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Abstract It is our purpose to study complete self-shrinkers in Euclidean space. By intro-
ducing a generalized maximum principle for L-operator, we give estimates on supremum
and infimum of the squared norm of the second fundamental form of self-shrinkers without
assumption on polynomial volume growth, which is assumed in Cao and Li [5]. Thus, we
can obtain the rigidity theorems on complete self-shrinkers without assumption on polyno-
mial volume growth. For complete proper self-shrinkers of dimension 2 and 3, we give a
classification of them under assumption of constant squared norm of the second fundamental
form.

Mathematic Subject Classification (2010) 53C44 · 53C40

1 Introduction

The mean curvature flow is a well known geometric evolution equation. The study of the mean
curvature from the perspective of partial differential equations commenced with Huisken’s
paper [14] on the flow of convex hypersurfaces. Now the study of the mean curvature flow
of submanifolds of higher codimension has started to receive attentions.
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One of the most important problems in the mean curvature flow is to understand the possi-
ble singularities that the flow goes through. Singularities are unavoidable as the flow contracts
any closed embedded submanifold in Euclidean space eventually leading to extinction of the
evolving submanifold. A key starting point for singularity analysis is Huisken’s monotonicity
formula because the monotonicity implies that the flow is asymptotically self-similar near a
given singularity and thus, is modeled by self-shrinking solutions of the flow.

Let X : Mn → R
n+p be an n-dimensional submanifold in the n + p-dimensional Euclid-

ean space R
n+p . If the position vector X evolves in the direction of the mean curvature H ,

then it gives rise to a solution to the mean curvature flow:

F(·, t) : Mn → R
n+p

satisfying F(·, 0) = X (·) and

(∂ F(p, t)

∂t

)N = H(p, t), (p, t) ∈ M × [0, T ), (1.1)

where H(p, t) denotes the mean curvature vector of submanifold Mt = F(Mn, t) at point
F(p, t). The Eq. (1.1) is called the mean curvature flow equation. A submanifold X : Mn →
R

n+p is said to be a self-shrinker in R
n+p if it satisfies

H = −X N , (1.2)

where X N denotes the orthogonal projection of X into the normal bundle of Mn (cf. Ecker-
Huisken [13]).

Abresch and Langer [1] gave a complete classification of all self-shrinkers of dimension
one, that is, self-shrinkers are curve. These curves are now called Abresch-Langer curves.

In the hypersurface case, Huisken [15,16] proved a classification theorem that the only
possible smooth self-shrinkers Mn in R

n+1 with non-negative mean curvature, bounded |A|,
and polynomial volume growth are isometric to � × R

n−1 or Sk(
√

k) × R
n−k(0 ≤ k ≤

n). Here, � is a Abresch-Langer curve and Sk(
√

k) is a k-dimensional sphere. Colding
and Minicozzi [10] showed that Huisken’s classification theorem still holds without the
assumption that |A| is bounded. Furthermore, they showed that the only smooth embedded
entropy stable self-shrinkers with polynomial volume growth in R

n+1 are the hyperplane R
n ,

the sphere Sn(
√

n) and the cylinders Sm(
√

m)×R
n−m, 1 ≤ m ≤ n −1. Kleene-Møller [18]

classified complete embedded self-shrinkers of revolution in R
n+1. Based on an identity of

Colding and Minicozzi (see (9.42) in [10]), Le and Sesum [20] proved a gap theorem on the
squared norm of the second fundamental form for self-shrinkers of codimension one:

Theorem A (Le and Sesum [20]). Let Mn be an n-dimensional complete embedded self-
shrinker without boundary and with polynomial volume growth in R

n+1. If the squared norm
|A|2 of the second fundamental form satisfies |A|2 < 1 , then Mn is a hyperplane.

In the higher codimension case, Smoczyk in [22] proved that let Mn be a complete self-
shrinker with H �= 0 and with parallel principal normal vector ν = H/|H | in the normal
bundle, if Mn has uniformly bounded geometry, then Mn must be � × R

n−1 or M̃r × R
n−r .

