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Estimates for lower bounds of eigenvalues of the
poly-Laplacian and quadratic polynomial operator
of the Laplacian

Qing-Ming Cheng He-Jun Sun Guoxin Wei Lingzhong Zeng

ABSTRACT. In this paper, we investigate the Dirchlet eigenvalue problems of poly-
Laplacian with any order and quadratic polynomial operator of the Laplacian. We
give some estimates for lower bounds of the sums of their first k£ eigenvalues which
improve the previous results.

1 Introduction

Let 2 be a bounded domain in an n-dimensional Euclidean space R", where n > 2.
The Dirichlet eigenvalue problem of the poly-Laplacian is described by

{(—A)lu = \u, on 2, (11)

1—
ulan = %bn == gTiqﬂaQ =0,

where A is the Laplacian and v denotes the outward unit normal vector field of 0.
As we known, this problem has a real and discrete spectrum: 0 < A\; < Ay < -+ <
Ax < - -+ — 00, where each eigenvalue repeats with its multiplicity.

When [ = 1, problem (1.1) is called the Dirichlet Laplacian problem or the fixed
membrane problem. The asymptotic behavior of its k-th eigenvalue A\, relates to
geometric properties of 2 when k& — oo. In fact, the following Weyl’s asymptotic

formula holds )
2 2
A ~ szﬁ, as k — oo, (1.2)
(wnV(€2))»
where w,, denotes the volume of the unit ball in R™ and V(2) denotes the volume
of Q. In 1961, Pélya [13] proved that

%k% (1.3)
(wWaV ()5
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holds on tiling domains in R?. His proof also works on tiling domains in R™. More-
over, he conjectured that (1.3) holds for any bounded domain in R". Berezin [3]
and Lieb [10] made some contributions to the partial solution of this conjecture. In
1983, Li and Yau [9] proved the following so-called Li-Yau inequality

k
1 21)?2
D BLE n__ (1) ki (1.4)

In 2000, Laptev and Weidl [7] pointed out that (1.4) can be derived by the Legendre
transform of a result derived by Berezin [3]. Hence, (1.4) is also called the Berezin-
Li-Yau inequality. In 2003, adding an additional positive term to the right-hand
side of (1.4), Melas [I1] improved (1.4) to

: n (@) - 1 V(Q)
;)\j = n+2(an(Q))%kn + 24(n+2) I(Q)’ (1.5)

| =

where 1(Q) = min Jo |z — al*dz is the moment of inertia of Q. Recently, Ilyin [6]
acR™

obtained the following asymptotic lower bound for eigenvalues of problem (1.1):
V()

——= | 1—e,(k) ), .
o (1-2m) (16)

where 0 < e,(k) = O(k™=) is a infinitesimal of k~=. Moreover, he derived some
explicit inequalities for the particular cases of n = 2, 3, 4:

3w

k
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TNt 2(w,V(Q)"

&l =

b n @2 . n_ V(Q)
;Aj > (an(Q))%kn + 4—8/3”@, (1.7)

| =

where £, = 223, = 0.986 and 8, = 0.983.

=1
When [ = 2, problem (1.1) is called the clamped plate problem. Agmon [I] and

Pleijel [12] obtained

27)* 4
Ap ~ Likﬁ, as k — 4o0. (1.8)
(wnV(€))»

In 1985, Levine and Protter [8] proved:

1< n (2m)? 4
D T o

For the special case of n =2 | Ilyin [6] proved

k
1 1672 120957
-y A\ > k? k. 1.10
DI 3V T 3-120061(0) (1.10)

J=1



In 2011, Cheng and Wei [5] strengthened (1.9) to

?vIH

n

k
n (2m) 1
Z ”+4(an(Q))é

2 1 21)2 V(Q) . »
I s @r)° VY2 gy
n+2[12n(n+4) 1152n2(n +4) | (w,V(Q))= 1(2)
2
N 1 B 1 V(Q)
576n(n +4)  27648n%(n+2)(n+4) |\ 1(Q) |
When [ > 3, Levine and Protter [8] proved
k
1 n 272 2
EZAJZ (2r) k. (1.12)

T 2 (w,V(Q) ™

J

Recently, adding [ terms of lower order of k% to its right-hand side of (1.12), Cheng,
Qi and Wei [4] derived

k 21
P o)k
k<o ”+2l (an(Q))W
Z [+ 1 —p (27)2(=P) V(Q) pk:w p)
(n + 2l p=1 (24)p (n+2p—2) V(@))Q(ln”) I(Q) '

(1.13)
When [ =1, (1.13) becomes (1.5).
In this paper, we obtain the following result for problem (1.1).

