ESTIMATES FOR EIGENVALUES OF \mathfrak{L} OPERATOR ON SELF-SHRINKERS

QING-MING CHENG
Department of Applied Mathematics, Faculty of Sciences
Fukuoka University, Fukuoka 814-0180, Japan
cheng@fukuoka-u.ac.jp
YEJUAN PENG
Department of Mathematics, Graduate School of Science and Engineering, Saga University
Saga 840-8502, Japan
yejuan666@gmail.com
Received 10 July 2012
Revised 4 February 2013
Accepted 11 February 2013
Published

Abstract

In this paper, we study eigenvalues of the closed eigenvalue problem of the differential operator \mathfrak{L}, which is introduced by Colding and Minicozzi in [Generic mean curvature flow I; generic singularities, Ann. Math. 175 (2012) 755-833], on an n-dimensional compact self-shrinker in \mathbf{R}^{n+p}. Estimates for eigenvalues of the differential operator \mathfrak{L} are obtained. Our estimates for eigenvalues of the differential operator \mathfrak{L} are sharp. Furthermore, we also study the Dirichlet eigenvalue problem of the differential operator \mathfrak{L} on a bounded domain with a piecewise smooth boundary in an n-dimensional complete self-shrinker in \mathbf{R}^{n+p}. For Euclidean space \mathbf{R}^{n}, the differential operator \mathfrak{L} becomes the Ornstein-Uhlenbeck operator in stochastic analysis. Hence, we also give estimates for eigenvalues of the Ornstein-Uhlenbeck operator. Keywords: Mean curvature flows; self-shrinkers; spheres; the differential operator \mathfrak{L} and eigenvalues.

Mathematics Subject Classification 2010: 58G25, 53C40

1. Introduction

Let $X: M^{n} \rightarrow \mathbf{R}^{n+p}$ be an isometric immersion from an n-dimensional Riemannian manifold M^{n} into a Euclidean space \mathbf{R}^{n+p}. One considers a smooth one-parameter family of immersions:

$$
F(\cdot, t): M^{n} \rightarrow \mathbf{R}^{n+p}
$$

Q.-M. Cheng \& Y. Peng

satisfying $F(\cdot, 0)=X(\cdot)$ and

$$
\begin{equation*}
\left(\frac{\partial F(p, t)}{\partial t}\right)^{N}=H(p, t), \quad(p, t) \in M \times[0, T) \tag{1.1}
\end{equation*}
$$

where $H(p, t)$ denotes the mean curvature vector of submanifold $M_{t}=F\left(M^{n}, t\right)$ at point $F(p, t)$. Equation (1.1) is called the mean curvature flow equation. A submanifold $X: M^{n} \rightarrow \mathbf{R}^{n+p}$ is said to be a self-shrinker in \mathbf{R}^{n+p} if it satisfies

$$
\begin{equation*}
H=-X^{N} \tag{1.2}
\end{equation*}
$$

where X^{N} denotes the orthogonal projection into the normal bundle of M^{n} (cf. [10]). Self-shrinkers play an important role in the study of the mean curvature flow since they are not only solutions of the mean curvature flow equation, but they also describe all possible blow ups at a given singularity of a mean curvature flow. Huisken [11] proved that the sphere of radius \sqrt{n} is the only closed embedded self-shrinker hypersurfaces with non-zero mean curvature. For classifications of complete non-compact embedded self-shrinker hypersurfaces, Huisken [12] and Colding and Minicozzi [6] proved that an n-dimensional complete embedded self-shrinker hypersurface with non-negative mean curvature and polynomial volume growth in \mathbf{R}^{n+1} is a Riemannian product $S^{k} \times \mathbf{R}^{n-k}, 0 \leq k<n$. Smoczyk [14] has obtained several results for complete self-shrinkers with higher codimensions.

For study of the rigidity problem for self-shrinkers, Le and Sesum [13] and Cao and $\mathrm{Li}[1]$ have classified n-dimensional complete embedded self-shrinkers in \mathbf{R}^{n+p} with polynomial volume growth if the squared norm $|A|^{2}$ of the second fundamental form satisfies $|A|^{2} \leq 1$. For a further study, see $[4,5,7-9,15]$ and so on.

In [6], Colding and Minicozzi introduced a differential operator \mathfrak{L} and used it to study self-shrinkers. The differential operator \mathfrak{L} is defined by

$$
\begin{equation*}
\mathfrak{L} f=\Delta f-\langle X, \nabla f\rangle \tag{1.3}
\end{equation*}
$$

for a smooth function f, where Δ and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respectively and $\langle\cdot, \cdot\rangle$ denotes the standard inner product of \mathbf{R}^{n+p}. We should notice that the differential operator \mathfrak{L} plays a very important role in studying of n-dimensional complete embedded self-shrinkers in \mathbf{R}^{n+p} with polynomial volume growth in order to guarantee integration by part holds as in [6].

The purpose of this paper is to study eigenvalues of the closed eigenvalue problem for the differential operator \mathfrak{L} on compact self-shrinkers in \mathbf{R}^{n+p} in Secs. 3 and 4 and eigenvalues of the Dirichlet eigenvalue problem of the differential operator \mathfrak{L} on a bounded domain with a piecewise smooth boundary in complete self-shrinkers in \mathbf{R}^{n+p} in Sec. 5. We shall adapt the idea of Cheng and Yang in [2] for studying eigenvalues of the Dirichlet eigenvalue problem of the Laplacian Δ to the differential operator \mathfrak{L} by constructing appropriated trial functions for the differential operator \mathfrak{L}. Since the differential operator \mathfrak{L} is self-adjoint with respect to measure
$e^{-\frac{|X|^{2}}{2}} d v$, where $d v$ is the volume element of M^{n} and $|X|^{2}=\langle X, X\rangle$, we know that the closed eigenvalue problem:

$$
\begin{equation*}
\mathfrak{L} u=-\lambda u \quad \text { on } M^{n} \tag{1.4}
\end{equation*}
$$

for the differential operator \mathfrak{L} on compact self-shrinkers in \mathbf{R}^{n+p} has a real and discrete spectrum:

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots \rightarrow \infty
$$

where each eigenvalue is repeated according to its multiplicity. We shall prove the following theorem.

Theorem 1.1. Let M^{n} be an n-dimensional compact self-shrinker in \mathbf{R}^{n+p}. Then, eigenvalues of the closed eigenvalue problem (1.4) satisfy

$$
\begin{equation*}
\sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{4}{n} \sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(\lambda_{i}+\frac{2 n-\min _{M^{n}}|X|^{2}}{4}\right) \tag{1.5}
\end{equation*}
$$

Remark 1.1. The sphere $S^{n}(\sqrt{n})$ of radius \sqrt{n} is a compact self-shrinker in \mathbf{R}^{n+p}. For $S^{n}(\sqrt{n})$ and for any k, the inequality (1.5) for eigenvalues of the closed eigenvalue problem (1.4) becomes equality. Hence our results in Theorem 1.1 are sharp.

Furthermore, from the recursion formula of Cheng and Yang [3], we can obtain an upper bound for eigenvalue λ_{k}.

Theorem 1.2. Let M^{n} be an n-dimensional compact self-shrinker in \mathbf{R}^{n+p}. Then, eigenvalues of the closed eigenvalue problem (1.4) satisfy, for any $k \geq 1$,

$$
\lambda_{k}+\frac{2 n-\min _{M^{n}}|X|^{2}}{4} \leq\left(1+\frac{a(\min \{n, k-1\})}{n}\right)\left(\frac{2 n-\min _{M^{n}}|X|^{2}}{4}\right) k^{2 / n}
$$

where the bound of $a(m)$ can be formulated as:

$$
\left\{\begin{aligned}
a(0) & \leq 4 \\
a(1) & \leq 2.64 \\
a(m) & \leq 2.2-4 \log \left(1+\frac{1}{50}(m-3)\right), \quad \text { for } m \geq 2
\end{aligned}\right.
$$

In particular, for $n \geq 41$ and $k \geq 41$, we have

$$
\lambda_{k}+\frac{2 n-\min _{M^{n}}|X|^{2}}{4} \leq\left(\frac{2 n-\min _{M^{n}}|X|^{2}}{4}\right) k^{2 / n}
$$

Results for eigenvalues of the Dirichlet eigenvalue problem of the differential operator \mathfrak{L} are given in Sec. 5 .