Here � is an Abresch-Langer curve and M̃ is a minimal submanifold in sphere. Very recently,
Li and Wei [21] have proved this result in a weaker condition. Furthermore, Cao and Li [5]
extended the classification theorem for self-shrinkers in Le and Sesum [20] to arbitrary
codimension, and proved the following

Theorem B (Cao and Li [5]). Let Mn be an n-dimensional complete self-shrinker without
boundary and with polynomial volume growth in R

n+p (p ≥ 1). If the squared norm |A|2 of
the second fundamental form satisfies |A|2 ≤ 1, then Mn is one of the followings:

123

Author's personal copy



Complete self-shrinkers

(1) A round sphere Sn(
√

n) in R
n+1,

(2) A cylinder Sm(
√

m) × R
n−m, 1 ≤ m ≤ n − 1 in R

n+1,
(3) A hyperplane in R

n+1.

We should remark that, in proofs of the above theorems for complete and non-compact
self-shrinkers, integral formulas are exploited as a main method. In order to guarantee that the
integration by part holds, the condition of polynomial volume growth plays a very important
role. Moreover, Cao and Li [5] have asked whether it is possible to remove the assumption
on polynomial volume growth in their theorem.

In this paper, our purpose is to study complete self-shrinkers without the assumption on
polynomial volume growth. In order to do it, we extend the generalized maximum principle of
Yau to L-operator (see Theorem 3.1). By making use of the generalized maximum principle
for L-operator, we prove the following:

Theorem 1.1 Let X : Mn → R
n+p (p ≥ 1) be an n-dimensional complete self-shrinker

without boundary in R
n+p, then one of the following holds:

(1) sup |A| ≥ 1,
(2) |A| ≡ 0, i.e. Mn is a hyperplane in R

n+1.

Corollary 1.1 Let X : Mn → R
n+p (p ≥ 1) be a complete self-shrinker without boundary,

and satisfy

sup |A|2 < 1.

Then M is a hyperplane in R
n+1.

Remark 1.1 The round sphere Sn(
√

n) and the cylinder Sk(
√

k)× R
n−k, 1 ≤ k ≤ n − 1 are

complete self-shrinkers in R
n+1 with |A| = 1. Thus, our result is sharp.

Theorem 1.2 Let X : Mn → R
n+1 be a complete self-shrinker without boundary. If

inf H2 > 0 and |A|2 is bounded, then inf |A|2 ≤ 1.

Corollary 1.2 Let X : Mn → R
n+1 be a complete self-shrinker without boundary. If

inf H2 > 0 and |A|2 is constant, then |A|2 ≡ 1 and Mn is the round sphere Sn(
√

n) or
the cylinder Sk(

√
k) × R

n−k, 1 ≤ k ≤ n − 1.

Remark 1.2 In [5,10,15,16] and so on, they assume that Mn has polynomial volume growth.
In our results, we do not assume the condition on polynomial volume growth. We should
notice that condition inf H2 > 0 is necessary since Angenent [2] has proved that there exist
embedded self-shrinkers from S1 × Sn−1 into R

n+1 with inf H2 = 0 (cf. [18]).

In [12], Ding and Xin have proved that a two dimensional complete proper self-shrinker
with constant |A|2 in R

3 is a plane, a sphere or a cylinder. Here, |A|2 denotes the squared
norm of the second fundamental form.

We consider complete proper self-shrinkers of 2 and 3 dimensions. First, for dimension 3,
we give a classification for complete proper self-shrinkers in R

5 with constant squared norm
of the second fundamental form and obtain a complete classification

Theorem 1.3 Let X : M3 → R
5 be a 3-dimensional complete proper self-shrinker without

boundary and with H > 0. If the principal normal ν = H
H is parallel in the normal bundle

of M3 and the squared norm of the second fundamental form is constant, then M3 is one of
the following:
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(1) Sk(
√

k) × R
3−k , 1 ≤ k ≤ 3 with |A|2 = 1,

(2) S1(1) × S1(1) × R with |A|2 = 2,
(3) S1(1) × S2(

√
2) with |A|2 = 2,

(4) The three dimensional minimal isoparametric Cartan hypersurface with |A|2 = 3.

