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Critical Points of the Weighted Area
Functional

Qing-Ming Cheng

Abstract In this survey, we discuss critical points of functionals by various aspects.1

We review properties of critical points of weighted area functional, that is, self-2

shrinkers of mean curvature flow in Euclidean spaces and examples of compact self-3

shrinkers are discussed. We also review properties of critical points for weighted4

area functional for weighted volume-preserving variations, that is, λ-hypersurfaces5

of weighted volume-preserving mean curvature flow in Euclidean spaces.6

Keywords Weighted area functional ·Self-shrinkers ·λ-hypersurfaces ·F -stability7

2001 Mathematics Subject Classification 53C44 · 53C428

1 Introduction9

By making use of flows (for examples, Ricci flow, mean curvature flow and so on), one10

obtains many important achievements among study on the differential geometry. In11

particular, study of mean curvature flow becomes one of the most important objects12

in the differential geometry of submanifolds. In this paper, we will focus on the13

case of self-shrinkers of mean curvature flow and λ-hypersurfaces of the weighted14

volume-preserving mean curvature flow in the (n + 1)- dimensional Euclidean space15

Rn+1 from the view of the variation principles.16
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2 Q.-M. Cheng

1.1 Mean Curvature Flow17

Let Mn be an n-dimensional manifold and assume that

X : Mn → Rn+1

is an n-dimensional hypersurface in the (n + 1)- dimensional Euclidean space Rn+1.
A family X (t) = X (·, t) of smooth immersions:

X (t) : Mn → Rn+1

with X (0) = X is called mean curvature flow if they satisfy

∂ X (p, t)

∂t
= H(p, t),

where H(p, t) denotes the mean curvature vector of hypersurface Mt = X (Mn, t)18

at point X (p, t). The simplest mean curvature flow is given by the one-parameter19

family of the shrinking spheres Mt ⊂ Rn+1 centered at the origin and with radius20 √−n(t − T ) for t ≤ T . This is a smooth flow except at the origin at time t = T21

when the flow becomes extinct.22

For an n-dimensional compact convex hypersurface M0 = X (Mn) in Rn+1,23

Huisken [15] proved that the mean curvature flow Mt = X (Mn, t) remains smooth24

and convex until it becomes extinct at a point in the finite time. If we rescale the flow25

about the point, the resulting converges to the round sphere. When M0 is non-convex,26

the other singularities of the mean curvature flow can occur. Grayson [13] constructed27

a rotationally symmetric dumbbell with a sufficiently long and narrow bar, where the28

neck pinches off before the two bells become extinct. For the rescaling of the singu-29

larity at the neck, the resulting blows up, can not extinctions. Hence, the resulting is30

not spheres, certainly. In fact, the resulting of the singularity converges to shrinking31

cylinders. The singularities of mean curvature flow for curves are studied very well32

in the work of Abresch and Langer [1], Calabi et al. [12], Hamilton [19] and so on.33

For higher dimensions, Huisken [15] found a key for studying singularities of mean34

curvature flow, that is, Huisken gave the so-called Huisken’s monotonicity formula.35

Huisken [15] and Ilmanen and White proved that the monotonicity implies that the36

flow is asymptotically self-similar near given singularity. Recently, in the landmark37

paper [9] of Colding and Minicozzi, they have solved a long-standing conjecture on38

singularity of a generic flow.39

1.2 Mean Curvature Type Flow40

As one knows, for a family of immersions X (t) : M → Rn+1 with X (0) = X , the
volume of M is defined by
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Critical Points of the Weighted Area Functional 3

1

n + 1

∫
M

〈X (t), N (t)〉dμ

Huisken [18] studied the mean curvature type flow:

∂ X (t)

∂t
= (−h(t)N (t) + H(t)

)
,

where X (t) = X (·, t), h(t) =
∫

M H(t)dμt∫
M dμt

and N (t) is the unit normal vector of X (t) :41

M → Rn+1. It can be proved the above flow preserves the volume of M . Hence, one42

calls this flow the volume-preserving mean curvature flow. Huisken [16] proved that43

if the initial hypersurface is uniformly convex, then the above volume-preserving44

mean curvature flow has a smooth solution and it converges to a round sphere.45

By making use of the Minkowski formulas, Guan and Li [14] have studied the
following type of mean curvature flow