2. Preliminaries

Suppose $X: M^{n} \rightarrow \mathbf{R}^{n+p}$ is an isometric immersion from Riemannian manifold M^{n} into the $(n+p)$-dimensional Euclidean space \mathbf{R}^{n+p}. Let $\left\{E_{A}\right\}_{A=1}^{n+p}$ be the standard basis of \mathbf{R}^{n+p}. The position vector can be written by $X=\left(x_{1}, x_{2}, \ldots, x_{n+p}\right)$. We choose a local orthonormal frame field $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}\right\}$ and the dual coframe field $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \omega_{n+1}, \ldots, \omega_{n+p}\right\}$ along M^{n} of \mathbf{R}^{n+p} such that $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a local orthonormal basis on M^{n}. Thus, we have

$$
\omega_{\alpha}=0, \quad n+1 \leq \alpha \leq n+p
$$

on M^{n}. From the Cartan's lemma, we have

$$
\omega_{i \alpha}=\sum_{j=1}^{n} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} .
$$

The second fundamental form \mathbf{h} of M^{n} and the mean curvature vector H are defined, respectively, by

$$
\begin{aligned}
\mathbf{h} & =\sum_{\alpha=n+1}^{n+p} \sum_{i, j=1}^{n} h_{i j}^{\alpha} \omega_{i} \otimes \omega_{j} e_{\alpha}, \\
H & =\sum_{\alpha=n+1}^{n+p} \sum_{i=1}^{n} h_{i i}^{\alpha} e_{\alpha} .
\end{aligned}
$$

One considers the mean curvature flow for a submanifold $X: M^{n} \rightarrow \mathbf{R}^{n+p}$. Namely, we consider a one-parameter family of immersions:

$$
F(\cdot, t): M^{n} \rightarrow \mathbf{R}^{n+p}
$$

satisfying $F(\cdot, 0)=X(\cdot)$ and
where

$$
\begin{equation*}
\left(\frac{\partial F(p, t)}{\partial t}\right)^{N}=H(p, t), \quad(p, t) \in M \times[0, T) \tag{2.1}
\end{equation*}
$$

where $H(p, t)$ denotes the mean curvature vector of submanifold $M_{t}=F\left(M^{n}, t\right)$ at point $F(p, t)$. An important class of solutions to the mean curvature flow equation (2.1) are self-similar shrinkers, which profiles, self-shrinkers, satisfy

$$
H=-X^{N}
$$

which is a system of quasi-linear elliptic partial differential equations of the second order. Here X^{N} denotes the orthogonal projection of X into the normal bundle of M^{n}.

In [6], Colding and Minicozzi introduced a differential operator \mathfrak{L} and used it to study self-shrinkers. The differential operator \mathfrak{L} is defined by

$$
\begin{equation*}
\mathfrak{L} f=\Delta f-\langle X, \nabla f\rangle \tag{2.2}
\end{equation*}
$$

for a smooth function f, where Δ and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respectively. For a compact self-shrinker M^{n} without
boundary, we have

$$
\begin{aligned}
\int_{M^{n}} f \mathfrak{L} u e^{-\frac{|X|^{2}}{2}} d v & =\int_{M^{n}} f(\Delta u-\langle X, \nabla u\rangle) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{M^{n}} f \operatorname{div}\left(e^{-\frac{|X|^{2}}{2}} \nabla u\right) d v=\int_{M^{n}} u \mathfrak{L} f e^{-\frac{|X|^{2}}{2}} d v,
\end{aligned}
$$

that is,

$$
\begin{equation*}
\int_{M^{n}} f \mathfrak{L} u e^{-\frac{|X|^{2}}{2}} d v=\int_{M^{n}} u \mathfrak{L} f e^{-\frac{|X|^{2}}{2}} d v \tag{2.3}
\end{equation*}
$$

for any smooth functions u, f. Hence, the differential operator \mathfrak{L} is self-adjoint with respect to the measure $e^{-\frac{|X|^{2}}{2}} d v$. Therefore, we know that the closed eigenvalue problem:

$$
\begin{equation*}
\mathfrak{L} u=-\lambda u \quad \text { on } M^{n} \tag{2.4}
\end{equation*}
$$

has a real and discrete spectrum:

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots \rightarrow \infty
$$

Furthermore, we have

$$
\begin{equation*}
\mathfrak{L} x_{A}=-x_{A} . \tag{2.5}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\mathfrak{L} x_{A} & =\Delta\left\langle X, E_{A}\right\rangle-\left\langle X, \nabla x_{A}\right\rangle \\
& =\left\langle\Delta X, E_{A}\right\rangle-\left\langle X, E_{A}^{T}\right\rangle \\
& =\left\langle H, E_{A}\right\rangle-\left\langle X, E_{A}^{T}\right\rangle \\
& =-\left\langle X^{N}, E_{A}\right\rangle-\left\langle X, E_{A}^{T}\right\rangle=-x_{A} .
\end{aligned}
$$

Denote the induced metric by g and define $\nabla u \cdot \nabla v=g(\nabla u, \nabla v)$ for functions u, v. We get, from (2.5),

$$
\begin{equation*}
\mathfrak{L}|X|^{2}=\sum_{A=1}^{n+p}\left(2 x_{A} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla x_{A}\right)=2\left(n-|X|^{2}\right) . \tag{2.6}
\end{equation*}
$$

Here we have used

$$
\sum_{A=1}^{n+p} \nabla x_{A} \cdot \nabla x_{A}=n .
$$

Proposition 2.1. For an n-dimensional compact self-shrinker M^{n} without boundary in \mathbf{R}^{n+p}, we have

$$
\min _{M^{n}}|X|^{2} \leq n=\frac{\int_{M^{n}}|X|^{2} e^{-\frac{|X|^{2}}{2}} d v}{\int_{M^{n}} e^{-\frac{|X|^{2}}{2}} d v} \leq \max _{M^{n}}\left|X^{N}\right|^{2}
$$

Proof. Since \mathfrak{L} is self-adjoint with respect to the measure $e^{-\frac{|X|^{2}}{2}} d v$, from (2.6), we have

$$
n \int_{M^{n}} e^{-\frac{|X|^{2}}{2}} d v=\int_{M^{n}}|X|^{2} e^{-\frac{|X|^{2}}{2}} d v \geq \min _{M^{n}}|X|^{2} \int_{M^{n}} e^{-\frac{|X|^{2}}{2}} d v
$$

Furthermore, since

$$
\begin{equation*}
\Delta|X|^{2}=2(n+\langle X, H\rangle)=2\left(n-\left|X^{N}\right|^{2}\right), \tag{2.7}
\end{equation*}
$$

we have

$$
n \leq \max _{M^{n}}\left|X^{N}\right|^{2}
$$

It completes the proof of this proposition.

3. Universal Estimates for Eigenvalues

In this section, we give proof of Theorem 1.1. In order to prove our Theorem 1.1, we need to construct trial functions. Thanks to $\mathfrak{L} X=-X$, we can use coordinate functions of the position vector X of the self-shrinker M^{n} to construct trial functions.

