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Abstract In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional
non-totally umbilical compact hypersurface with constant mean curvature H in the unit
sphere S"*1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator,
which only depends on the mean curvature H and the dimension n. This bound is attained
if and only if, ¢ : M — S"t1(1) is isometric to S'(r) x S 1(~/1 —r2) when H # 0

—k k
org: M — S§"t1(1) is isometric to a Clifford torus S"* ( n) x Sk (J), for
n n

k=1,2,...,n—1when H =0.

Mathematics Subject Classification 53C42 - 58J50

1 Introduction

Letg : M — S™t1(1) be an n-dimensional compact hypersurface in the unit sphere $”*1(1)
of dimension n + 1. We consider a variation of the hypersurface ¢ : M — $"T1(1), for any
t e (—¢¢),
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o M — S"™(1)

is an immersion with g9 = ¢. The area of ¢; is given by

A(t)=/ dA;
M

and the volume of ¢; is defined by
V() = niil M((ﬂt, N(0)dA;,
where N (¢) denotes the unit normal of ¢;. For any ¢, if V() = V(0), then the variation ¢y is
called volume-preserving. If the variational vector % l/=0 = f N for a smooth function f,
then the variation is called a normal variation, where N is the unit normal of ¢. Let H denote
the mean curvature of ¢. The first variation formula of the area functional A(z) is given by
dA(t)
dt

li=0 = —/ nHfdA,
M

where f = (aalﬂ +=0, N). Thus, we know that a compact hypersurface is minimal, that is,
H = 0if and only if

Hence, compact minimal hypersurfaces are critical points of the area functional A(¢). The
second variation formula of A () is given by

d*>A(t)
o= - /M fafda
and

Jf=Af+(S+n)f,

where S denotes the squared norm of the second fundamental form of ¢ and A stands for the
Laplace—Beltrami operator. The J is called a Jacobi operator or a stability operator on the
minimal hypersurface ¢ (cf. [2,9]).

Let A{ denote the first eigenvalue of the Jacobi operator J. Then

Ju = —klju
and the AIJ is given by
- JfdA
)\{ — inf f"’f#
J20 " [, f2dA

For a compact minimal hypersurface in $"*!(1), Simons [10] proved

and klj = —nifand only if ¢ : M — S§"T1(1) is totally geodesic. Furthermore, Wu [11]
proved that for an n-dimensional compact non-totally geodesic minimal hypersurface ¢ :
M — §"T1(1) in $"*1(1), then A{ < —2nand A{ = —2nifand only if ¢ : M — S"T1(1)

is a Clifford torus §"—* (,/ "n;k> x Sk <\/§> ,fork =1,2,...,n— 1. Thus, we know that
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the upper bound for the first eigenvalue AIJ due to Wu is optimal and it only depends on the
dimension n, does not depends on the immersion.

On the other hand, if one considers the volume-preserving variation of ¢, then we have

/MfdA =0.

From the first variation formula:

dA(t)
dt

|I=0 = —/ andA,
M

we know that compact hypersurfaces with constant mean curvature are critical points of the
area functional A () for the volume-preserving variation and the second variation formula of
A(t) is given by

d?A(r)
dr?

o = — fM fIfdaA,

where the Jacobi operator J on compact hypersurfaces with constant mean curvature is the
same as one of compact minimal hypersurfaces ([2,4]).

Alias et al. [3] studied the first eigenvalue of the Jacobi operator J on compact hypersur-
faces with constant mean curvature. They proved the following:

Theorem ABB If ¢ : M — S"t1(1) is an n-dimensional compact hypersurface with non-

zero constant mean curvature H in the unit sphere S§"H1(1), then either k{ = —n(l+ H?

and ¢ : M — S"T1(1) is totally umbilical or

n(n —2)|H|

————— max
nin—1)

A <—2n(l+ HY) + S —nH?

and the equality holds if and only if ¢ : M — S"T1(1) is S'(r) x §"~ V(1 = r2), with

2 1
re> - forn>2.

