infer sup S ≤ 2. Now we complete the proof of Theorem 1.¤

Proof of Theorem 2. If there exists a point p ∈ M3 such that S(p) >
0, then by using the similar assertion as in the proof of Theorem 1, we
have that on an open subset U, S(p) > 0 and these principal curvatures
are differentiable. From the assumption of Theorem 2, we have a2 = 0
according to (3.6). From (3.4), we infer −1−a2

3 = 0. This is impossible.
Hence, S ≡ 0 on M3, that is, M3 is totally geodesic. Thus, Theorem 2
is proved. ¤
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