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Universal Estimates for Eigenvalues and

Applications

Qing-Ming Cheng

Abstract

In this survey, we discuss eigenvalues of the eigenvalue problem of Laplacian. First
of all, we consider universal estimates for eigenvalues of the eigenvalue problem
of Laplacian. Secondly, as applications of universal estimates for eigenvalues, we
discuss the lower bound growth and the upper bound growth for eigenvalues, which
are sharper in some sense. Furthermore, an obstruction for minimal immersions
of complete Riemannian manifolds into Euclidean spaces is given by eigenvalues of
the eigenvalue problem of Laplacian.
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1 Introduction

Let M be an n-dimensional compact Riemannian manifold.

Δu = −λu, on M

is called a closed eigenvalue problem of Laplacian on M , where Δ denotes the
Laplacian on M . For the closed eigenvalue problem of the Laplacian, the spectrum
of it is given by

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞,

where each λi has finite multiplicity which is repeated according to its multiplicity.
Let M be an n-dimensional complete Riemannian manifold, Ω a bounded domain
with piecewise smooth boundary ∂Ω in M .

The author was partially supported by JSPS Grant-in-Aid for Scientific Research (B): No.
24340013 and Challenging Exploratory Research No. 25610016.
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{
Δu = −λu, in Ω,

u = 0, on ∂Ω

is called a Dirichlet eigenvalue problem of Laplacian, which is also called a fixed
membrane problem. It is well known that the spectrum of the Dirichlet eigenvalue
problem of the Laplacian satisfies

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,

where each λi has finite multiplicity which is repeated according to its multiplicity.

Remark 1.1. In this paper, we only deal with eigenvalues of the Dirichlet eigen-
value problem of Laplacian. For the closed eigenvalue problem of Laplacian, we
can obtain the similar results by using the same assertions.

For eigenvalues of the Dirichlet eigenvalue problem of Laplacian, the following
Weyl’s asymptotic formula (see [23]) holds:

λk ∼ 4π2

(ωnvolΩ)
2
n

k
2
n , k → ∞,

where ωn is the volume of the unit ball in Rn. From the formula, it is not difficult
to infer

1
k

k∑
i=1

λi ∼ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n , k → ∞.

2 Universal inequalities for eigenvalues

2.1 The case of a Euclidean space

First of all, we consider universal inequalities for eigenvalues of the Dirichlet eigen-
value problem of Laplacian on a bounded domain Ω in an n-dimensional Euclidean
space: {

Δu = −λu, in Ω,

u = 0, on ∂Ω.

The investigation of universal inequalities for eigenvalues was initiated by Payne,
Pólya and Weinberger [19], [20]. They proved

λk+1 − λk ≤ 4
nk

k∑
i=1

λi,

which is called a universal inequality for eigenvalues because this inequality does
not depend on the domain Ω. Although this result of Payne, Pólya and Weinberger
has been extended by many mathematicians in several way (cf. [1, 2, 13, 18, 24]
and so on), there are two main contributions due to Hile and Protter [13] and
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Yang [24]. In fact, in 1980, Hile and Protter improved this result of Payne, Pólya
and Weinberger to

k∑
i=1

λi

λk+1 − λi
≥ nk

4
.

Yang, in 1991, has obtained a very sharp inequality (see Cheng and Yang [10]
also), that is, he proved

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)λi.

Remark 2.1. The inequality of Yang is optimal in the sense of the order of k.

2.2 The case of a unit sphere

For a domain Ω in an n-dimensional unit sphere, universal inequalities for eigen-
values of the Dirichlet eigenvalue problem of Laplacian:{

Δu = −λu, in Ω,

u = 0, on ∂Ω

has been studied by Cheng and Yang [8]. We have proved

Theorem 2.1. Let Ω be a domain in an n-dimensional unit sphere. Eigenvalue
λi’s of the Dirichlet eigenvalue problem of the Laplacian satisfy

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)
(

λi +
n2

4

)
.

Remark 2.2. The above inequality is best possible since this inequality does not
depend on the domain Ω and when Ω tends to the unit sphere, this inequality
becomes an equality for all of k.