According to this theorem, we know that, for n = 2, the upper bund of the first eigenvalue AIJ
of the Jacobi operator of non-totally umbilical compact hypersurfaces with constant mean
curvature only depends on the mean curvature H and the dimension. But for n > 3, the upper
bound of the first eigenvalue Alj of the Jacobi operator on non-totally umbilical compact
hypersurfaces with constant mean curvature includes the term max /S — n H2. Hence, the
upper bound of the first eigenvalue )»1] does not only depend on the mean curvature H and
the dimension n, but also depends on the immersion ¢.

It is natural and important to propose the following:

Problem 1.1 To find an optimal upper bound for the first eigenvalue AIJ of the Jacobi operator
on non-totally umbilical compact hypersurfaces with constant mean curvature, which only
depends on the mean curvature A and the dimension 7.

In this paper, we give an affirmative answer for the above Problem 1.1.

Theorem 1.1 Let ¢ : M — S"t1(1) be an n-dimensional non-totally umbilical compact
hypersurface with constant mean curvature H in the unit sphere S"T1(1).
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1.If2<n<4orn=>5and n?H? < ;6((:_—41))’ then the first eigenvalue klj of the Jacobi
operator J satisfies

2
n (,/4(n ")+ nlHE— (n— 2)|H|>

4n—1)

A < —n(14+H?) -

and the equality holds if and only if ¢ : M — S"t1(1) is isometric to S'(r) x
S"=V(/1 = r2) with r > 0 satisfying
2 1
1>r">— for2 <n <4,
n
n

16(n — 1)
(n —2)?

nn—4)

or ¢ : M — S"Y(1) is isometric to a Clifford torus "% <,/ %) x Sk (\/g) , for

k=1,2,...,n—1with H=0.
2. Ifn>5and n>H? > 1,16((:__41)) , the first eigenvalue A{ of the Jacobi operator J satisfies

>r2s - fornZSandn2H2<
n

(n—2)*

Hz
8n—1)

A <=2 — 1)1+ H) +
and the equality holds if and only if ¢ © M — S"™t1(1) is isometric to S' (%) X
gn—1 (v(n—l)(n—4)).

n—2

Remark 1.1 Since the first eigenvalue of Jacobi operator J on totally umbilical hypersurfaces
satisfies A{ =-n(l+H 2), according to our theorem, one knows that for 2 < n < 4, there
are no n-dimensional compact hypersurfaces in the unit sphere with constant mean curvature
H so that the first eigenvalue A{ of Jacobi operator J takes a value in the internal

n(y/4n — 1) +n2H? — (n — 2)|H|)?

4(n—1)

(—n(1+H2)— : —n(1+H2)>~

For any n > 2, there are no n-dimensional compact hypersurfaces in the unit sphere with
constant mean curvature H satisfying n?H? < 1n6((’:‘__41)) so that the first eigenvalue k{ of

Jacobi operator J takes a value in the internal

n(/4n — 1)+ n2H2 — (n — 2)|H|)?

4(n—1)

<—n(1 + H?) — , —n(l +H2)>.

One should compare the bound

n(y/4(n —1) + n2H2 — (n — 2)|H|)?

2
—nd+HY = 4n—1)

with the pinching constant in the rigidity theorem of Cheng and Nakagawa [7] or Alencar
and do Carmo [1].
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2 Preliminaries

Throughout this paper, all manifolds are assumed to be smooth and connected without bound-
ary. Let ¢ : M — $"t1(1) be an n-dimensional hypersurface in a unit sphere $"*1(1). We

choose a local orthonormal frame {ey, ..., e,, e,+1} and the dual coframe {wy, ..., Wy,
wy+1} in such a way that {ey, ..., e,} is a local orthonormal frame on M. Hence, we have
wp+1 =0

on M. From Cartan’s lemma, we have
n
Oint1 = Zhijwj, hij = hj;. 2.1
j=1

The mean curvature H and the second fundamental form I7 of ¢ : M — S"™t1(1) are
defined, respectively, by