∂ X (t)

∂t
= (−nN (t) + H(t)

)
,

which is also a volume-preserving mean curvature flow. They have gotten that the46

flow converges to a solution of the isoperimetric problem if the initial hypersurface47

is a smooth compact, star-shaped hypersurface.48

Cheng and Wei [6] introduce a definition of the weighted volume of M . For
a family of immersions X (t) : M → Rn+1 with X (0) = X , we define a weighted
volume of M by

V (t) =
∫

M
〈X (t), N 〉e− |X |2

2 dμ.

Furthermore, Cheng and Wei [7] consider a new type of mean curvature flow:

∂ X (t)

∂t
= (−α(t)N (t) + H(t)

)

with

α(t) =
∫

M H(t)〈N (t), N 〉e− |X |2
2 dμ∫

M〈N (t), N 〉e− |X |2
2 dμ

,

where N is the unit normal vector of X : M → Rn+1. We can prove that the flow:

∂ X (t)

∂t
= (−α(t)N (t) + H(t)

)

preserves the weighted volume V (t). Hence, we call this flow a weighted volume-49

preserving mean curvature flow.50
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4 Q.-M. Cheng

2 Complete Self-shrinkers of Mean Curvature Flow51

2.1 Definition of Self-shrinkers52

One calls a hypersurface X : Mn → Rn+1 a self-shrinker of mean curvature flow if

H + 〈X, N 〉 = 0,

where H denotes the mean curvature of the hypersurface X : Mn → Rn+1. One can
prove that if X : Mn → Rn+1 is a self-shrinker of mean curvature flow, then

X (t) = √−t X

is a solution of the mean curvature flow equation, which is called a self-similar53

solution of mean curvature flow.54

Letting X : Mn → Rn+1 be a hypersurface,

X (s) : Mn → Rn+1

is called a variation of X : Mn → Rn+1 if X (s) is a one parameter family of immer-
sions with X (0) = X . Define a functional

F (s) = 1

(2π)n/2

∫
M

e− |X (s)|2
2 dμs .

By computing the first variation formula, we obtain that X : Mn → Rn+1 is a critical
point of F (s) if and only if X : Mn → Rn+1 is a self-shrinker, that is,

H + 〈X, N 〉 = 0.

Furthermore, we know that X : Mn → Rn+1 is a minimal hypersurface in Rn+1
55

equipped with the metric gAB = e− |X |2
n δAB if and only if X : Mn → Rn+1 is a self-56

shrinker.57

2.2 Examples of Complete Self-shrinkers58

As a standard examples of self-shrinkers of mean curvature flow, we know the n-59

dimensional Euclidean space Rn is a complete self-shrinker in Rn+1.60

The n-dimensional sphere Sn(
√

n) with radius
√

n is a compact self-shrinker in61

Rn+1.62

For a positive integer k, Sk(
√

k) × Rn−k is an n-dimensional complete noncom-63

pact self-shrinker in Rn+1. Besides the standard examples of self-shrinkers of mean64
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Critical Points of the Weighted Area Functional 5

curvature flow, shrinking doughnuts of Angenent in [2] are only known examples of65

self-shrinkers of mean curvature flow are known before 2010.66

Theorem 1 For n ≥ 2, there exists embedding revolution self-shrinkers X : S1 ×67

Sn−1 → Rn+1 in Rn+1.68

Sketch of proof of theorem 1. Let (x(s), r(s)), s ∈ (a, b) be a curve in the xr -plane69

with r > 0 and Sn−1(1) denote the standard unit sphere of dimension n − 1. Then70

we consider X : (a, b) × Sn−1(1) → Rn+1 defined by X (s, α) = (x(s), r(s)α), s ∈71

(a, b), α ∈ Sn−1(1). Namely, X is obtained by rotating the plane curve (x(s), r(s))72

around x axis. Thus, by shooting method, X : (a, b) × Sn−1(1) → Rn+1 is a self-73

shrinker if and only if (x, r) satisfies74

dx

ds
= cos θ75

dr

ds
= sin θ76

dθ

ds
= x

2
sin θ + (

n − 1

r
− r

2
) cos θ.77

78
79

Let (xR, rR, θR) be the maximal solution of the above equations with initial value80