Furthermore, for complete proper self-shrinker of dimension 2, we obtain a complete
classification theorem for arbitrary codimensions.

Theorem 1.4 Let X : M2 → R
2+p (p ≥ 1) be a 2-dimensional complete proper self-

shrinker without boundary and with H > 0. If the principal normal ν = H
H is parallel in

the normal bundle of M2 and the squared norm of the second fundamental form is constant,
then M2 is one of the following:

(1) Sk(
√

k) × R
2−k , 1 ≤ k ≤ 2 with |A|2 = 1,

(2) The Boruvka sphere S2(
√

m(m + 1)) in S2m(
√

2) with p = 2m − 1 and |A|2 = 2 −
2

m(m+1)
,

(3) A compact flat minimal surface in S2m+1(
√

2) with p = 2m and |A|2 = 2.

2 Preliminaries

Let X : Mn → R
n+p be an n-dimensional connected submanifold of the (n+p)-dimensional

Euclidean space R
n+p . We choose a local orthonormal frame field {eA}n+p

A=1 in R
n+p with

dual coframe field {ωA}n+p
A=1, such that, restricted to Mn , e1, . . . , en are tangent to Mn . The

following conventions on the ranges of indices are used in this paper:

1 ≤ A, B, C, D ≤ n + p, 1 ≤ i, j, k, l ≤ n, n + 1 ≤ α, β, γ ≤ n + p.

Then we have
d X =

∑

i

ωi ei , dei =
∑

j

ωi j e j +
∑

α

ωiαeα

and
deα =

∑

i

ωαi ei +
∑

β

ωαβeβ .

We restrict these forms to Mn , then

ωα = 0 for n + 1 ≤ α ≤ n + p (2.1)

and the induced Riemannian metric of Mn is written as ds2
M = ∑

i
ω2

i . From (2.1) and

Cartan’s lemma, we get
ωiα =

∑

j

hα
i jω j , hα

i j = hα
j i .

The induced structure equations of Mn are given by

dωi =
∑

j

ωi j ∧ ω j , ωi j = −ω j i ,

dωi j =
∑

k

ωik ∧ ωk j − 1

2

∑

k,l

Ri jklωk ∧ ωl ,
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where
Ri jkl =

∑

α

(
hα

ikhα
jl − hα

il h
α
jk

)
(2.2)

denotes components of the curvature tensor of Mn . The second fundamental form and the
mean curvature vector field of Mn are given by

A =
∑

α,i, j

hα
i jωi ⊗ ω j ⊗ eα

and

H =
∑

α

Hαeα =
∑

α

∑

i

hα
i i eα,

respectively. Let |A|2 = ∑

α,i, j
(hα

i j )
2 be the squared norm of the second fundamental form and

H = |H| denote the mean curvature of Mn . From (2.2), components of the Ricci curvature
of Mn are given by

Rik =
∑

α

Hαhα
ik −

∑

α, j

hα
i j h

α
jk . (2.3)

Let Rαβi j denote components of the normal curvature tensor in the normal bundle. We
have Ricci equations:

Rαβkl =
∑

i

(
hα

ikhβ
il − hα

il h
β
ik

)
. (2.4)

Defining the covariant derivative of hα
i j by

∑

k

hα
i jkωk = dhα

i j +
∑

k

hα
ikωk j +

∑

k

hα
k jωki +

∑

β

hβ
i jωβα, (2.5)

we obtain the Codazzi equations
hα

i jk = hα
ik j . (2.6)

By taking exterior differentiation of (2.5), and defining
∑

l

hα
i jklωl = dhα

i jk +
∑

l

hα
l jkωli +

∑

l

hα
ilkωl j +

∑

l

hα
i jlωlk +

∑

β

hβ
i jkωβα, (2.7)

we have the following Ricci identities:

hα
i jkl − hα

i jlk =
∑

m

hα
mj Rmikl +

∑

m

hα
im Rmjkl +

∑

β

hβ
i j Rβαkl . (2.8)

Let f be a smooth function on Mn , we define the covariant derivatives fi , fi j , and the
Laplacian of f as follows

d f =
∑

i

fiωi ,
∑

j

fi jω j = d fi +
∑

j

f jω j i , 	 f =
∑

i

fi i .