1 .
H— ;;h”, Il = 'Zl hijwi ® wjepi1.
i= Lj=

When the mean curvature H of ¢ : M — S"t1(1) is identically zero, we recall that ¢ :
M — S§"t1(1) is by definition a minimal hypersurface. From the structure equations of
@ : M — S"t1(1), Gauss equation is given by

Rijki = (8ixdj1 — 818 k) + (hikh ji — hith i), (2.2)
From (2.2), we have
nin—Dr=nn—1)+n’H> -5,

where n(n — 1)r and S denote the scalar curvature and the squared norm of the second
fundamental form of ¢ : M — §"t1(1), respectively. Defining the covariant derivative of
hi; by

Zhijkwk =dh;j + Zhikwkj + thjwki, 2.3)
k k k
we obtain the Codazzi equations
hijk = hij. (2.4)
By taking exterior differentiation of (2.3), and defining
D hijuor = dhiji+ Y bk + Y hikor + Y hijion (25)
l 1 l l
we have the following Ricci identities:
hijit = hijik =Y hmj Ruiki + ) him Rja. (2.6)
m m

For any C2-function f on M, we define its gradient and Hessian by

af =) fior,

i=1

n n
Zf,-jwj = df,’ + ija)j,-.
j=1 j=1
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Thus, the Laplace—Beltrami operator A is given by
n

Af =) fii-
i=1

Example 2.1 For totally umbilical sphere S”(r) of radius r > 0, the first eigenvalue k{ =
—n(1+ H*) with H = 1.

Example 2.2 For Clifford torus sn—k <‘ / ”n;k> x Sk <\/§> k=1,2,...,n,thefirst eigen-
value A{ = —2n with H = 0.

Example 2.3 For hypersurfaces S'(r) x §"~!(+/1—r2) with 0 < r < 1, the principal
curvatures are given by

P LTS A
r N
Hence, we know that
nr? —1 _1—2r2—|—nr4

nH =

, §=
ra/1—r2 r2(1—r?)
For r2 > %, by a direct computation, we know that the first eigenvalue A]J of the Jacobi
operator J on S(r) x §"~1(/1 — r2) satisfies

2
n (\/4(11 D+ n?HE—(n— 2)|H|)

4n — 1)

A =—-n(1+HY) -
Forn > 5and % <r?< ﬁ we know the hypersurface SL(r) x S~ 1(V1 = r2) satisfies

W2H? < 16(n — 1)
nn—4)

and

2
n (\/4(n D+ n2H?—(n— 2)|H|)

A =—-n(1+HY -

4(n—1)
The hypersurface S' (%) x §n-1 <7W) satisfies
A 2 -1+ i+ D gy
= — n — —_—
! 8(n—1)

16(n—1)
nn—4) *

with n2H? =

3 Proof of Theorem 1.1

In this section, we give a proof of the Theorem 1.1.
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Proof of Theorem 1.1 When H = 0, according to the result of Wu [11], we have klj <
—2n and AIJ = —2nifandonly if ¢ : M — S"*+1(1) is isometric to a Clifford torus

S""‘( ﬂ) xsk<\/§>,fork:1,2,...,n—1.

From now we assume H # 0. By making use of the Codazzi equations, Ricci identities
and a standard computation of Simons’ type formula (cf. [5-8,10]), we have

1 n
SAS= > i +nS—n*H>+nHf; - S, (3.1)
2 i,j,k=1 !

s JoK=

where f3 = Z?:l k1.3 and k;,i = 1,2, ..., n denote the principal curvatures.
Putting u; = k; — H, we have

n
B:=)Y uj=S—nH>>0, fy=Bs+3HB+nH" (3.2)
i=1

where B3 = Y/, /,L? The following inequality is known (cf. [7,8]):

By < 22 _p} (3.3)
N= =0 '
and the equality holds if and only if at least n — 1 of k;, fori = 1,2, ..., n, are equal with

each other. Since H is constant, we can assume H > 0. Thus, from (3.1), (3.2) and (3.3), we
have
n
Lap=1tass 3 03+ B +nH? — B) H-"=2 pi
— = — . n n — —n .
2 P i n(n—1) .