(0, R, 0). Then for large enough R, there is a simple closed curve (xR, rR) in xr -plane.81

It can be proved that it is a graph of x = fR(r). Hence, there exists an embedding82

revolution self-shrinker X : S1 × Sn−1 → Rn+1 in Rn+1.83

In [21], Kleene and Møller have proved the following:84

Theorem 2 For n ≥ 2, an n-dimensional complete embedding revolution self-85

shrinker X : Mn → Rn+1 in Rn+1 is one of the following:86

1. Sn(
√

n),87

2. Rn,88

3. Sm(
√

m) × Rn−m ⊂ Rn+1, 1 ≤ m ≤ n − 1,89

4. a smooth embedded self-shrinker X : S1 × Sn−1 → Rn+1.90

Except the standard examples and embedded self-shrinker X : S1 × Sn−1 → Rn+1
91

of Angenent, Drugan [11] has constructed an example of the self-shrinker of genus92

0, which is not embedding. Moreover, Møller [23] have constructed new examples93

of closed embedding self-shrinkers with higher genus. Recently, Kapouleas et al.94

[20] have constructed new examples of non-compact self-shrinkers. According to95

the examples, one would like to propose the following:96

Conjecture An embedding self-shrinker X : Mn → Rn+1, which is homeomorphic97

to a sphere, is the standard round sphere Sn(
√

n).98

Remark 1 According to examples of Angenent and Drugan, we know that conditions99

of both embedding and a topological sphere are necessary. For n = 1, Abresch and100
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6 Q.-M. Cheng

Langer [1] solved this conjecture affirmatively. For n = 2, Brendle [3] has given af-101

firmative answer for this conjecture very recently. For n ≥ 3, this conjecture remains102

open.103

Sketch of proof of conjecture for n = 2. For an embedded self-shrinker X : M → R3
104

of genus 0, its intersection with any plane, which passes through the origin, consists105

of a simple Jordan curve which is piecewise C1. Further, one can prove that X :106

M → R3 is star-shaped. Thus, the mean curvature of X : M → R3 does not change107

sign. Hence, from the result of Huisken, Theorem 3 in the next section, X : M → R3
108

is a sphere S2(
√

2).109

2.3 Self-shrinkers with Non-negative Mean Curvature110

In this subsection, we focus on complete self-shrinkers with non-negative mean111

curvature. The following notation is necessary.112

Polynomial area growth. We say that a complete hypersurface Mn in Rn+1 has
polynomial area growth if there exist constants C and d such that, for all r ≥ 1,

Area(Br (O) ∩ M) ≤ Crd

holds, where Br (O) is the Euclidean ball with radius r and centered at the origin.113

Remark 2 The standard examples of self-shrinkers have polynomial area growth and114

non-negative mean curvature.115

For n = 1, Abresch and Langer [1] classified all smooth closed self-shrinker curves116

in R2 and showed that the round circle is the only embedded self-shrinker. For n ≥ 2,117

Huisken [17] studied compact self-shrinkers. He gave a complete classification of118

self-shrinkers with non-negative mean curvature.119

Theorem 3 If X : Mn → Rn+1(n ≥ 2) is an n-dimensional compact self-shrinker120

with non-negative mean curvature H in Rn+1, then X (Mn) = Sn(
√

n).121

Remark 3 The condition of non-negative mean curvature is essential. In fact, let Δ

and ∇ denote the Laplacian and the gradient operator on self-shrinker, respectively
and 〈·, ·〉 denotes the standard inner product of Rn+1. Because

ΔH − 〈X,∇H〉 + SH − H = 0,

we obtain H > 0 from the maximum principle if the mean curvature is non-negative.122

From this theorem of Huisken, we know that the mean curvature of compact self-123

shrinker X : S1 × Sn−1 → Rn+1 of Angenent changes sign.124

Huisken [18] studied complete and non-compact self-shrinkers in Rn+1 and proved125
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Critical Points of the Weighted Area Functional 7