Theorem 1. Let Q) be a bounded domain in an n-dimensional Euclidean space R™.
Denote by \; the j-th eigenvalue of problem (1.1). Then we have

k (271')2l z
Z n+2l( V(Q))%lC

nl_ (2mP V(Q) aa
+48(%V(Q))”T‘2 I(Q)k (1 8"<k>)

where 0 < e,(k) = O(k™n) is a infinitesimal of k™.

wl»—‘

(1.14)

Remark 1.1. Takingl =1 in (1.14), we obtain (1.6). Moreover, the second term
on the right-hand side of (1.13) is

) (27T)2l72 V(Q) ka—z
24(n +21) (w,V(Q))*5 1(Q)

Hence, the second term on the right-hand side of (1.14) is n( "+2l> times larger than
that of (1.13). Thus, for large k, (1.14) is sharper than (1. 15’)
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Furthermore, we investigate the following Dirichlet eigenvalue problem of quadratic
polynomial operator of the Laplacian:

(1.15)

A%y — aAu = Tu, on €,
0
ulog = $tlaa = 0,

where @ is a nonnegative constant. Levine and Protter [8] proved that the eigenvalues
of this problem satisfy
n 2m*t 4 na (2m)? 2

Ty Zn+4(an(Q))%M + n+2(an(Q))%M' (1.16)

In this paper, we derive the following results for problem (1.15).

Theorem 2. Let € be a bounded domain in R™. Denote by I'; the j-th eigenvalue
of problem (1.15). Then we have

?v|>—‘

k n (27T) % (Q (271‘) Z
g n+4(an(Q) o + (24 [(Q) n+2)( V(Q))%
(1.17)
— (

)
’ {_ i %2)) ’ Z_ﬂ % (1 - 5"(“)’

where 0 < e,(k) = O(k™=) is a infinitesimal of k™.

For the special cases of n = 2, 3,4, we prove the following sharper result:

Theorem 3. Denote by I'; the j-th eigenvalue of problem (1.15) on a bounded
domain 2 in R"™, where n = 2,3,4. Then we have

1g @r)' .+ (n V() na I
kZ n+4(an(Q))%k " (24 "1(9) +n+2)(an(Q))ilC

(1.18)
V()
+ gl Q)
where ap = %, ) = %, asz = 0.991, B3 = 0.986, ay = 0.985 and Sy = 0.983.

Making a modification in the proof of Theorem 3, we can get the following result:

Theorem 4. Denote by I'; the j-th eigenvalue of problem (1.15) on a bounded
domain 2 in R™, where n = 3,4. Then we have

1g @)t s (nV(Y) na I
kz n+4(<,JnV(Q))%IC " (24 1(Q) +n+2)(%v(9))ilC

n(n?—4) V(Q) V( )

* [_ 3840  I(Q) Eﬁn} Q)

Remark 1.2. Taking a =0 in (1.17), (1.18) and (1.19), we can get some results
for the clamped plate problem.

(1.19)




2 Proofs of the main results

In order to prove Theorem 1, we need the following lemma derived by Ilyin [6].

Lemma 1. Let

M, for 0<r<s;

M

W, (r) = M — L(r—s), for s§r§3+f;
0, for T>S+%.
- L

Suppose that fOJrOO W, (r)dr = m* and d > b. Then for any decreasing and abso-
lutely continuous function F satisfying the conditions

“+o0o
0<F <M, / rP’F(r)ydr=m*, 0<—F <L, (2.1)
0
the following inequality holds:
+o0o +o0o
|tz [ (22)
0 0

Now we give the proof of Theorem 1.