For any constant ¢ > 0 and ¢ > 0, we consider a function f; = (B + ¢)* > 0. Hence, we
have, from (3.4),

Afs =ala— 1)(B+e)* 2 |[VB>+a(B+6)* 'AB
> a(a — 1)(B 4 ¢)*?|VB|?

n
n—2 3
+ 20(B + &)~ ! 2, + Bn+nH?> - B)—nH——B2
(B +e) ,»,j,;zl iji B )l =5
(3.5)
Since H is constant, we have
n
VinH) =Y hiik =0, hi <=1 hiy
i=1 i #k
‘ e (3.6)
n n n
VB =Y "> wihix)* <4B Y hiy.
k=1 i=1 i,k=1
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Thus, we obtain

|VB|* < 4B Z h2y
i.k=1

n n
_ n 2 2 2 2
=4B 7n+2];hkkk+7n+2];hkkk+2hiik

ik

thkk +3Zhuk . (3.7

i#k

For any constant 8, we have

A / f2dA

IA

- / fod fudA
M
-8 /M FAfdA - fM (1= B fAfo + (S + ) f2) dA
y /M Vo 2dA — /M o l(1= B) (@ — (B + &) 2| VBP
+a(B+e)* 'AB) + (B +nH*+n)f.}dA

= a/ fell+2aB — B —a} (B +¢e)* 2|VB|PdA
M

_/ ff{ag+'3)AB+B+nH2+n}dA.
M

By taking o and B satisfying

w2 o e (3.8)
4n dnoa+2—n
we have
(n—2)(1 — B) —4na(l — B) +2na = 0.
Since

Z hljk_zhkkk+3zhllk+ Z hl/k’

ijk=1 i#k i) #hAi

from (3.7), we obtain

(1+2af — B —a) [VB]> = 2(1 = B)(B + ¢) Z hiji

i,j,k=1

<%B{(n—2)(1—,3) dna(l — B) + 2na} thkk+32h”k =0.
k=1 i#k
(3.9)
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Thus, we infer

AJ/ frdA
<a/ fe(B+¢e)*" 2{(1+2aﬁ B—a) VB> —2(1 — B)(B +¢) Z h,,k]
i,j,k=1
[ 2 [220-P)B 2 (=D .
/Mfa[ Brs ((n+nH B) nHmBz)—l—B—i-nH +n}dA

» B 201 = p)(n —2) 1
5—/ fgﬁ<{l—2a(l—ﬂ)}3—ﬁnHB2+8)dA

— 2a(1 —ﬁ)(n+nH2)/ 12 —dA (n+nH2)/ f2dA.

For 1 — 2a(1 — B) > 0, we obtain

A / f2dA

201 a2 2
sf P8 ( d=pyn=2) (nH)2—e> dA
Bte\(d—2a(— ﬁ))n( .

— 2a(1 —/3)(n+nH2)/ 12 7dA (n+nH2)/ f2dA.

Since ¢ : M — S§"t1(1) is not totally umbilical, we have

lim / fPdA = / B*dA > 0.
M

e—=0 )y

Letting ¢ — 0, we derive

c(1=p?> 0 2)2

A < —(1+2a(1 — 1+ H? 3.10
P o= P O e = By = 1" G0
For n = 2, we have
A < = +2a(1 = B)n(l + H?).
1
From (3.8), we have = Efor any 0 < o < 1. Hence, we obtain
A < —2n(1 4+ H).
16(n — 1
For2<n§4orn25andn2H2<L,wehave
nn —4)
1 1 | (n—2)*H? [ 1 3.11)
= > = — | > === —. .
2 2 4(n — 1) +n?H? 2 nT 2 /2n