2.3 The general case

For a general n-dimensional complete Riemannian manifold M , we want to ob-
tain universal inequalities for eigenvalues of the Dirichlet eigenvalue problem of
Laplacian: {

Δu = −λu, in Ω,

u = 0, on ∂Ω,

where Ω is a bounded domain in M . In order to get universal inequalities for
eigenvalues, the key is to construct appropriate trial functions. For the cases of a
Euclidean space and a unit sphere, one can make use of the coordinate functions
to construct the trial functions. Thus, one can derive universal inequalities for
eigenvalues according to the Rayleigh-Ritz inequality.
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For a general complete Riemannian manifold, it is very difficult to construct
an appropriate trial function since it is hard to find globally defined functions.
Fortunately, we have Nash’s theorem. By making use of Nash’s theorem, we
successfully construct trial functions which satisfy good properties.

Nash’s Theorem. Each complete Riemannian manifold can be isometrically
immersed in a Euclidean space.

In my joint work [6] with Chen, we have proved

Theorem 2.2. Let Ω be a bounded domain in an n-dimensional complete Rie-
mannian manifold M . Then, there exists a constant H2

0 , which only depends on
M and Ω such that eigenvalues λj of the Dirichlet eigenvalue problem of Laplacian
satisfy, for any k,

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)
(

λi +
n2

4
H2

0

)
.

We should remark that El Soufi, Harrell and Ilias [12] have also proved a similar
result for submanifolds, independently.

In particular, when M is a complete minimal submanifold in RN , we have

Corollary 2.1. Let Ω be a bounded domain in an n-dimensional complete minimal
submanifold Mn in RN . Then, we have

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)λi.

Remark 2.3. We would like to notice the following:

1. Our universal inequality for complete minimal submanifolds in RN is the
same as one of Yang for the case of Rn.

2. There exist many complete minimal submanifolds in RN .

3. The universal inequality for eigenvalues of Yang does not only holds for
bounded domains in Rn, but also for bounded domains in any complete min-
imal submanifold in RN .

When M is the unit sphere Sn(1), since Sn(1) is a hypersurface in Rn+1 with
the mean curvature H = 1, we have obtained the theorem of Cheng and Yang [8]:

Corollary 2.2. Let Ω be a domain in an n-dimensional unit sphere. Eigenvalue
λi’s of the Dirichlet eigenvalue problem of Laplacian satisfy

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)
(

λi +
n2

4

)
.

In order to prove Theorem 2.2, the following lemma plays a key role.
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Lemma 2.1. Let M be an n-dimensional complete Riemannian manifold with
metric g isometrically immersed in a Euclidean space RN . For any point P in
M , assuming that y with components yα defined by yα = yα(x1, x2, · · · , xn) is the
position vector of P in RN , we have,

N∑
α=1

g(∇yα,∇yα) = n,

N∑
α=1

(Δyα)2 = n2|H |2,

N∑
α=1

Δyα∇yα = 0,

N∑
α=1

g(∇yα,∇u)2 = |∇u|2,

for any function u ∈ C∞(M), where H is the mean curvature vector of M .

Proof of Theorem 2.2. According to the Rayleigh-Ritz inequality, Cheng and Yang
in [9] have proved, for any function f ∈ C3(Ω) ∩ C2(∂Ω) and any integer k, we
have

k∑
i=1

(λk+1 − λi)2‖ui∇f‖2 ≤
k∑

i=1

(λk+1 − λi)‖2∇f · ∇ui + uiΔf‖2,

where ‖f‖2 =
∫

M
f2 and ∇f · ∇ui = g(∇f,∇ui) and ui is an orthonormal eigen-

function corresponding to λi. Putting f = yα and taking sum on α from 1 to N ,
we obtain our inequality by making use of the above lemma of Chen and Cheng.

�

2.4 A conjecture

For the hyperbolic space Hn(−1), from Theorem 2.2, we can obtain universal
inequalities for eigenvalues

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)
(

λi +
n2

4
H2

0

)
.

But we do not think that it is a good idea to use Nash theorem. If we do it, we
shall lose many good properties of Hn(−1). Thus, we can not decide the constant
H0 in universal inequalities for eigenvalues. Hence, it is a good idea to deal with
this problem for the hyperbolic space Hn(−1), directly.

Although many mathematicians want to derive universal inequalities for eigen-
values, directly, the sharp results on universal inequalities for eigenvalues are not
obtained yet.