Proof of Theorem 1.1. For an n-dimensional compact self-shrinker M^{n} in \mathbf{R}^{n+p}, the closed eigenvalue problem:

$$
\begin{equation*}
\mathfrak{L} u=-\lambda u \quad \text { on } M^{n} \tag{3.1}
\end{equation*}
$$

for the differential operator \mathfrak{L} has a discrete spectrum. For any integer $j \geq 0$, let u_{j} be an eigenfunction corresponding to the eigenvalue λ_{j} such that

$$
\begin{cases}\mathfrak{L} u_{j}=-\lambda_{j} u_{j}, & \text { on } M^{n} \tag{3.2}\\ \int_{M^{n}} u_{i} u_{j} e^{-\frac{|X|^{2}}{2}} d v=\delta_{i j}, & \text { for any } i, j .\end{cases}
$$

From the Rayleigh-Ritz inequality, we have

$$
\begin{equation*}
\lambda_{k+1} \leq \frac{-\int_{M^{n}} \varphi \mathfrak{L} \varphi e^{-\frac{|X|^{2}}{2}} d v}{\int_{M^{n}} \varphi^{2} e^{-\frac{|X|^{2}}{2}} d v} \tag{3.3}
\end{equation*}
$$

for any function φ satisfies $\int_{M^{n}} \varphi u_{j} e^{-\frac{|X|^{2}}{2}} d v, 0 \leq j \leq k$. Since $X: M^{n} \rightarrow \mathbf{R}^{n+p}$ is a self-shrinker in \mathbf{R}^{n+p}, we have

$$
\begin{equation*}
H=-X^{N} \tag{3.4}
\end{equation*}
$$

Letting $x_{A}, A=1,2, \ldots, n+p$, denote components of the position vector X, we define, for $0 \leq i \leq k$,

$$
\begin{equation*}
\varphi_{i}^{A}:=x_{A} u_{i}-\sum_{j=0}^{k} a_{i j}^{A} u_{j}, \quad a_{i j}^{A}=\int_{M^{n}} x_{A} u_{i} u_{j} e^{-\frac{|X|^{2}}{2}} d v \tag{3.5}
\end{equation*}
$$

By a simple calculation, we obtain

$$
\begin{equation*}
\int_{M^{n}} u_{j} \varphi_{i}^{A} e^{-\frac{|X|^{2}}{2}} d v=0, \quad i, j=0,1, \ldots, k \tag{3.6}
\end{equation*}
$$

From the Rayleigh-Ritz inequality, we have

$$
\begin{equation*}
\lambda_{k+1} \leq \frac{-\int_{M^{n}} \varphi_{i}^{A} \mathfrak{L} \varphi_{i}^{A} e^{-\frac{|X|^{2}}{2}} d v}{\int_{M^{n}}\left(\varphi_{i}^{A}\right)^{2} e^{-\frac{|X|^{2}}{2}} d v} \tag{3.7}
\end{equation*}
$$

Since

$$
\begin{align*}
\mathfrak{L} \varphi_{i}^{A}= & \Delta \varphi_{i}^{A}-\left\langle X, \nabla \varphi_{i}^{A}\right\rangle \\
= & \Delta\left(x_{A} u_{i}-\sum_{j=0}^{k} a_{i j}^{A} u_{j}\right)-\left\langle X, \nabla\left(x_{A} u_{i}-\sum_{j=0}^{k} a_{i j}^{A} u_{j}\right)\right\rangle \\
= & x_{A} \Delta u_{i}+u_{i} \Delta x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\left\langle X, x_{A} \nabla u_{i}+u_{i} \nabla x_{A}\right\rangle \\
& -\sum_{j=0}^{k} a_{i j}^{A} \Delta u_{j}+\left\langle X, \sum_{j=0}^{k} a_{i j}^{A} \nabla u_{j}\right\rangle \\
= & -\lambda_{i} x_{A} u_{i}+u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}+\sum_{j=0}^{k} a_{i j}^{A} \lambda_{j} u_{j}, \tag{3.8}
\end{align*}
$$

AQ: Please check the edit of equation (3.8).
we have, from (3.7) and (3.8),

$$
\begin{equation*}
\left(\lambda_{k+1}-\lambda_{i}\right)\left\|\varphi_{i}^{A}\right\|^{2} \leq-\int_{M^{n}} \varphi_{i}^{A}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right) e^{-\frac{|X|^{2}}{2}} d v:=W_{i}^{A} \tag{3.9}
\end{equation*}
$$

where

$$
\left\|\varphi_{i}^{A}\right\|^{2}=\int_{M^{n}}\left(\varphi_{i}^{A}\right)^{2} e^{-\frac{|X|^{2}}{2}} d v
$$

On the other hand, defining

$$
b_{i j}^{A}=-\int_{M^{n}}\left(u_{j} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{j}\right) u_{i} e^{-\frac{|X|^{2}}{2}} d v
$$

we obtain

$$
\begin{equation*}
b_{i j}^{A}=\left(\lambda_{i}-\lambda_{j}\right) a_{i j}^{A} \tag{3.10}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\lambda_{i} a_{i j}^{A} & =\int_{M^{n}} \lambda_{i} u_{i} u_{j} x_{A} e^{-\frac{|X|^{2}}{2}} d v \\
& =-\int_{M^{n}} u_{j} x_{A} \mathfrak{L} u_{i} e^{-\frac{|X|^{2}}{2}} d v \\
& =-\int_{M^{n}} u_{i} \mathfrak{L}\left(u_{j} x_{A}\right) e^{-\frac{|X|^{2}}{2}} d v
\end{aligned}
$$

$$
\begin{aligned}
& =-\int_{M^{n}} u_{i}\left(x_{A} \mathfrak{L} u_{j}+u_{j} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{j}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\lambda_{j} a_{i j}^{A}+b_{i j}^{A}
\end{aligned}
$$

that is,

$$
b_{i j}^{A}=\left(\lambda_{i}-\lambda_{j}\right) a_{i j}^{A}
$$

Hence, we have

$$
\begin{equation*}
b_{i j}^{A}=-b_{j i}^{A} \tag{3.11}
\end{equation*}
$$

From (3.6), (3.9) and the Cauchy-Schwarz inequality, we infer

$$
\begin{align*}
W_{i}^{A} & =-\int_{M^{n}} \varphi_{i}^{A}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =-\int_{M^{n}} \varphi_{i}^{A}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& \leq\left\|\varphi_{i}^{A}\right\|\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right\| \tag{3.12}
\end{align*}
$$

Hence, we have, from (3.9) and (3.12),

$$
\begin{aligned}
\left(\lambda_{k+1}-\lambda_{i}\right)\left(W_{i}^{A}\right)^{2} & =\left(\lambda_{k+1}-\lambda_{i}\right)\left\|\varphi_{i}^{A}\right\|^{2}\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right\|^{2} \\
& \leq W_{i}^{A}\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right\|^{2}
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
\left(\lambda_{k+1}-\lambda_{i}\right)^{2} W_{i}^{A} \leq\left(\lambda_{k+1}-\lambda_{i}\right)\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right\|^{2} \tag{3.13}
\end{equation*}
$$

Summing on i from 0 to k for (3.13), we have

$$
\begin{align*}
& \sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} W_{i}^{A} \\
& \quad \leq \sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right\|^{2} \tag{3.14}
\end{align*}
$$

By the definition of $b_{i j}^{A}$ and (3.10), we have

$$
\begin{align*}
& \left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}-\sum_{j=0}^{k} b_{i j}^{A} u_{j}\right\|^{2} \\
& =\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right\|^{2} \\
& \quad-2 \sum_{j=0}^{k} b_{i j}^{A} \int_{M^{n}}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right) u_{j} e^{-\frac{|X|^{2}}{2}} d v+\sum_{j=0}^{k}\left(b_{i j}^{A}\right)^{2} \\
& =\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right\|^{2}-\sum_{j=0}^{k}\left(b_{i j}^{A}\right)^{2} \\
& =\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right\|^{2}-\sum_{j=0}^{k}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(a_{i j}^{A}\right)^{2} . \tag{3.15}
\end{align*}
$$