Observe from (3.8) that 1 — 2« (1 — B) > 0 if and only if
1 1 1

1
——<a< -+ —. 3.12)
2 2n 2 V2n (
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Defining

2no?
w(@) =a(l-p) = m,

w(w) is an increasing function of «, for ¢ > % - % and

such that
@ = 1 . (n —2)*H? (3.13)
Wi =3 dn—D+nlH? | '

Therefore, we have, for this o,

(n—2)2H?
1—2a(1=B8) = d0 =D i > 0. (3.14)

From (3.10), we obtain

A < —n(1+ H?
4n—1 1A =20 —B) (1 + H?) —2a(1 — B)(n — 2)*H?
4n— 1)1 —2a(l — B)) ’

— 2a(1 — B)n
(3.15)
From (3.14), we infer

A4n—1) (1 =2a(l —B) (1 + H? —2a(l — B)(n — 2)°H?

_ B 2 n—-2°H> [ (n —2)*H? 22
_{4(” ])(1+H)V4(n—l)+n2H2 "Vig—nmm |-V H

(n —2)*H?
_wn-an
4(n — 1) +n2H?

(n —2)2H?
4(n — 1) +n2H?

=4 — 1) +n?H2/(n —2)2H? — (n — 2)°H?
—Jn—2)2H? (\/4(n — D+ H? = (o =27 H?).

=4(n—1) —n—-2%H>+
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From (3.14), (3.15) and the above equality, we obtain

- (n —2)2H?
" 4n— 1)+ n2H?
4 — 1) (n —2)*H?
"T NI =)+ n2H?

x V(n —2)2H? (\/4(;1 1) +n’H? — (\/(n - 2)2H2))
a4+ HYy - T (\/4(11 D+ nPH?—(n— 2)|H|)2.

4(n—1)
If the equality holds, we know that h;j; = O, for any i, j,k = 1,2,...,n. Hence, we
know that the second fundamental form is parallel and S is constant. Thus, we know that
@ M — §"1(1) is isometric to S'(r) x §"~1 (/1 — r2) since, from the (3.3), the n — 1
of the principal curvatures are equal with each other. From the examples in the Sect. 2, we
know that r satisfies

>
~
A

| < —n(l+ H? —

, 1
re > — for2 <n <4,
n
1 16(n — 1
—<rt< L, forn > 5and n?H? < L
n (n—2)2 nn—4)
Ifn>5and n?H? > %, we take
(1-8)= .
¢ T2 o0
that is,
1 1
= O d = - - -,
B and o 2
Thus, the inequality (3.10) becomes
(n —2)*
A <=2 — 1)1+ H>) + —H".
[ = =200 D0+ B +
If the equality holds, we know
a(n—2)
1 —20)vVB = ———nH.
( ) Jnn —1)
Thus, we have
(n —2)*
S=B+nH?=nH>+ ———"_n*H? 3.16
tn A 16n(n — 1) ( )
because of
1 1
o=-——.
2 n

Since S is constant, the first eigenvalue Alj of the Jacobi operator is given by

J_ o _ 2 (n —2)* 2
M=—S—n=-20n 1)(1+H)+8(n—1)H'
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Hence, we obtain
(n —2)* 72

S=n—-2+2mn—1HH?* — — =
n=2+20n-1 8n—1)

(3.17)

From (3.16) and (3.17), we get

(=20 +2)

—2=Q-nH*+—— """ {4 ,
" S S T
_ nn —4) W22

16(n —1) ’
that is,
W2H? — 16(n — 1).
nn—4)

Since, from the (3.3), the n — 1 of the principal curvatures are equal with each other, From

the examples in the Sect. 2, we know that ¢ : M — S§7+1(1) is isometric to S! (;@) X

sl <7N’;1_W) It completes the proof of Theorem 1.1. O
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