Conjecture. For a bounded domain Ω in Hn(−1), eigenvalue λi’s of the Dirichlet
eigenvalue problem of Laplacian satisfy

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)
(

λi − (n − 1)2

4

)
.
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For this conjecture, Cheng and Yang in [11] have found a kind of appropriate
trial functions for M = Hn(−1). Hence, we can derive a universal inequality for
eigenvalues, that is, we prove the following:

Theorem 2.3. For a bounded domain Ω in Hn(−1), eigenvalue λi’s of the Dirich-
let eigenvalue problem of Laplacian satisfy

k∑
i=1

(λk+1 − λi)2 ≤4
k∑

i=1

(λk+1 − λi)
(

λi − (n − 1)2

4

)
.

As an application of our universal inequality for eigenvalues, we can obtain

Corollary 2.3. Let Ω be a bounded domain in Hn(−1). Then, eigenvalue λk(Ω),
for any k, of the Dirichlet eigenvalue problem of Laplacian satisfies

lim
Ω→Hn(−1)

λk(Ω) =
(n − 1)2

4
.

3 Application to lower bounds for eigenvalues

For eigenvalues of the Dirichlet eigenvalue problem of the Laplacian, the Weyl’s
asymptotic formula holds:

λk ∼ 4π2

(ωnvolΩ)
2
n

k
2
n , k → ∞,

where ωn is the volume of the unit ball in Rn. From the formula, it is not difficult
to infer

1
k

k∑
i=1

λi ∼ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n , k → ∞.

3.1 A conjecture of Pólya

For a bounded domain in the Euclidean space Rn, Pólya [21] proved, for k =
1, 2, · · · ,

λk ≥ 4π2

(ωnvolΩ)
2
n

k
2
n ,

if Ω is a tiling domain in Rn. Furthermore, he conjectured the following:

Conjecture of Pólya. If Ω is a bounded domain in Rn, then eigenvalue λk of
the Dirichlet eigenvalue problem of the Laplacian satisfies, for k = 1, 2, · · · ,

λk ≥ 4π2

(ωnvolΩ)
2
n

k
2
n .

For this conjecture of Pólya, there are many mathematicians to attack it. For
examples, Berezin [3], Lieb [17], Li and Yau [16] and so on. The following is the
result of Li and Yau [16].
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Theorem 3.1. If Ω is a bounded domain in Rn, then eigenvalue λk of the Dirichlet
eigenvalue problem of Laplacian satisfies, for k = 1, 2, · · · ,

1
k

k∑
i=1

λi ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n .

Remark 3.1. According to the Weyl’s asymptotic formula

1
k

k∑
i=1

λi ∼ n

n + 2
4π2

(ωnvolΩ)
2
n
k

2
n , k → ∞,

we know that the result of Li and Yau is optimal in the sense of average.
From this formula, we have, for k = 1, 2, · · · ,

λk ≥ n

n + 2
4π2

(ωnvolΩ)
2
n
k

2
n ,

which gives a partial solution for the conjecture of Pólya with a factor
n

n + 2
.

In order to prove this theorem, main methods, which are used by Li and Yau, are
the following:

1. the Fourier transform,

2. a lemma of Hörmander.

Lemma of Hömander. If f is a function defined on Rn satisfying

0 ≤ f ≤ a1,

∫
Rn

|z|2f(z)dz ≤ a2,

then, we have

∫
Rn

f(z)dz ≤
(

a1ωn

) 2
n+2

a
n

n+2
2

(
n + 2

n

) n
n+2

,

where a1 and a2 are constant.

Proof of Theorem 3.1. Let ui be an eigenfunction corresponding to eigenvalue λi

such that {ui} becomes an orthonormal basis of L2(Ω). By defining a function

ϕ(x, y) =
{ ∑k

i=1 ui(x)ui(y), (x, y) ∈ Ω × Ω,
0, the other,

and
f(z) =

∫
Rn

|ϕ̂(z, y)|2dy,

where ϕ̂(z, y) is the Fourier transform of ϕ(x, y) in x, we have
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0 ≤ f ≤ (2π)−nvolΩ,

∫
Rn

f(z)dz = k

and ∫
Rn

|z|2f(z)dz =
k∑

i=1

λi.

Thus, from Lemma of Hörmander, we have

1
k

k∑
i=1

λi ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n .

It completes the proof of Theorem 3.1.