Furthermore, according to the definitions of W_{i}^{A} and φ_{i}^{A}, we have from (3.10)

$$
\begin{align*}
W_{i}^{A}= & -\int_{M^{n}} \varphi_{i}^{A}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right) e^{-\frac{|X|^{2}}{2}} d v \\
= & -\int_{M^{n}}\left(x_{A} u_{i}-\sum_{j=0}^{k} a_{i j}^{A} u_{j}\right)\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right) e^{-\frac{|X|^{2}}{2}} d v \\
= & -\int_{M^{n}}\left(x_{A} u_{i}^{2} \mathfrak{L} x_{A}+2 x_{A} u_{i} \nabla x_{A} \cdot \nabla u_{i}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& +\sum_{j=0}^{k} a_{i j}^{A} \int_{M^{n}} u_{j}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right) e^{-\frac{|X|^{2}}{2}} d v \\
= & -\int_{M^{n}}\left(x_{A} \mathfrak{L} x_{A}-\frac{1}{2} \mathfrak{L}\left(x_{A}\right)^{2}\right) u_{i}^{2} e^{-\frac{|X|^{2}}{2}} d v+\sum_{j=0}^{k} a_{i j}^{A} b_{i j}^{A} \\
= & \int_{M^{n}} \nabla x_{A} \cdot \nabla x_{A} u_{i}^{2} e^{-\frac{|X|^{2}}{2}} d v+\sum_{j=0}^{k}\left(\lambda_{i}-\lambda_{j}\right)\left(a_{i j}^{A}\right)^{2} . \tag{3.16}
\end{align*}
$$

Since

$$
\begin{aligned}
2 \sum_{i, j=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2}\left(\lambda_{i}-\lambda_{j}\right)\left(a_{i j}^{A}\right)^{2}= & \sum_{i, j=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2}\left(\lambda_{i}-\lambda_{j}\right)\left(a_{i j}^{A}\right)^{2} \\
& -\sum_{i, j=0}^{k}\left(\lambda_{k+1}-\lambda_{j}\right)^{2}\left(\lambda_{i}-\lambda_{j}\right)\left(a_{i j}^{A}\right)^{2}
\end{aligned}
$$

$$
\begin{align*}
& =-\sum_{i, j=0}^{k}\left(\lambda_{k+1}-\lambda_{i}+\lambda_{k+1}-\lambda_{j}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(a_{i j}^{A}\right)^{2} \\
& =-2 \sum_{i, j=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(a_{i j}^{A}\right)^{2} \tag{3.17}
\end{align*}
$$

from (3.14)-(3.17), we obtain, for any $A, A=1,2, \ldots, n+p$,

$$
\begin{align*}
& \sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \int_{M^{n}} \nabla x_{A} \cdot \nabla x_{A} u_{i}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
& \quad \leq \sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right\|^{2} \tag{3.18}
\end{align*}
$$

On the other hand, since

$$
\mathfrak{L} x_{A}=-x_{A}, \quad \sum_{A=1}^{n+p}\left(\nabla x_{A} \cdot \nabla u_{i}\right)^{2}=\nabla u_{i} \cdot \nabla u_{i}
$$

we infer, from (2.6),

$$
\begin{align*}
\sum_{A=1}^{n+p}\left\|u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right\|^{2}= & \sum_{A=1}^{n+p} \int_{M^{n}}\left(u_{i} \mathfrak{L} x_{A}+2 \nabla x_{A} \cdot \nabla u_{i}\right)^{2} e^{-\frac{|X|^{2}}{2}} d v \\
= & \sum_{A=1}^{n+p} \int_{M^{n}}\left(u_{i}^{2}\left(x_{A}\right)^{2}-4 u_{i} x_{A} \nabla x_{A} \cdot \nabla u_{i}\right. \\
& \left.+4\left(\nabla x_{A} \cdot \nabla u_{i}\right)^{2}\right) e^{-\frac{|X|^{2}}{2}} d v \\
= & \sum_{A=1}^{n+p} \int_{M^{n}}\left(u_{i}^{2}\left(x_{A}\right)^{2}-\nabla\left(x_{A}\right)^{2} \cdot \nabla u_{i}^{2}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& +4 \int_{M^{n}} \nabla u_{i} \cdot \nabla u_{i} e^{-\frac{|X|^{2}}{2}} d v \\
= & \int_{M^{n}}\left(\mathfrak{L}|X|^{2}+|X|^{2}\right) u_{i}^{2} e^{-\frac{|X|^{2}}{2}} d v+4 \lambda_{i} \\
= & \int_{M^{n}}\left(2 n-|X|^{2}\right) u_{i}^{2} e^{-\frac{|X|^{2}}{2}} d v+4 \lambda_{i} \\
\leq & \left(2 n-\min _{M^{n}}|X|^{2}\right)+4 \lambda_{i} \tag{3.19}
\end{align*}
$$

Furthermore, because of

$$
\begin{equation*}
\sum_{A=1}^{n+p} \nabla x_{A} \cdot \nabla x_{A}=n \tag{3.20}
\end{equation*}
$$

taking summation on A from 1 to $n+p$ for (3.18) and using (3.19) and (3.20), we get

$$
\sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{4}{n} \sum_{i=0}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(\lambda_{i}+\frac{2 n-\min _{M^{n}}|X|^{2}}{4}\right) .
$$

It finished the proof of Theorem 1.1.

4. Upper Bounds for Eigenvalues

The following recursion formula of Cheng and Yang [3] plays a very important role in order to prove Theorem 1.2.
A recursion formula of Cheng and Yang. Let $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{k+1}$ be any positive real numbers satisfying

$$
\sum_{i=1}^{k}\left(\mu_{k+1}-\mu_{i}\right)^{2} \leq \frac{4}{n} \sum_{i=1}^{k} \mu_{i}\left(\mu_{k+1}-\mu_{i}\right)
$$

Define

$$
\Lambda_{k}=\frac{1}{k} \sum_{i=1}^{k} \mu_{i}, \quad T_{k}=\frac{1}{k} \sum_{i=1}^{k} \mu_{i}^{2}, \quad F_{k}=\left(1+\frac{2}{n}\right) \Lambda_{k}^{2}-T_{k} .
$$

Then, we have

$$
\begin{equation*}
F_{k+1} \leq C(n, k)\left(\frac{k+1}{k}\right)^{\frac{4}{n}} F_{k} \tag{4.1}
\end{equation*}
$$

where

$$
C(n, k)=1-\frac{1}{3 n}\left(\frac{k}{k+1}\right)^{\frac{4}{n}} \frac{\left(1+\frac{2}{n}\right)\left(1+\frac{4}{n}\right)}{(k+1)^{3}}<1 .
$$

Proof of Theorem 1.2. From Proposition 2.1, we know

$$
\mu_{i+1}=\lambda_{i}+\frac{2 n-\min _{M^{n}}|X|^{2}}{4}>0
$$

for any $i=0,1,2, \ldots$ Then, we obtain from (1.5)

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\mu_{k+1}-\mu_{i}\right)^{2} \leq \frac{4}{n} \sum_{i=1}^{k}\left(\mu_{k+1}-\mu_{i}\right) \mu_{i} . \tag{4.2}
\end{equation*}
$$

Thus, we know that μ_{i} 's satisfy the condition of the above recursion formula of Cheng and Yang [3]. Furthermore, since

$$
\mathfrak{L} x_{A}=-x_{A} \quad \text { and } \quad \int_{M^{n}} x_{A} e^{-\frac{|X|^{2}}{2}} d v=0, \quad \text { for } A=1,2, \ldots, n+p
$$

$\lambda=1$ is an eigenvalue of \mathfrak{L} with multiplicity at least $n+p$. Thus,

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n+1} \leq 1
$$

Q.-M. Cheng \& Y. Peng

Hence, we have

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\mu_{j+1}-\mu_{1}\right)=\sum_{j=1}^{n} \lambda_{j} \leq n \leq 2 n-\min _{M^{n}}|X|^{2}=4 \mu_{1} \tag{4.3}
\end{equation*}
$$

because of $\min _{M^{n}}|X|^{2} \leq n$ according to Proposition 2.1. Hence, we can prove Theorem 1.2 as in [3] almost word by word. For the convenience of readers, we shall give a self-contained proof. First of all, according to the above recursion formula of Cheng and Yang, we have

$$
F_{k} \leq C(n, k-1)\left(\frac{k}{k-1}\right)^{\frac{4}{n}} F_{k-1} \leq k^{\frac{4}{n}} F_{1}=\frac{2}{n} k^{\frac{4}{n}} \mu_{1}^{2}
$$