The first and second covariant derivatives of the mean curvature vector field H are defined
by ∑

i

Hα
,i ωi = d Hα +

∑

β

Hβωβα,
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∑

j

Hα
,i jω j = d Hα

,i +
∑

j

Hα
, jω j i +

∑

β

Hβ
,i ωβα.

The following elliptic operator L introduced by Colding and Minicozzi in [10] will play
a very important role in this paper:

L f = 	 f − 〈X,∇ f 〉 (2.9)

where 	 and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respec-
tively and 〈·, ·〉denotes the standard inner product of R

n+p. In [7], we have studied eigenvalues
of the L-operator. The sharp universal estimates for eigenvalues of the L-operator on compact
self-shrinkers are obtained.

3 Proof of main results

In order to prove our results, first of all, we prove the following generalized maximum
principle for L-operator on self-shrinkers:

Theorem 3.1 (Generalized maximum principle for L-operator) Let X : Mn → R
n+p (p ≥

1) be a complete self-shrinker with Ricci curvature bounded from below. Let f be any C2-
function bounded from above on this self-shrinker. Then, there exists a sequence of points
{pk} ⊂ Mn, such that

lim
k→∞ f (X (pk)) = sup f, lim

k→∞ |∇ f |(X (pk)) = 0, lim sup
k→∞

L f (X (pk)) ≤ 0. (3.1)

Proof Since this self-shrinker is a complete Riemannian manifold with Ricci curvature
bounded from below and f is a C2-function bounded from above on it, by the general-
ized maximum principle of Yau in [8], then, there is a sequence of points pk ⊂ Mn , such
that

lim
k→∞ f (X (pk)) = sup f,

lim
k→∞ |∇ f |(X (pk)) = lim

k→∞
2( f (X (pk)) − f (X (p0)) + 1)γ (pk)

k(γ 2(pk) + 2) log(γ 2(pk) + 2)
= 0, (3.2)

and
lim sup

k→∞
	 f (X (pk)) ≤ 0, (3.3)

where γ (p) denotes the length of the geodesic from a fixed point X (p0) to X (p).
Since X is the position vector, then, we have

|X (pk)| ≤ γ (pk) + |X (p0)|
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By Cauchy-Schwarz inequality, we have

|〈X (pk),∇ f (X (pk))〉| ≤ |∇ f (X (pk))| · |X (pk)|
= 2( f (X (pk)) − f (X (p0)) + 1)γ (pk)

k(γ 2(pk) + 2)log(γ 2(pk) + 2)
· |X (pk)|

≤ 2( f (X (pk)) − f (X (p0)) + 1)γ (pk)(γ (pk) + |X (p0)|)
k(γ 2(pk) + 2) log(γ 2(pk) + 2)

≤ 2( f (X (pk)) − f (X (p0)) + 1)

k log(γ 2(pk) + 2)
+ 2( f (X (pk)) − f (X (p0)) + 1)γ (pk)|X (p0)|

k(γ 2(pk) + 2) log(γ 2(pk) + 2)
.

According to (3.2) and the above inequality, we have

lim
k→∞ |〈X (pk),∇ f (X (pk))〉| = 0.

Since L f = 	 f − 〈X,∇ f 〉, the above formula and (3.3) imply

lim sup
k→∞

L f (X (pk)) ≤ 0.