3.2 A problem of Chavel

For a complete Riemannian manifold M , eigenvalues of the Dirichlet eigenvalue
problem of the Laplacian also satisfy the Weyl’s asymptotic formula. Hence, it is
natural to try to obtain a lower bound for eigenvalues.

In fact, for a complete Riemannian manifold, by making use of the Sobolev
constant s, Li [15], Chavel and Feldman [5] proved

λk ≥

⎧⎪⎪⎨
⎪⎪⎩

c(n, s)
k

1
n−1

(volΩ)
2
n

, n > 2,

c(n, s)
k

1
3

volΩ
, n = 2,

where c(n, s) is a constant depending only on n and the Sobolev constant s. They
have applied this result to prove the uniform convergences of the Heat Kernel.
Since the order of k is not optimal, one wants to ask whether it is possible to get
lower bounds with the optimal order of k.

In fact, Chavel proposed the following in his famous book: Eigenvalues in
Riemannian Geometry, 1984 (p. 330):

The problem of Chavel. For a complete Riemannian manifold, it is desirable
to prove that eigenvalues of the Dirichlet eigenvalue problem of Laplacian satisfy

λk ≥ c

(
k

volΩ

) 2
n

,

where c is a constant.

More general, one would like to ask whether is it possible for one to consider
the same problem as the conjecture of Pólya for a complete Riemannian manifold
other than Rn?
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First of all, a difficulty which we will encounter is that there is no the Fourier
transform for a complete Riemannian manifold. In order to derive the result of
Li and Yau, Lemma of Hörmander plays an important role. But there is no this
kind of lemma for a complete Riemannian manifold. In order to consider the same
problem as the conjecture of Pólya, we need to come over the following problems:

• What method will we use to replace the Fourier transform?

• What method will we use to replace Lemma of Hörmander?

Therefore, our purpose is to study the lower bounds with the optimal order of
k for eigenvalues of the Dirichlet eigenvalue problem of Laplacian on a bounded
domain in complete Riemannian manifolds.

3.3 A generalized conjecture of Pólya

First of all, we will propose a version of the conjecture of Pólya for complete
Riemannian manifolds.

The generalized conjecture of Pólya. Let Ω be a bounded domain in an
n-dimensional complete Riemannian manifold M . Then, there exists a constant
c(M, Ω), which only depends on M and Ω such that eigenvalues of the Dirichlet
eigenvalue problem of Laplacian satisfy, for k = 1, 2, · · · ,

λk + c(M, Ω) ≥ 4π2

(ωnvolΩ)
2
n

k
2
n ,

1
k

k∑
i=1

λi + c(M, Ω) ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n .

Remark 3.2. About the constant c(M, Ω), we propose the following:

1. When M is a complete minimal submanifold in the Euclidean space RN ,

c(M, Ω) = 0.

2. When M is the unit sphere Sn(1),

c(M, Ω) =
n2

4
.

3. When M is the hyperbolic space Hn(−1),

c(M, Ω) = − (n − 1)2

4
.

For this generalized conjecture of Pólya, we have proved, in Cheng and Yang
[11]
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Theorem 3.2. Let Ω be a bounded domain in an n-dimensional complete Rie-
mannian manifold M . Then, there exists a constant H2

0 , which only depends on
M and Ω such that eigenvalues of the Dirichlet eigenvalue problem of Laplacian
satisfy, for k = 1, 2, · · · ,

1
k

k∑
i=1

λi +
n2

4
H2

0 ≥ n√
(n + 2)(n + 4)

4π2

(ωnvolΩ)
2
n

k
2
n ,

λk +
n2

4
H2

0 ≥ n√
(n + 2)(n + 4)

4π2

(ωnvolΩ)
2
n

k
2
n .

Corollary 3.1. Let Ω be a domain in the n-dimensional unit sphere Sn(1).
Then, eigenvalues of the Dirichlet eigenvalue problem of Laplacian satisfy, for
k = 1, 2, · · · ,

1
k

k∑
i=1

λi +
n2

4
≥ n√

(n + 2)(n + 4)
4π2

(ωnvolΩ)
2
n

k
2
n .

Corollary 3.2. For any bounded domain Ω in an n-dimensional complete minimal
submanifold M in the Euclidean space RN , eigenvalues of the Dirichlet eigenvalue
problem of Laplacian must satisfy, for k = 1, 2, · · · ,

1
k

k∑
i=1

λi ≥ n√
(n + 2)(n + 4)

4π2

(ωnvolΩ)
2
n

k
2
n .