Furthermore, we infer, from (4.2)

$$
\left[\mu_{k+1}-\left(1+\frac{2}{n}\right) \Lambda_{k}\right]^{2} \leq\left(1+\frac{4}{n}\right) F_{k}-\frac{2}{n}\left(1+\frac{2}{n}\right) \Lambda_{k}^{2}
$$

Hence, we have

$$
\frac{\frac{2}{n}}{\left(1+\frac{4}{n}\right)} \mu_{k+1}^{2}+\frac{1+\frac{2}{n}}{1+\frac{4}{n}}\left(\mu_{k+1}-\left(1+\frac{4}{n}\right) \Lambda_{k}\right)^{2} \leq\left(1+\frac{4}{n}\right) F_{k}
$$

Thus, we derive

$$
\begin{equation*}
\mu_{k+1} \leq\left(1+\frac{4}{n}\right) \sqrt{\frac{n}{2} F_{k}} \leq\left(1+\frac{4}{n}\right) k^{\frac{2}{n}} \mu_{1} \tag{4.4}
\end{equation*}
$$

Define

$$
\begin{aligned}
a_{1}(n) & =\frac{n\left(1+\frac{4}{n}\right)\left(1+\frac{8}{n+1}+\frac{8}{(n+1)^{2}}\right)^{\frac{1}{2}}}{(n+1)^{\frac{2}{n}}}-n \\
a_{2}(k, n) & =\frac{n}{k^{\frac{2}{n}}}\left(1+\frac{4(n+k+4)}{n^{2}+5 n-4(k-1)}\right)-n, \\
a_{2}(k) & =\max \{a(n, k), k \leq n \leq 400\} \\
a_{3}(k) & =\frac{4}{1-\frac{k}{400}}-2 \log k \\
a(k) & \left.=\max \left\{a_{1}(k), a_{2}(k+1)\right), a_{3}(k+1)\right\} .
\end{aligned}
$$

Case 1. For $k \geq n+1$, we have

$$
\begin{align*}
\mu_{k+1} & \leq \frac{\left(1+\frac{4}{n}\right)\left(1+\frac{8}{n+1}+\frac{8}{(n+1)^{2}}\right)^{\frac{1}{2}}}{(n+1)^{\frac{2}{n}}} k^{\frac{2}{n}} \mu_{1} \\
& =\left(1+\frac{a_{1}(n)}{n}\right) k^{\frac{2}{n}} \mu_{1} \tag{4.5}
\end{align*}
$$

where $a_{1}(n) \leq 2.31$. In fact, since μ_{k+1} satisfies (4.2), we have, from (4.1),

$$
\begin{equation*}
\mu_{k+1}^{2} \leq \frac{n}{2}\left(1+\frac{4}{n}\right)^{2} F_{k} \leq \frac{n}{2}\left(1+\frac{4}{n}\right)^{2}\left(\frac{k}{n+1}\right)^{\frac{4}{n}} F_{n+1} \tag{4.6}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
F_{n+1} & =\frac{2}{n} \Lambda_{n+1}^{2}-\sum_{i=1}^{n+1} \frac{\left(\mu_{i}-\Lambda_{n+1}\right)^{2}}{n+1} \\
& \leq \frac{2}{n} \Lambda_{n+1}^{2}-\frac{\left(\mu_{1}-\Lambda_{n+1}\right)^{2}+\frac{1}{n}\left(\mu_{1}-\Lambda_{n+1}\right)^{2}}{n+1} \\
& =\frac{2}{n}\left(\Lambda_{n+1}^{2}-\frac{\left(\mu_{1}-\Lambda_{n+1}\right)^{2}}{2}\right) . \tag{4.7}
\end{align*}
$$

It is obvious that $\Lambda_{n+1}^{2}-\frac{\left(\mu_{1}-\Lambda_{n+1}\right)^{2}}{2}$ is an increasing function of Λ_{n+1}. From (4.3), we have

$$
\begin{equation*}
\mu_{n+1}+\cdots+\mu_{2} \leq(n+4) \mu_{1} \tag{4.8}
\end{equation*}
$$

Thus, we derive

$$
\begin{equation*}
\Lambda_{n+1} \leq\left(1+\frac{4}{n+1}\right) \mu_{1} \tag{4.9}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\frac{n}{2} F_{n+1} \leq\left(1+\frac{8}{n+1}+\frac{8}{(n+1)^{2}}\right) \mu_{1}^{2} \tag{4.10}
\end{equation*}
$$

1
From (4.6) and (4.10), we complete the proof of (4.5).
Case 2. For $k \geq 55$ and $n \geq 54$, we have

$$
\begin{equation*}
\mu_{k+1} \leq k^{\frac{2}{n}} \mu_{1} \tag{4.11}
\end{equation*}
$$

If $k \geq n+1$, from Case 1 , we have

$$
\mu_{k+1} \leq \frac{1}{(n+1)^{\frac{2}{n}}}\left(1+\frac{4}{n}\right)^{2} k^{\frac{2}{n}} \mu_{1}
$$

Since

$$
\begin{align*}
(n+1)^{\frac{2}{n}} & =\exp \left(\frac{2}{n} \log (n+1)\right) \\
& \geq 1+\frac{2}{n} \log (n+1)+\frac{2}{n^{2}}(\log (n+1))^{2} \\
& \geq\left(1+\frac{1}{n} \log (n+1)\right)^{2} \tag{4.12}
\end{align*}
$$

Q.-M. Cheng \& Y. Peng
we have

$$
\begin{equation*}
\mu_{k+1} \leq\left(\frac{1+\frac{4}{n}}{1+\frac{1}{n} \log (n+1)}\right)^{2} k^{\frac{2}{n}} \mu_{1} \tag{4.13}
\end{equation*}
$$

Then, when $n \geq 54, \log (n+1) \geq 4$, we have

$$
\mu_{k+1} \leq k^{\frac{2}{n}} \mu_{1}
$$

On the other hand, if $k \leq n$, then $\Lambda_{k} \leq \Lambda_{n+1}$. Since

$$
\begin{aligned}
\frac{n}{2} F_{k} & =\Lambda_{k}^{2}-\frac{n}{2} \frac{\sum_{i=1}^{k}\left(\mu_{i}-\Lambda_{k}\right)^{2}}{k} \\
& \leq \Lambda_{k}^{2}-\frac{n}{2} \frac{\left(\mu_{1}-\Lambda_{k}\right)^{2}+\frac{\left\{\sum_{i=2}^{k}\left(\mu_{i}-\Lambda_{k}\right)\right\}^{2}}{k-1}}{k} \\
& \leq \Lambda_{k}^{2}-\frac{\left(\mu_{1}-\Lambda_{k}\right)^{2}}{2} \\
& \leq \Lambda_{n+1}^{2}-\frac{\left(\mu_{1}-\Lambda_{n+1}\right)^{2}}{2} \leq\left(1+\frac{4}{n}\right)^{2} \mu_{1}^{2}
\end{aligned}
$$

we have

$$
\mu_{k+1} \leq\left(1+\frac{4}{n}\right) \sqrt{\frac{n}{2} F_{k}} \leq \frac{1}{k^{\frac{2}{n}}}\left(1+\frac{4}{n}\right)^{2} k^{\frac{2}{n}} \mu_{1} \leq\left(\frac{1+\frac{4}{n}}{1+\frac{\log k}{n}}\right)^{2} k^{\frac{2}{n}} \mu_{1}
$$

Here we used $k^{\frac{2}{n}} \geq\left(1+\frac{\log k}{n}\right)^{2}$. By the same assertion as above, when $k \geq 55$, we also have

$$
\mu_{k+1} \leq k^{\frac{2}{n}} \mu_{1}
$$

Case 3. For $k \leq 54$ and $k \leq n$, we have

$$
\mu_{k+1} \leq\left(1+\frac{\max \left\{a_{2}(k), a_{3}(k)\right\}}{n}\right) k^{\frac{2}{n}} \mu_{1} .
$$