Theorem 4 Let X : Mn → Rn+1 be an n-dimensional complete non-compact self-126

shrinker in Rn+1 with H ≥ 0 and polynomial area growth. If the squared norm S of127

the second fundamental form is bounded, then Mn is isometric to one of the following:128

1. Rn,129

2. Sm(
√

m) × Rn−m ⊂ Rn+1, 1 ≤ m ≤ n − 1,130

3. Γ × Rn−1,131

where Γ is one of curves of Abresch and Langer.132

In the landmark paper [9] of Colding and Minicozzi, they have removed the assump-133

tion on the second fundamental form. They have proved134

Theorem 5 Let X : Mn → Rn+1 be an n-dimensional complete embedded self-135

shrinker in Rn+1 with H ≥ 0 and polynomial area growth. Then Mn is isometric136

to one of the following:137

1. Sn(
√

n),138

2. Rn,139

3. Sm(
√

m) × Rn−m ⊂ Rn+1, 1 ≤ m ≤ n − 1.140

3 The Weighted Volume-Preserving Variations141

In this section, we will give a survey of results on λ-hypersurfaces in the recent paper142

of Cheng and Wei [6].143

3.1 Definition of λ-hypersurfaces144

Let X : Mn → Rn+1 be an n-dimensional hypersurface in the (n + 1)-dimensional
Euclidean space Rn+1. We denote a variation of X by X (t) : M → Rn+1, t ∈ (−ε, ε)

with X (0) = X . We define a weighted area functional A : (−ε, ε) → R by

A(t) =
∫

M
e− |X (t)|2

2 dμt ,

where dμt is the area element of M in the metric induced by X (t). The weighted
volume function V : (−ε, ε) → R of M is defined by

V (t) =
∫

M
〈X (t), N 〉e− |X |2

2 dμ.

The weighted volume V (t) is preserved by the weighted volume-preserving mean
curvature flow
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8 Q.-M. Cheng

∂ X (t)

∂t
= (−α(t)N (t) + H(t)

)
.

We say that a variation X (t) of X is a weighted volume-preserving normal variation if145

V (t) = V (0) for all t and ∂ X (t)
∂t |t=0 = f N . By computing the first variation formula,146

we have147

Proposition 1 Let X : M → Rn+1 be an immersion. The following statements are148

equivalent:149

1. 〈X, N 〉 + H = λ, which is constant.150

2. For all weighted volume-preserving variations, A
′
(0) = 0.151

3. For all variations, J
′
(0) = 0, where J (t) = A(t) + λV (t).152

Definition 1 Let X : M → Rn+1 be an n-dimensional hypersurface in Rn+1. If153

〈X, N 〉 + H = λ, we call X : M → Rn+1 a λ-hypersurface of the weighted volume-154

preserving mean curvature flow.155

Remark 4 The λ-hypersurface for λ = 0 is a self-shrinker of mean curvature flow.156

According to the proposition 1 and the first variation formula, we have157

Theorem 6 Let X : M → Rn+1 be a hypersurface. The following statements are158

equivalent:159

1. X : M → Rn+1 is a λ-hypersurface.160

2. X : M → Rn+1 is a critical point of the weighted area functional A(t) for all161

weighted volume- preserving variations.162

3. X : M → Rn+1 is a hypersurface with constant mean curvature λ in Rn+1
163

equipped with the metric gAB = e− |X |2
n δAB.164

As standard examples of λ-hypersurfaces, we know that all of self-shrinkers of mean165

curvature flow are λ-hypersurfaces. Spheres X : Sn(r) → Rn+1 with radius r > 0166

are compact λ-hypersurfaces in Rn+1 with λ = n
r − r . For a positive integer k, X :167

Sk(r) × Rn−k is an n-dimensional complete non-compact λ-hypersurface in Rn+1
168

with λ = k
r − r . Hence, there are many λ-hypersurfaces, which are not self-shrinkers169

of mean curvature flow.170

3.2 F -Functional171

We define a F -functional by172

F (s) = FXs ,ts (X (s)) = (4π ts)−
n
2
∫

M e− |X (s)−Xs |2
2ts dμs173

+ λ(4π)− n
2

1√
ts

∫
M 〈X (s) − Xs, N 〉e− |X |2

2 dμ,174
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Critical Points of the Weighted Area Functional 9

where Xs and ts denote the variations of X0 = O , t0 = 1, respectively and ∂ X (0)