Remark 3.3. From Theorem 3.2, we know that the problem of Chavel is solved.

In order to prove our theorem, we need to come over the problems, which we
have mentioned:

• What method will we use to replace the Fourier transform? The answer is
universal inequalities for eigenvalues.

• What method will we use to replace Lemma of Hörmander? The answer is
a recursion formula of Cheng and Yang.

3.4 A recursion formula

In [10], Cheng and Yang have proved the following:

The recursion formula of Cheng and Yang. Let μ1 ≤ μ2 ≤ · · · ≤ μk+1 be
any positive real numbers satisfying

k∑
i=1

(μk+1 − μi)2 ≤ 4
t

k∑
i=1

μi(μk+1 − μi).



UN
PR
OO

F

Universal Estimates for Eigenvalues and Applications 47

Define

Gk =
1
k

k∑
i=1

μi, Tk =
1
k

k∑
i=1

μ2
i ,

Fk =
(

1 +
2
t

)
G2

k − Tk.

Then, we have the following recursion formula

Fk+1 ≤
(

k + 1
k

)4
t

Fk,

where t ≥ 1 is any positive real number.

Remark 3.4. We should notice that by making use of the recursion formula of
Cheng and Yang, we can not only derive lower bounds for eigenvalues, but also
derive upper bounds for eigenvalues.

3.5 Proof of Theorem 3.2

We shall give a proof of Theorem 3.2.
Proof of Theorem 3.2. From Theorem 2.2, we have

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)
(

λi +
n2

4
H2

0

)
.

Letting μi = λi +
n2

4
H2

0 , we have

k∑
i=1

(μk+1 − μi)2 ≤ 4
n

k∑
i=1

(μk+1 − μi)μi.

From the recursion formula of Cheng and Yang with t = n, we infer

Fk+1

(k + 1)
4
n

≤ Fk

k
4
n

.

According to the Weyl’s asymptotic formula, we derive, for any positive integer
k,

Fk

k
4
n

≥ 2n

(n + 2)(n + 4)
16π4

(ωnvolΩ)
4
n

.

Since
Fk ≤ 2

n
G2

k,

we infer
1
k

k∑
i=1

λi +
n2

4
H2

0 ≥ n√
(n + 2)(n + 4)

4π2

(ωnvolΩ)
2
n

k
2
n .

This finishes the proof of Theorem 3.2. �
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3.6 Further research

From Weyl’s asymptotic formula, we have

1
k

k∑
j=1

λj ∼ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n , k → +∞.

According to Theorem 3.1, we know

1
k

k∑
j=1

λj ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n , for k = 1, 2, · · · .

Hence, the constant n
n+2 is optimal. The next landmark goal is to find the second

term in the asymptotic formula for eigenvalues. Safarov and Vassiliev [22], under
suitable assumptions on Ω, have given

1
k

k∑
j=1

λj =
n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n + cn

|∂Ω|
(volΩ)1+

1
n

k
1
n + o(k

1
n ),

when k → +∞, where cn is a positive constant dependent only on the dimension
n. We shall propose the following:

Open problem. Let Ω be a bounded domain in Rn. For eigenvalue λk of the
Dirichlet eigenvalue problem of Laplacian, for k = 1, 2, · · · , does the following
hold?

1
k

k∑
j=1

λj ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n + cn

|∂Ω|
volΩ1+ 1

n

k
1
n ,

where cn is a positive constant depending only on the dimension n.

Remark 3.5. For n = 2, Kovař́ık, Vugalter and Weidl [14] have made an impor-
tant breakthrough for this open problem.

In my joint work [7] with Qi, we study the n-dimensional case. We have proved
the following:

Theorem 3.3. Let Ω be an n-dimensional polytope in Rn. Then, there exists a
positive integer N , such that, for all k ≥ N ,

1
k

k∑
j=1

λj ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n +

π

81 · 2n−1(n + 2)ω
1
n
n

|∂Ω|
(volΩ)1+

1
n

k
1
n−ε(k),

where

ε(k) = 2

⎡
⎣
√√√√ 1

n + 12
log2

((
volΩ
c1

)n−1( 4nπ2

n + 2

)n
2 k

ωnvolΩ

) ⎤
⎦
−1

,

c1 =

√
3

ωn

(
4nπ2

n + 2

)n
2

,

and |∂Ω| denotes the area of the boundary of Ω.
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4 Application to upper bounds for eigenvalues

4.1 Upper bounds for eigenvalues

First of all, for a bounded domain in the Euclidean space Rn, according to the
partial solution of the conjecture of Pólya due to Li and Yau, we have, for k =
1, 2, · · · ,

λk ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n

and from the Weyl’s asymptotic formula, we know

λk ∼ 4π2

(ωnvolΩ)
2
n

k
2
n .