Because of $k \leq n$ and $k \leq 54$, from (4.3), we derive

$$
\begin{equation*}
\mu_{k+1} \leq \frac{1}{n-k+1}\left\{(n+5) \mu_{1}-k \Lambda_{k}\right\} \tag{4.14}
\end{equation*}
$$

Since formula (4.2) is a quadratic inequality for μ_{k+1}, we have

$$
\begin{equation*}
\mu_{k+1} \leq\left(1+\frac{4}{n}\right) \Lambda_{k} \tag{4.15}
\end{equation*}
$$

Since the right-hand side of (4.14) is a decreasing function of Λ_{k} and the right-hand side of (4.15) is an increasing function of Λ_{k}, for $\frac{1}{n-k+1}\left\{(n+5) \mu_{1}-k \Lambda_{k}\right\}=\left(1+\frac{4}{n}\right) \Lambda_{k}$, we infer

$$
\begin{align*}
\mu_{k+1} & \leq \frac{1}{k^{\frac{2}{n}}}\left(1+\frac{4(n+k+4)}{n^{2}+5 n-4(k-1)}\right) k^{\frac{2}{n}} \mu_{1} \\
& =\left(1+\frac{a_{2}(k, n)}{n}\right) k^{\frac{2}{n}} \mu_{1} . \tag{4.16}
\end{align*}
$$

From the definition of $a_{2}(k)=\max \{a(n, k), k \leq n \leq 400\}$, when $n \leq 400$, we obtain

$$
\begin{equation*}
\mu_{k+1} \leq\left(1+\frac{a_{2}(k)}{n}\right) k^{\frac{2}{n}} \mu_{1} . \tag{4.17}
\end{equation*}
$$

When $n>400$ holds, from (4.4), we have

$$
\mu_{k+1} \leq\left(1+\frac{4}{n-k}\right) \mu_{1}
$$

Since $n>400$ and $k \leq 54$, we know $\frac{2}{n} \log k<\frac{1}{50}$. Hence, we have

$$
\begin{aligned}
k^{-\frac{2}{n}}=e^{-\frac{2}{n} \log k} & =1-\frac{2}{n} \log k+\frac{1}{2}\left(\frac{2}{n} \log k\right)^{2}-\cdots \\
& \leq 1-\frac{2}{n} \log k+\frac{1}{2}\left(\frac{2}{n} \log k\right)^{2}
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
\left(1+\frac{4}{n-k}\right) k^{-\frac{2}{n}} & \leq\left(1+\frac{4}{n-k}\right)\left(1-\frac{2}{n} \log k+\frac{1}{2}\left(\frac{2}{n} \log k\right)^{2}\right) \\
& \leq 1+\frac{\left(4 /\left(1-\frac{k}{400}\right)-2 \log k\right)}{n}
\end{aligned}
$$

Hence, we infer

$$
\begin{align*}
\mu_{k+1} & \leq\left(1+\frac{4}{n-k}\right) k^{-\frac{2}{n}} k^{\frac{2}{n}} \mu_{1} \\
& \leq\left(1+\frac{\left(4 /\left(1-\frac{k}{400}\right)-2 \log k\right)}{n}\right) k^{\frac{2}{n}} \mu_{1} \\
& =\left(1+\frac{a_{3}(k)}{n}\right) k^{\frac{2}{n}} \mu_{1} \tag{4.18}
\end{align*}
$$

AQ: Please check the edit of Table 1.	$>$ Table 1. The values of $a_{1}(k), a_{2}(k+1)$ and $a_{3}(k+1)$.			
	k	$a_{1}(k)$	$a_{2}(k+1)$	$a_{3}(k+1)$
	1	≤ 2.31	≤ 2.62	≤ 2.64
	2	≤ 2.27	≤ 2.05	≤ 1.84
	3	≤ 2.2	≤ 2.00	≤ 1.27
	4	≤ 2.12	≤ 1.96	≤ 0.84
	5	≤ 2.03	≤ 1.90	≤ 0.48
	6	≤ 1.94	≤ 1.84	≤ 0.18
	7	≤ 1.86	≤ 1.77	≤-0.07
	8	≤ 1.77	≤ 1.70	≤-0.30
	9	≤ 1.69	≤ 1.63	≤-0.50
	10	≤ 1.61	≤ 1.56	≤-0.68
	11	≤ 1.53	≤ 1.49	≤-0.84
	12	≤ 1.46	≤ 1.42	≤-0.99
	13	≤ 1.39	≤ 1.35	≤-1.13
	14	≤ 1.32	≤ 1.29	≤-1.26
	15	≤ 1.25	≤ 1.22	≤-1.37
	16	≤ 1.18	≤ 1.16	≤-1.48
	17	≤ 1.12	≤ 1.10	≤-1.59
	18	≤ 1.06	≤ 1.04	≤-1.68
	19	≤ 1.00	≤ 0.98	≤-1.78
	20	≤ 0.94	≤ 0.92	≤-1.86
	21	≤ 0.89	≤ 0.87	≤-1.94
	22	≤ 0.83	≤ 0.82	≤-2.02
	23	≤ 0.78	≤ 0.76	≤-2.10
	24	≤ 0.72	≤ 0.71	≤-2.17
	25	≤ 0.67	≤ 0.66	≤-2.23
	26	≤ 0.62	≤ 0.61	≤-2.30
	27	≤ 0.58	≤ 0.57	≤-2.36
	28	≤ 0.53	≤ 0.52	≤-2.42
	29	≤ 0.48	≤ 0.47	≤-2.47
	30	≤ 0.44	≤ 0.43	≤-2.53
	31	≤ 0.39	≤ 0.38	≤-2.58
	32	≤ 0.35	≤ 0.34	≤-2.63
	33	≤ 0.31	≤ 0.30	≤-2.68
	34	≤ 0.27	≤ 0.26	≤-2.72
	35	≤ 0.23	≤ 0.22	≤-2.77
	36	≤ 0.19	≤ 0.18	≤-2.81
	37	≤ 0.15	≤ 0.14	≤-2.85
	38	≤ 0.11	≤ 0.10	≤-2.89
	39	≤ 0.07	≤ 0.07	≤-2.93
	40	≤ 0.03	≤ 0.03	≤-2.97
	41	≤-0.00	≤-0.01	≤-3.00

By Table 1 of the values of $a_{1}(k), a_{2}(k+1)$ and $a_{3}(k+1)$ which are calculated by using Mathematica, we have $a_{1}(1) \leq a_{2}(2) \leq a_{3}(2)=a(1) \leq 2.64$ and, for $k \geq 2$,

$$
a_{3}(k+1) \leq a_{2}(k+1) \leq a_{1}(k) .
$$

Hence, $a(k)=a_{1}(k)$ for $k \geq 2$. Further, for $k \geq 41$, we know $a(k)<0$. Hence, for $k \geq 2$, we derive

$$
\mu_{k+1} \leq\left(1+\frac{a(\min \{n, k-1\})}{n}\right) k^{\frac{2}{n}} \mu_{1}
$$

and for $n \geq 41$ and $k \geq 41$, we have

$$
\mu_{k+1} \leq k^{\frac{2}{n}} \mu_{1}
$$

When $k=1, a(0)=4$ from (4.4). It is easy to check that, when $k \geq 3$, by a simple calculation,

$$
a(k) \leq 2.2-4 \log \left(1+\frac{k-3}{50}\right)
$$

This completes the proof of Theorem 1.2.

5. The Dirichlet Eigenvalue Problem

For a bounded domain Ω with a piecewise smooth boundary $\partial \Omega$ in an n-dimensional complete self-shrinker in \mathbf{R}^{n+p}, we consider the following Dirichlet eigenvalue problem of the differential operator \mathfrak{L} :

$$
\begin{cases}\mathfrak{L} u=-\lambda u & \text { in } \Omega \tag{5.1}\\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

This eigenvalue problem has a real and discrete spectrum:

$$
0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots \rightarrow \infty
$$

where each eigenvalue is repeated according to its multiplicity. We have following estimates for eigenvalues of the Dirichlet eigenvalue problem (5.1).