��
Now we prove the Theorem 1.1 as follows:

Proof of Theorem 1.1 Since Mn is a complete self-shrinker, the self-shrinker Eq. (1.2) is
equivalent to

Hα = −〈X, eα〉, n + 1 ≤ α ≤ n + p. (3.4)

Taking covariant derivative of (3.4) with respect to ei , we have

Hα
,i =

∑

k

hα
ik〈X, ek〉, 1 ≤ i ≤ n, n + 1 ≤ α ≤ n + p. (3.5)

Furthermore, by taking covariant derivative of (3.5) with respect to e j , we have

Hα
,i j =

∑

k

hα
ik j 〈X, ek〉 + hα

i j +
∑

β,k

hα
ikhβ

k j 〈X, eβ〉

=
∑

k

hα
ik j 〈X, ek〉 + hα

i j −
∑

β,k

Hβhα
ikhβ

k j , (3.6)

According to (3.6), we obtain

L|H |2 = 2|∇ H |2 + 2|H |2 − 2
∑

α,β,i,k

Hα Hβhα
ikhβ

ik . (3.7)

In fact,

L|H |2 = 	|H |2 − 〈X,∇|H |2〉
= 2|∇ H |2 + 2

∑

α,i

Hα Hα
,i i − 2

∑

α,k

Hα Hα
,k〈X, ek〉

= 2|∇ H |2 − 2
∑

α,k

Hα Hα
,k〈X, ek〉

+ 2
∑

α

Hα

(∑

k

Hα
,k〈X, ek〉 + Hα −

∑

β,i,k

Hβhα
ikhβ

ik

)
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= 2|∇ H |2 + 2|H |2 − 2
∑

α,β,i,k

Hα Hβhα
ikhβ

ik .

By the Cauchy-Schwarz inequality, we have

|
∑

α,β,i,k

Hα Hβhα
ikhβ

ik | ≤ |A|2|H |2.

Hence, from (3.7) and the above inequality, we get

L|H |2 ≥ 2|∇ H |2 + 2(1 − |A|2)|H |2. (3.8)

If sup |A|2 ≥ 1, there is nothing to do. From now, we assume that sup |A|2 < 1. Thus,∑

α,i, j
(hα

i j )
2 < 1. Together with (2.3), it is easily seen that Ricci curvature is bounded from

below. Since |H |2
n ≤ |A|2 < 1 and by applying the generalized maximum principle for

L-operator to the function H2, we have, from (3.8)

0 ≥ lim sup L|H |2 ≥ 2(1 − sup |A|2) sup |H |2.
Hence, from sup |A| < 1, we have sup |H |2 = 0, that is, H ≡ 0. Mn is totally geodesic.

From (1.2), we know that Mn is a smooth minimal cone. Hence, Mn is a hyperplane and
|A| ≡ 0. ��
Proof of Theorem 1.2 Since |A|2 is bounded, we know that H is bounded and the Ricci
curvature is bounded from below by (2.3). Without loss of generality, we can assume that
inf H > 0 according to inf H2 > 0. By a direct computation, we have

LH = (1 − |A|2)H.

Applying the generalized maximum principle for L-operator to −H , we obtain

0 ≤ (1 − inf |A|2) inf H.

Since inf H > 0, we have inf |A|2 ≤ 1. This finishes the proof of the Theorem 1.2. ��
Proof of Corollary 1.2 According to the Theorem 1.2, we have inf |A|2 ≤ 1. Since H �= 0,
we know that Mn is not totally geodesic. According to the Theorem 1.1, we know sup |A|2 ≥
1. Since |A|2 is constant, we obtain |A|2 ≡ 1. Since the codimension of Mn is one, we have

1

2
L|A|2 = |∇ A|2 + |A|2(1 − |A|2). (3.9)

Indeed, since

hn+1
i jkk = hn+1

kki j +
∑

m

hn+1
mi Rmkjk +

∑

m

hn+1
km Rmi jk,

we have

	hn+1
i j =

∑

k

hn+1
kki j +

∑

m,k

hn+1
mi Rmkjk +

∑

m,k

hn+1
km Rmi jk

= H,i j + H
∑

k

hn+1
ki hn+1

k j − |A|2hn+1
i j

=
∑

k

hn+1
ik j 〈X, ek〉 + hn+1

i j − |A|2hn+1
i j .
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Hence, we have