Proof of Thereom 1 Let u; be an orthonormal eigenfuction corresponding to
the j-th eigenvalue A; of problem (1.1). Denote by w;({) the Fourier transform of
u;(z), which is defined by

(&) = (2m) "2 / uj(z)e ™ dz. (2.3)
Q

It follows from Plancherel’s Theorem that

e =5, (2.4
Set h(§) = Zle [u;(€)]?. From (2.4) and Bessel’s inequality, one can get
k .
he) = 1aOF < (2#)‘"/9 |42 dx = (2m) "V (). (2.5)
j=1
Moreover, Parsevel’s identity implies that

b@ﬁ@ﬂ&zf}éwﬂwﬁmzk- (26)

Since

Vi, (6) = (2m) /Q iy (2)e ™ de,

bt



we have
k

Z |V ()]* < (27r)"/Q lize™ Pde = (27) " 1(S2). (2.7)

j=1
It follows from (2.5) and (2.7) that

k

VA < 2(D_ [;(9)F)

j=1

SIS

(SIVE©F)F <200V, (28)

Denote by h*(§) = ¥(|¢]) the symmetric decreasing rearrangement (see [2,[14]) of A.
From

- Xij [ tust@pis = [ wieyte = [ )i = n, [ )

we get
+0o0 k
/ " (r)dr = (2.9)
0

nwy,

At the same time, using integration by parts and Parseval’s identity, we have

k n |
/Rn ‘f‘mh(ﬁ)df :Z Z /n (271')7% /Qgpl o 'gpqu'(x)emgdx

Jj=1p1,,p1=

2

dg

- - Lo, - ‘ 2

> Y [ |en: /Mem% i«
j=1p1,-,p=1"YR" Q &Upl . -83:pl
k n — )

= 0'u;(€)

—Z _Z_ /R Dy, - - O, ds (2.10)

Thus, it yields

S = [ lePhee (.11)

Making use of (2.11) and the properties of symmetric decreasing rearrangement, we
obtain

k

+oo
s — 2lh d 2lh* de = n+2l—1 dr. )
> lePae)as > [P =nw, [ tuan (2a2)



Noticing (2.5), (2.8) and (2.9), we can apply Lemma 1 to ¢ with b =n — 1 and
d = n+ 2l — 1. Therefore, using (2.12), we have

k +00 +o00
Z Aj ann/ r 2Ly o) dr > nwn/ 2N () dr (2.13)
j=1 0 0

with M = (27)""V(QQ), m, = % and L = 2(2m)"/V(Q)I(Q). Set t = %=
Combining (2.9) and

400 +o0o Mn+1
/ "L (r)dr = / "L (r)dr = ————— [(t + 1)+t — t"“} ,
0 0 n Lr

(n+1)
it yields
(t+ 1) — ¢t =k, (2.14)
where N
ke = k(ZnL2+1 :

Set 7 =t — 5. Then (2.14) becomes

1 1
(+ )" = (= 51 = k. (215)

The asymptotic expansion for the unique positive root of (2.15) is

(n—1)(n—3)2n+1)
5760

n—1
24

n(ke) = ¢ — ¢+ S (2.16)

where ( = ( n’i"l)%. Then we can deduce

n+20+1
()™ s
_(n+2+1 oo L n+20+1\ n—1/n+20+1)/(2 (-2
1 23 3 48 2 1

2i n+20+1\ 1n—1/n+20+1) (4 +1(n—1)2 n+20+1\/3
25 5 23 24 4 1 2 242 3 1

+1(n— 1)(n—3)2n+1) <n+2l+1) <2>]C"+2l4+-~

2 5760 2 1
—(n 42+ 1) {anl " [(n + 2l)<n+2172 n (n+20)C(n, Z)Cn+2l74 4. _}’

12 5760
(2.17)

where (‘i) = t!(qq—it). and

C(n,l) =(n+2l—1) {(n +20—2)(6l —Tn+ 1)+ 5(n — 1)2}
+(n—1)(n—-3)(2n+1).
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Using (2.17), we get

+oo
nWy / PN () dr
0

nuw, M7 21 n+20+1 2041
" (n+20)(n+ 20+ 1)L {(t(’f*) +1) — t(k.) o
_ nw MRk a [(n +21) (e '
C(n+20) L2 M+ 1 12 ‘n+l
(n+20)C(n, 1), k, \n2=s
o0 i) T

Substituting k. = k:g:]r\}lﬂ, M = 27)"V(Q2) and L = 2(27)""/V(2)I(Q2) into
(2.18), we have

+oo
nWy / P 2N () dr
0

201—2
_on ey onl A2 MEE
oy M TR TR
nC(n,l) L VAR 216
e W T T E + Ok (2.19)
_n (2m)* ez L (2m)*™2  V(Q) a2
n 2w,V ()% B wv@) = 19
nC(TL,l) (27]')%74 V<Q) 2]{:14—217_4 +O(kl+¥)
92160  (w,V ()" \ 1() '

Inserting (2.19) into (2.13), we know that (1.14) is true. This completes the proof
of Theorem 1.