Theorem 5.1. Let Ω be a bounded domain with a piecewise smooth boundary $\partial \Omega$ in an n-dimensional complete self-shrinker M^{n} in \mathbf{R}^{n+p}. Then, eigenvalues of the Dirichlet eigenvalue problem (5.1) satisfy

$$
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{4}{n} \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(\lambda_{i}+\frac{2 n-\inf _{\Omega}|X|^{2}}{4}\right)
$$

Proof. By making use of the same proof as in the proof of Theorem 1.1, we can prove Theorem 5.1 if one notices to count the number of eigenvalues from 1.

From the recursion formula of [3], we can give an upper bound for eigenvalue λ_{k+1}.

Theorem 5.2. Let Ω be a bounded domain with a piecewise smooth boundary $\partial \Omega$ in an n-dimensional complete self-shrinker M^{n} in \mathbf{R}^{n+p}. Then, eigenvalues of the

Q.-M. Cheng \& Y. Peng

Dirichlet eigenvalue problem (5.1) satisfy, for any $k \geq 1$,

$$
\begin{aligned}
\lambda_{k+1}+\frac{2 n-\inf _{\Omega}|X|^{2}}{4} \leq & \left(1+\frac{a(\min \{n, k-1\})}{n}\right) \\
& \times\left(\lambda_{1}+\frac{2 n-\inf _{\Omega}|X|^{2}}{4}\right) k^{2 / n}
\end{aligned}
$$

where the bound of $a(m)$ can be formulated as:

$$
\left\{\begin{array}{l}
a(0) \leq 4 \\
a(1) \leq 2.64 \\
a(m) \leq 2.2-4 \log \left(1+\frac{1}{50}(m-3)\right), \quad \text { for } m \geq 2
\end{array}\right.
$$

In particular, for $n \geq 41$ and $k \geq 41$, we have

$$
\lambda_{k+1}+\frac{2 n-\inf _{\Omega}|X|^{2}}{4} \leq\left(\lambda_{1}+\frac{2 n-\inf _{\Omega}|X|^{2}}{4}\right) k^{2 / n}
$$

Remark 5.1. For the Euclidean space \mathbf{R}^{n}, the differential operator \mathfrak{L} is called Ornstein-Uhlenbeck operator in stochastic analysis. Since the Euclidean space \mathbf{R}^{n} is a complete self-shrinker in \mathbf{R}^{n+1}, our theorems also give estimates for eigenvalues of the Dirichlet eigenvalue problem of the Ornstein-Uhlenbeck operator.

For the Dirichlet eigenvalue problem (5.1), components x_{A} 's of the position vector X are not eigenfunctions corresponding to the eigenvalue 1 because they do not satisfy the boundary condition. In order to prove Theorem 5.2, we need to obtain the following estimates for lower-order eigenvalues.

Proposition 5.1. Let Ω be a bounded domain with a piecewise smooth boundary $\partial \Omega$ in an n-dimensional complete self-shrinker M^{n} in \mathbf{R}^{n+p}. Then, eigenvalues of the Dirichlet eigenvalue problem (5.1) satisfy

$$
\sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) \leq\left(2 n-\inf _{\Omega}|X|^{2}\right)+4 \lambda_{1}
$$

Proof. Let u_{j} be an eigenfunction corresponding to the eigenvalue λ_{j} such that

$$
\begin{cases}\mathfrak{L} u_{j}=-\lambda_{j} u_{j} & \text { in } \Omega \tag{5.2}\\ u_{j}=0, & \text { on } \partial \Omega \\ \int_{\Omega} u_{i} u_{j} e^{-\frac{|X|^{2}}{2}} d v=\delta_{i j} & \text { for any } i, j=1,2, \ldots\end{cases}
$$

We consider an $(n+p) \times(n+p)$-matrix $B=\left(b_{A B}\right)$ defined by

$$
b_{A B}=\int_{\Omega} x_{A} u_{1} u_{B+1} e^{-\frac{|X|^{2}}{2}} d v
$$

From the orthogonalization of Gram and Schmidt, there exist an upper triangle matrix $R=\left(R_{A B}\right)$ and an orthogonal matrix $Q=\left(q_{A B}\right)$ such that $R=Q B$.

Thus,

$$
\begin{align*}
R_{A B} & =\sum_{C=1}^{n+p} q_{A C} b_{C B} \\
& =\int_{\Omega} \sum_{C=1}^{n+p} q_{A C} x_{C} u_{1} u_{B+1}=0 \quad \text { for } 1 \leq B<A \leq n+p \tag{5.3}
\end{align*}
$$

Defining $y_{A}=\sum_{C=1}^{n+p} q_{A C} x_{C}$, we have

$$
\begin{equation*}
\int_{\Omega} y_{A} u_{1} u_{B+1}=\int_{\Omega} \sum_{C=1}^{n+p} q_{A C} x_{C} u_{1} u_{B+1}=0 \quad \text { for } 1 \leq B<A \leq n+p \tag{5.4}
\end{equation*}
$$

Therefore, the functions φ_{A} defined by

$$
\varphi_{A}=\left(y_{A}-a_{A}\right) u_{1}, \quad a_{A}=\int_{\Omega} y_{A} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \quad \text { for } 1 \leq A \leq n+p
$$

satisfy

$$
\int_{\Omega} \varphi_{A} u_{B}=0 \quad \text { for } 1 \leq B \leq A \leq n+p
$$

Therefore, φ_{A} is a trial function. From the Rayleigh-Ritz inequality, we have, for $1 \leq A \leq n+p$,

$$
\begin{equation*}
\lambda_{A+1} \leq \frac{-\int_{\Omega} \varphi_{A} \mathfrak{L} \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v}{\int_{\Omega}\left(\varphi_{A}\right)^{2} e^{-\frac{|X|^{2}}{2}} d v} \tag{5.5}
\end{equation*}
$$

From the definition of φ_{A}, we derive

$$
\begin{aligned}
\mathfrak{L} \varphi_{A} & =\Delta \varphi_{A}-\left\langle X, \nabla \varphi_{A}\right\rangle \\
& =\Delta\left\{\left(y_{A}-a_{A}\right) u_{1}\right\}-\left\langle X, \nabla\left\{\left(y_{A}-a_{A}\right) u_{1}\right\}\right\rangle \\
& =y_{A} \mathfrak{L} u_{1}+u_{1} \mathfrak{L} y_{A}+2 \nabla y_{A} \cdot \nabla u_{1}-a_{A} \mathfrak{L} u_{1} \\
& =-\lambda_{1} y_{A} u_{1}-u_{1} y_{A}+2 \nabla y_{A} \cdot \nabla u_{1}+a_{A} \lambda_{1} u_{1} .
\end{aligned}
$$

Thus, (5.5) can be written as

$$
\begin{equation*}
\left(\lambda_{A+1}-\lambda_{1}\right)\left\|\varphi_{A}\right\|^{2} \leq \int_{\Omega}\left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v . \tag{5.6}
\end{equation*}
$$

From the Cauchy-Schwarz inequality, we obtain

$$
\left(\int_{\Omega}\left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v\right)^{2} \leq\left\|\varphi_{A}\right\|^{2}\left\|y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right\|^{2} .
$$

Multiplying the above inequality by $\left(\lambda_{A+1}-\lambda_{1}\right)$, we infer, from (5.6),

$$
\left(\lambda_{A+1}-\lambda_{1}\right)\left(\int_{\Omega}\left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v\right)^{2}
$$

Q.-M. Cheng \& Y. Peng

$$
\begin{align*}
& \leq\left(\lambda_{A+1}-\lambda_{1}\right)\left\|\varphi_{A}\right\|^{2}\left\|y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right\|^{2} \\
& \leq\left(\int_{\Omega}\left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|x|^{2}}{2}} d v\right)\left\|y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right\|^{2} \tag{5.7}
\end{align*}
$$

Hence, we derive

$$
\begin{equation*}
\left(\lambda_{A+1}-\lambda_{1}\right) \int_{\Omega}\left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v \leq\left\|y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right\|^{2} \tag{5.8}
\end{equation*}
$$