Lhn+1
i j = (1 − |A|2)hn+1

i j . (3.10)

From (3.10), we infer
1

2
L|A|2 = |∇ A|2 + |A|2(1 − |A|2).

Therefore, from (3.9), we obtain |∇ A|2 ≡ 0 since |A|2 ≡ 1. Namely, the second funda-
mental form of Mn is parallel. According to the Theorem of Lawson [19], we know that Mn

is isometric to the round sphere Sn(
√

n) or the cylinder Sk(
√

k) × R
n−k, 1 ≤ k ≤ n − 1.

��
Proof of Theorem 1.3 Since M3 is a complete proper self-shrinker, we know that M3 has
polynomial volume growth from the result of Ding and Xin [11] or Cheng and Zhou [9].
Thus, from the Theorem 1.1 of Li and Wei [21], we know that M3 is isometric to � × R

2 or
M̃r × R

3−r , where � is an Abresch-Langer curve and M̃ is a compact minimal hypersurface
in sphere Sr+1(

√
r).

Since |A|2 is constant, then the Abresch-Langer curve � must be a circle. In this case, M3

is isometric to S1(1) × R
2.

If |A|2 ≤ 1, from the results of Cao and Li [5], we have |A|2 = 1 and M3 is Sk(
√

k)×R
3−k ,

1 ≤ k ≤ 3. Hence, we can only consider the case of |A|2 > 1.
When r = 2, M̃ is a compact minimal surface in sphere S3(

√
2) with the squared norm

of the second fundamental form | Ã|2 = |A|2 −1. Thus, M̃ is the Clifford torus S1(1)× S1(1)

in S3(
√

2).
When r = 3, M̃ is a compact minimal hypersurface in sphere S4(

√
3) with a constant

squared norm of the second fundamental form, that is, | Ã|2 = |A|2 − 1. Thus, M̃ is the
Clifford torus S1(1) × S2(

√
2) in S4(

√
3) with |A|2 = 2 or the three dimensional minimal

isoparametric Cartan hypersurface in S4(
√

3) with |A|2 = 3 according to the solution of
Chern’s conjecture for n = 3 in [6]. This finishes the proof of the Theorem 1.3. ��
Proof of Theorem 1.4 Since M2 is a complete proper self-shrinker, we know that M2 has
polynomial volume growth from the result of Ding and Xin [11] or Cheng and Zhou [9].
Thus, from the theorem 1.1 of Li and Wei [21], we know that M2 is isometric to � × R

1

or M̃2, where � is an Abresch-Langer curve and M̃ is a compact minimal surface in sphere
S p+1(

√
2).

Since |A|2 is constant, then the Abresch-Langer curve � must be a circle. In this case, M2

is isometric to S1(1) × R.
If |A|2 ≤ 1, from the results of Cao and Li [5], we have |A|2 = 1 and M2 is Sk(

√
k)×R

2−k ,
1 ≤ k ≤ 2. Hence, we can only consider the case of |A|2 > 1.

Since M̃ is a compact minimal surface in sphere S p+1(
√

2) with a constant squared norm
of the second fundamental form, that is, | Ã|2 = |A|2 − 1. Thus, M̃ is a compact minimal
surface in sphere S p+1(

√
2) with constant Gauss curvature. According to the classification

of minimal surface in sphere S p+1(
√

2) with constant Gauss curvature due to Bryant [3] (cf.
Calabi [4], Kenmotsu [17] and Wallach [23]), we know that M2 is isometric to a Boruvka
sphere S2(

√
m(m + 1)) in S2m(

√
2) with p = 2m − 1 and |A|2 = 2 − 2

m(m+1)
or a compact

flat minimal surface in S2m+1(
√

2) with p = 2m and |A|2 = 2. This finishes the proof of
the Theorem 1.4. ��
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