∂s =175

f N . One calls that X : M → Rn+1 is a critical point of F (s) if it is critical with176

respect to all normal variations and all variations Xs and ts of X0 = O , t0 = 1.177

Theorem 7 Let X : M → Rn+1 be a hypersurface. The following statements are178

equivalent:179

1. X : M → Rn+1 is a λ-hypersurface.180

2. X : M → Rn+1 is a hypersurface with constant mean curvature λ in Rn+1
181

equipped with the metric gAB = e− |X |2
n δAB.182

3. X : M → Rn+1 is a critical point of the weighted area functional A(t) for all183

weighted volume-preserving variations.184

4. X : M → Rn+1 is a critical point of F (s).185

3.3 Stability of Compact λ-hypersurfaces186

Definition 2 One calls that a critical point X : M → Rn+1 of the F -functional
F (s) is F -stable if, for every normal variation X (s) of X , there exist variations Xs

and ts of X0 = O , t0 = 1 such that

F ′′(0) ≥ 0.

One calls that a critical point X : M → Rn+1 of the F -functional F (s) is F -
unstable if there exist a normal variation X (s) of X such that for all variations
Xs and ts of X0 = O , t0 = 1,

F ′′(0) < 0.

For stability of λ-hypersurfaces, the following is proved in Cheng and Wei [6]:187

Theorem 8 • If r ≤ √
n or r >

√
n + 1, the n-dimensional round sphere

X : Sn(r) → Rn+1

is F -stable;188

• If
√

n < r ≤ √
n + 1, the n-dimensional round sphere

X : Sn(r) → Rn+1

is F -unstable.189

According to our Theorem 3, we would like to propose the following: AQ1190

Problem 3.1 Is it possible to prove that spheres Sn(r) with r ≤ √
n or r >

√
n + 1191

are the only F -stable compact λ-hypersurfaces?192
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10 Q.-M. Cheng

Remark 5 Colding and Minicozzi [9] have proved that the sphere Sn(
√

n) is the only193

F -stable compact self-shrinkers. In order to prove this result, the property that the194

mean curvature H is an eigenfunction of Jacobi operator plays a very important role.195

But for λ-hypersurfaces, the mean curvature H is not an eigenfunction of Jacobi196

operator in general.197

3.4 Complete λ-hypersurfaces198

Theorem 9 Let X : M → Rn+1 be an n-dimensional complete embedded λ-hyper-
surface with polynomial area growth in Rn+1. If H − λ ≥ 0 and

λ( f3(H − λ) − S) ≥ 0,

then X : M → Rn+1 is isometric to one of the following:199

1. Rn
200

2. Sn(r), for r > 0,201

3. Sk(r) × Rn−k , 0 < k < n, r > 0,202

where S = ∑
i, j h2

i j is the squared norm of the second fundamental form and f3 =203 ∑
i, j,k hi j h jkhki .204

Remark 6 For λ = 0, Huisken [19] and Colding and Minicozzi [9] proved this result.
In this case, from the maximum principle, one can prove H > 0 if H ≥ 0. H ≥ 0
is essential according to examples of Angenent and so on. For λ = 0, we can not
prove H − λ > 0 if H − λ ≥ 0 from the maximum principle only. We need to use
the condition λ( f3(H − λ) − S) ≥ 0. We think that this condition

λ( f3(H − λ) − S) ≥ 0

is essential. We are trying to construct examples in the forthcoming paper.205

Sketch of proof of theorem 9. For λ-hypersurfaces, we define a differential operator
L by

L f = Δ f − 〈X,∇ f 〉.