Since

$$
\sum_{A=1}^{n+p} y_{A}^{2}=\sum_{A=1}^{n+p} x_{A}^{2}=|X|^{2}
$$

we infer

$$
\begin{align*}
\sum_{A=1}^{n+p} & \left\|y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right\|^{2} \\
& =\sum_{A=1}^{n+p} \int_{\Omega}\left(y_{A}^{2} u_{1}^{2}-4 y_{A} u_{1} \nabla y_{A} \cdot \nabla u_{1}+4\left(\nabla y_{A} \cdot \nabla u_{1}\right)^{2}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega}\left(|X|^{2} u_{1}^{2}-\nabla|X|^{2} \cdot \nabla u_{1}^{2}+4 \nabla u_{1} \cdot \nabla u_{1}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega}\left(|X|^{2} u_{1}^{2}+\mathfrak{L}|X|^{2} u_{1}^{2}+4 \nabla u_{1} \cdot \nabla u_{1}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega}\left(2 n-|X|^{2}\right) u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v+4 \lambda_{1} \leq\left(2 n-\inf _{\Omega}|X|^{2}\right)+4 \lambda_{1} \tag{5.9}
\end{align*}
$$

On the other hand, from the definition of φ_{A}, we have

$$
\begin{align*}
\int_{\Omega} & \left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega}\left(y_{A}^{2} u_{1}^{2}-a_{A} y_{A} u_{1}^{2}+2 a_{A} u_{1} \nabla y_{A} \cdot \nabla u_{1}-2 y_{A} u_{1} \nabla y_{A} \cdot \nabla u_{1}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega}\left(y_{A}^{2} u_{1}^{2}-a_{A} y_{A} u_{1}^{2}-a_{A} \mathfrak{L} y_{A} u_{1}^{2}+\frac{1}{2} \mathfrak{L} y_{A}^{2} u_{1}^{2}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega}\left(y_{A}^{2} u_{1}^{2}+\frac{1}{2} \mathfrak{L} y_{A}^{2} u_{1}^{2}\right) e^{-\frac{|X|^{2}}{2}} d v \\
& =\int_{\Omega} \nabla y_{A} \cdot \nabla y_{A} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \tag{5.10}
\end{align*}
$$

For any point p, we choose a new coordinate system $\bar{X}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n+p}\right)$ of \mathbf{R}^{n+p} given by $X-X(p)=\bar{X} O$ such that $\left(\frac{\partial}{\partial \bar{x}_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial \bar{x}_{n}}\right)_{p}$ span $T_{p} M^{n}$ and at p,

Eigenvalues of \mathfrak{L} Operator on Self-Shrinkers
$g\left(\frac{\partial}{\partial \bar{x}_{i}}, \frac{\partial}{\partial \bar{x}_{j}}\right)=\delta_{i j}$, where $O=\left(o_{A B}\right) \in O(n+p)$ is an $(n+p) \times(n+p)$ orthogonal matrix:

$$
\begin{aligned}
\nabla y_{A} \cdot \nabla y_{A} & =g\left(\nabla y_{A}, \nabla y_{A}\right)=\sum_{B, C=1}^{n+p} q_{A B} q_{A C} g\left(\nabla x_{B}, \nabla x_{C}\right) \\
& =\sum_{B, C=1}^{n+p} q_{A B} q_{A C} g\left(\sum_{D=1}^{n+p} o_{D B} \nabla \bar{x}_{D}, \sum_{E=1}^{n+p} o_{E C} \nabla \bar{x}_{E}\right) \\
& =\sum_{B, C, D, E=1}^{n+p} q_{A B} o_{D B} q_{A C} o_{E C} g\left(\nabla \bar{x}_{D}, \nabla \bar{x}_{E}\right) \\
& =\sum_{j=1}^{n}\left(\sum_{B=1}^{n+p} q_{A B} o_{j B}\right)^{2} \leq 1 .
\end{aligned}
$$

Since $O Q$ is an orthogonal matrix if Q and O are orthogonal matrices, that is, we have

$$
\begin{equation*}
\nabla y_{A} \cdot \nabla y_{A} \leq 1 \tag{5.11}
\end{equation*}
$$

Thus, we obtain, from (5.10) and (5.11),

$$
\begin{aligned}
& \sum_{A=1}^{n+p}\left(\lambda_{A+1}-\lambda_{1}\right) \int_{\Omega}\left(y_{A} u_{1}-2 \nabla y_{A} \cdot \nabla u_{1}\right) \varphi_{A} e^{-\frac{|X|^{2}}{2}} d v \\
&= \sum_{A=1}^{n+p}\left(\lambda_{A+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{A} \cdot \nabla y_{A} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
&= \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{j} \cdot \nabla y_{j} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
&+\sum_{A=n+1}^{n+p}\left(\lambda_{A+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{A} \cdot \nabla y_{A} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
& \geq \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{j} \cdot \nabla y_{j} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
&+\sum_{A=n+1}^{n+p}\left(\lambda_{n+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{A} \cdot \nabla y_{A} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
&= \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{j} \cdot \nabla y_{j} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
&+\left(\lambda_{n+1}-\lambda_{1}\right) \int_{\Omega}\left(n-\sum_{j=1}^{n} \nabla y_{j} \cdot \nabla y_{j}\right) u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v
\end{aligned}
$$

Q.-M. Cheng \& Y. Peng

$$
\begin{align*}
= & \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) \int_{\Omega} \nabla y_{j} \cdot \nabla y_{j} u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
& +\left(\lambda_{n+1}-\lambda_{1}\right) \int_{\Omega} \sum_{j=1}^{n}\left(1-\nabla y_{j} \cdot \nabla y_{j}\right) u_{1}^{2} e^{-\frac{|X|^{2}}{2}} d v \\
\geq & \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) . \tag{5.12}
\end{align*}
$$

According to (5.8), (5.9) and (5.12), we obtain

$$
\sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right) \leq\left(2 n-\inf _{\Omega}|X|^{2}\right)+4 \lambda_{1}
$$

This completes the proof of Proposition 5.1.
Proof of Theorem 5.2. By making use of Proposition 5.1 and the same proof as in the proof of Theorem 1.2, we can prove Theorem 5.2 if one notices to count the number of eigenvalues from 1.

Acknowledgments

The research was partially supported by JSPS Grant-in-Aid for Scientific Research (B) No. 24340013. We would like to express our gratitude to the referee for valuable suggestions and comments.

References

H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, to appear in Calc. Var. Partial Differential Equations.
[2] Q.-M. Cheng and H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann. 331 (2005) 445-460.
[3] , Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann. 337 (2007) 159-175.
[4] T. H. Colding and W. P. Minicozzi II, Smooth compactness of self-shrinkers, preprint (2009); arXiv:0907.2594.
[5] \qquad , Minimal surfaces and mean curvature flow, preprint (2011); arXiv:1102.1411.
[6] , , Generic mean curvature flow I; generic singularities, Ann. Math. 175 (2012) 755-833.
[7] Q. Ding and Z. Wang, On the self-shrinking systems in arbitrary codimension spaces, preprint (2010); arXiv:1012.0429.
[8] Q. Ding and Y. L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, preprint (2011); arXiv:1101.1411.
[9] , The rigidity theorems of self-shrinkers, preprint (2011); arXiv:1105.4962.
[10] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. Math. 130 (1989) 453-471.
[11] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990) 285-299.

Page Proof

[12] \qquad , Local and global behaviour of hypersurfaces moving by mean curvature, in Differential Geometry: Partial Differential Equations on Manifolds, Proceedings of Symposia in Pure Mathematics, Vol. 54, Part 1 (American Mathematical Society, Providence, RI, 1993), pp. 175-191.
[13] N. Q. Le and N. Sesum, Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, preprint (2010); arXiv:1011.5245.
[14] K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Notices 48 (2005) 2983-3004.
[15] L. Wang, A Bernstein type theorem for self-similar shrinkers, to appear in Geom. Dedicata.