Hence, it is also very important to obtain upper bounds for eigenvalues with the
optimal order of k. But, it is very hard to obtain an upper bound for eigenvalues
with the optimal order of k. In order to obtain an upper bound for eigenvalues
with the optimal order of k, we need the recursion formula of Cheng and Yang
[10]

Fk+1

(k + 1)
4
n

≤ Fk

k
4
n

.

By making use of the recursion formula of Cheng and Yang and universal inequal-
ities for eigenvalues, we have proved in [10]

Theorem 4.1. For a bounded domain Ω ⊂ Rn, eigenvalues of the Dirichlet eigen-
value problem of Laplacian satisfy, for any k > 1,

λk+1 ≤ C0(n)λ1k
2
n ,

where
C0(n) ≤ 1 +

2.6
n

.

Remark 4.1. The upper bound of Theorem 4.1 is best possible in the sense of
order of k and it is a universal inequality.

For a complete Riemannian manifold M , Chen and Cheng [6] have obtained
the following

Theorem 4.2. For a bounded domain Ω in an n-dimensional complete Rieman-
nian manifold, there exists a constant H2

0 such that eigenvalues of the Dirichlet
eigenvalue problem of Laplacian satisfy, for k > 1,

λk+1 +
n2

4
H2

0 ≤ C0(n)
(

λ1 +
n2

4
H2

0

)
k

2
n ,

In particular, for complete minimal submanifolds in RN , we have

Corollary 4.1. Let M be an n-dimensional complete minimal submanifold in
the Euclidean space. Then, for any bounded domain Ω in M , eigenvalues of the
Dirichlet eigenvalue problem of Laplacian satisfy

λk+1 ≤ C0(n)λ1k
2
n .
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5 An obstruction for complete minimal
immersions

For a given n-dimensional complete Riemannian manifold M , it is a very important
problem in the differential geometry, to study whether there exist an isometric
minimal immersion from M into the Euclidean space RN .

For a compact Riemannian manifold M , it is well-known that there exist no
isometric minimal immersions from M into the Euclidean space RN . But, for
complete and non-compact Riemannian manifolds, there is no any criterion to
decide whether there exists an isometric minimal immersion from a complete and
non-compact Riemannian manifold into the Euclidean space RN .

From estimates for eigenvalues of the Dirichlet eigenvalue problem of the Lapla-
cian, when M is an n-dimensional complete minimal submanifold in the Euclidean
space RN , for any bounded domain Ω in M , the following holds.

• The universal inequality for eigenvalues is given by

k∑
i=1

(λk+1 − λi)2 ≤ 4
n

k∑
i=1

(λk+1 − λi)λi,

which is the same as one in the Euclidean space Rn.

• The upper bound for eigenvalues of the Dirichlet eigenvalue problem of the
Laplacian are given by

λk+1 ≤ C0(n)k
2
n λ1,

for k > 1, which is also the same as one in the Euclidean space Rn.

• The lower bound for eigenvalues of the Dirichlet eigenvalue problem of the
Laplacian are given by, for k = 1, 2, · · · ,

Fk ≥ 2n

(n + 2)(n + 4)
16π4

(ωnvolΩ)
4
n

k
4
n ,

with

Gk =
1
k

k∑
i=1

λi, Tk =
1
k

k∑
i=1

λ2
i , Fk =

(
1 +

2
n

)
G2

k − Tk,

which is also the same as one in the Euclidean space Rn.

Thus, we have the following:

An obstruction for complete minimal immersions. For an n-dimensional
complete Riemannian manifold M , if there exists a minimal isometric immersion
from M into a Euclidean space RN , then, for any bounded domain Ω in M ,
eigenvalues of the Dirichlet eigenvalue problem of the Laplacian must have the
almost same behaviors as ones in the Euclidean space Rn.
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