Since
L H = H + S(λ − H)

and
H − λ ≥ 0,

we have
L H − H ≤ 0.
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Critical Points of the Weighted Area Functional 11

If λ ≤ 0, we conclude from the maximum principle that either H ≡ λ or H − λ > 0.206

If H ≡ λ, we can prove H = λ = 0 and X : M → Rn+1 is the Euclidean space Rn .207

If λ > 0, we have f3(H − λ) − S ≥ 0. we are able to prove H − λ > 0 also.208

Since X : M → Rn+1 is an n-dimensional complete embedded λ-hypersurface,
we can not use Stokes formula for non-compact case directly. But since X : M →
Rn+1 is an n-dimensional complete embedded λ-hypersurface with polynomial area
growth, we can make use of Stokes formula for several special functions. For H −
λ > 0, we consider function log(H − λ). We have

L log(H − λ) = 1 − S + λ

H − λ
− |∇ log(H − λ)|2

and

L
√

S ≥ √
S − √

SS + λ f3√
S
.

In order to use Stokes formula for functions S, log(H − λ) and
√

S, we need to prove209

the following:210

• ∫
M S(1 + |X |2)e− |X |2

2 dμ < +∞211

• ∫
M S2e− |X |2

2 dμ < +∞.212

• ∫
M |∇√

S|2e− |X |2
2 dμ < +∞,213

• ∫
M

∑
i, j,k

h2
i jke− |X |2

2 dμ < +∞.214

• ∫
M S|∇ log(H − λ)|2e− |X |2

2 dμ < +∞.215

Thus, we can have216

∫
M 〈∇S,∇ log(H − λ)〉e− |X |2

2 dμ217

= − ∫
M SL log(H − λ)e− |X |2

2 dμ218

and219

∫
M |∇√

S|2e− |X |2
2 dμ = − ∫

M

√
SL

√
Se− |X |2

2 dμ.220

Putting

L log(H − λ) = 1 − S + λ

H − λ
− |∇ log(H − λ)|2

and

L
√

S ≥ √
S − √

SS + λ f3√
S

into the above two formulas, we have221
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12 Q.-M. Cheng

0 ≥ ∫
M

∣∣∇√
S − √

S∇ log(H − λ)
∣∣2

e− |X |2
2 dμ222

+ ∫
M λ( f3 − S

H−λ
)e− |X |2

2 dμ.223

224

From λ( f3(H − λ) − S) ≥ 0, we have

λ( f3 − S

H − λ
) = 0,

S

(H − λ)2
= constant

hi jk(H − λ) = hi j H,k,

for any i, j, k. By making use of local assertions, we can obtain that X : M → Rn+1
225

is isometric to a sphere Sn(r) or Sk(r) × Rn−k with λ = k
r − r .226

4 Area of Complete λ-hypersurfaces227

In study on Riemannian geometry, estimates of the volume of complete and non-228

compact Riemannian manifolds are very important. For examples, the comparison229

volume theorem on complete and non-compact Riemannian manifolds of Bishop230

and Gromov and lower bound growth on volume of complete and non-compact Rie-231

mannian manifolds due to Calabi and Yau are very important results in Riemannian232

geometry. In this section, we shall review several results on estimates of area of233

complete λ-hypersurfaces in Cheng and Wei [6].234

4.1 Upper Bound Growth of Area of Complete235

λ-hypersurfaces236

It is well-known that the comparison volume (area) theorem of Bishop and Gromov237

is a very powerful tool for studying Riemannian geomery.238

The comparison volume theorem. For n-dimensional complete and non-compact
Riemannian manifolds with nonnegative Ricci curvature, geodesic balls have at most
polynomial volume growth:

Area(Br (x0)) ≤ Crn.

Furthermore, Cao and Zhou have studied upper bound growth of volume of geodesic239

balls for n-dimensional complete and non-compact gradient shrinking Ricci solitons.240

They have proved241
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Critical Points of the Weighted Area Functional 13

Theorem 10 For n-dimensional complete and non-compact gradient shrinking
Ricci solitons, geodesic balls have at most polynomial volume growth:

Area(Br (x0)) ≤ Crk .

Remark 7 There exist n-dimensional complete and non-compact gradient shrinking242

Ricci solitons, which Ricci curvature is not nonnegative.243

It is natural to ask the following:244

Problem 4.1 Whether is it possible to give an upper bound growth of area for com-245

plete and noncompact λ-hypersurfaces?246

Fot this problem 4.1, Cheng and Wei in [6] have proved the following:247

Theorem 11 Let X : M → Rn+1 be a complete and non-compact proper λ-hyper-
surface in the Euclidean space Rn+1. Then, there is a positive constant C such that
for r ≥ 1,

Area(Br (0) ∩ X (M)) ≤ Crn+ λ2

2 −2β− inf H2

2 ,

where β = 1
4 inf(λ − H)2.248

Remark 8 The estimate in our theorem is best possible because the cylinders249

Sk(r0) × Rn−k satisfy the equality. For λ = 0, that is, for self-shrinkers, this result250

in theorem is proved by Ding and Xin [10] and Cheng and Zhou [8].251

Furthermore, Cheng and Wei [6] have proved252

Theorem 12 A complete and non-compact λ-hypersurface X : M → Rn+1 in the253

Euclidean space Rn+1 has polynomial area growth if and only if X : M → Rn+1 is254

proper.255

Proof According to the Theorem 11, we only need to prove that X : M → Rn+1 is
proper if X : M → Rn+1 has polynomial area growth. Since X : M → Rn+1 has
polynomial area growth, we can prove that the weighted area of X : M → Rn+1

is finite. If X : M → Rn+1 is not proper, then, there exists a real r > 0 such that
U = X−1(B̄r (0)) is not compact in M . For a constant r0 > 0, there exists a sequence
{pk} ⊂ U such that d(pk, pl) ≥ r0 for any k = l, where d denotes the distance of X :
M → Rn+1. If we take r0 < 2r , we have B X

r0
2
(pk) ⊂ B2r (0), where B X

a (pk) denotes

the geodesic ball in X (M)with radius a centered at X (pk). Because of 〈X, N 〉 + H =
λ, we have

|H | ≤ |X | + |λ|.

For any p ∈ M such that X (p) ∈ X (M) ∩ B2r (0), we have

|H(p)| ≤ |X (p)| + |λ| ≤ 2r + |λ|.

318681_1_En_4_Chapter � TYPESET DISK LE � CP Disp.:29/3/2016 Pages: 17 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14 Q.-M. Cheng

For p ∈ U such that X (p) ∈ B X
r0
2
(pk), by defining ρ(p) = d(p, pk), we have

1

2
Δρ(p)2 ≥ n − (2r + |λ|)ρ(p).

Taking r0 < min{2r, n
2r+|λ| } and 0 < a < r0

2 , we have

∫
B X

a (pk )

(n − (2r + |λ|)ρ)dμ ≤ 1

2

∫
B X

a (pk )

Δρ2dv ≤ aα(a),

where α(a) denotes the area of ∂ B X
a (pk). By co-area formula, we obtain

(n − r0a)A(a) ≤ aα(a),

where A(a) denotes the area of B X
a (pk). Hence, we have

A(a) ≥ ωnane− r2
0
2 .

Thus, we can conclude that the weighted area is infinite. This is a contradiction.256

4.2 Lower Bound Growth of Area of Complete257

λ-hypersurfaces258

Calabi [4] and Yau [25] studied lower bound growth of volume for n-dimensional259

complete and non-compact Riemannian manifolds with nonnegative Ricci curvature.260

They proved the following:261

Theorem 13 For n-dimensional complete and non-compact Riemannian manifolds
with nonnegative Ricci curvature, geodesic balls have at least linear volume growth:

Area(Br (x0)) ≥ Cr.

For an n-dimensional complete and non-compact gradient shrinking Ricci soliton M ,
Cao and Zhou [5] have proved that M must have infinite area. Furthermore, Munteanu
and Wang [24] have proved that volume of geodesic balls for n-dimensional complete
and non-compact gradient shrinking Ricci solitons have at least linear growth:

Area(Br (x0)) ≥ Cr.

In [6], Cheng and Wei have studied lower bound growth of area for complete and262

noncompact λ-hypersurfaces. The following is proved:263
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Critical Points of the Weighted Area Functional 15

Theorem 14 Let X : M → Rn+1 be an n-dimensional complete proper λ-hyper-
surface. Then, for any p ∈ M, there exists a constant C > 0 such that

Area(Br (0) ∩ X (M)) ≥ Cr,

for all r > 1.264

Remark 9 The estimate in the theorem is best possible because Sn−1(r0) × R265

satisfy the equality. For λ = 0, that is, for self-shrinkers, this result is proved by266

Li and Wei [22].267
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