U
Proof of Thereom 2 It follows from (2.10) that
k k
Z ;= Z/ uj(x) (AZUj(x) — aAuj(x)) dz
j=1 j=17¢
= | lEl'n(&)de +a | [€*h(€)dE
R" R" (2.20)

> [ JEI*h(§)dE +a - [€1°h* (€)dE

R

=nwy, ( /+OO " (r)dr 4+ a /+OO r"“@b(’r)d’r) .
0 0

Then, applying Lemma 1 to ¢ and using (2.20), we obtain

k +00 ~+o00
Z L >nwy, (/ " (r)dr + a/ r”*l\lfs(r)dr) . (2.21)
j=1 0 0
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Observe that C'(n,l) = —24n* + 96 when | = 2 and C(n,l) = —4(3n + 2)(n — 1)
when [ = 1. Therefore, from (2.19), we have

+o0o +oo
nwy, (/ "W (r)dr + a/ r"+1\IfS(r)dr)
0 0

n 2m)* 1 n V() na (27) Lz
n+d (an(Q))% i (24 TR 2) V() kT (2.22)
n(n’-4)V(EQ) na]V(Q) s
+{_ 3840 1«»*“&J7@§k+0% "),

Then it is easy to find that (1.17) holds. This completes the proof of Theorem 2. [J

Proof of Thereom 3 When n = 2, making use of (1.7) and (1.10), we have
k

EEZIy = | leln©ds+a | Jeln(e)ds

>2ws /+OO oW (r)dr + 2aws, /+OO 30 (r)dr (2.23)
1 (2m) 3 Qi a (27?)2 (Q)
serart (i t ww) e T

12095 119
where oy = 5050 and By = -

When n = 3, it follows from (2.21) that

k +o0 +oo
Z I'; 23w3/ oW, (r)dr + 3aw3/ r4 W (r)dr.
j=1 0 0

Now we make an estimate for the lower bound of f0+°° rSW,(r)dr. Since

/0+°° U (r)dr = 5](;4; {(t(k:*) + 1)8 _ t(k:*)S] ’

we need to estimate (¢(k.)-+ 1)8 —t(k,)®. The equation (2.14) becomes (t+1)*—t* =
k. when n = 3. Its positive root t(k,) is

(2.24)

1(k) = 5 (olh) — ofk)) .

1
where p(k.) = (k. + /k2+ 5)° and o(k.) = (= ke + /K2 + &)
1 \/ 27 \

* * + 27) - Set ’19(]{:*) =
+(p(ks) — o(k.)). Then we have

=

@@g+n8—ahf:w@@7+MW@P+QMhﬁ+éwh)
1

:E[@@g—gw»f+7@wn—@wnf (2.25)

F7(p(h) = o))"+ (plk) = o(8.)

9



Observe that

(p(k.) = o(k.))"
=p(k.) (p(k)® + To(k)®) + 21p(k.)*0(k.)? (p(k)? = o(k.)?)
— 35p(k.) 0(k.)’ (p(ks) — o(ks)) — o(k.) (Tp(k)® + o(k.)°)

(kB2 )P (16K — 12k JR2 = — 1) 4 2 220
’ Y * Voot 3
1.1 1
Y (R 2 _ 2 2 -
( k*+\/k*+27)3(16/<;*+12k*,//<;*+27 1),

(p(k*) - Q(k*))S
=p(k.)” = 5p(k.)o(k.) (p(k.)® — 0(k.)?) +10p(k.)?0(ki)? (p(ke) — 0(ky)) — o(k.)’

1.3 1.5 10 10 1.2
— 2 2 4 _ 2 S
=(ke (B2 4 52)° = (= ket \JR2 4 52) = ke 5 (B 4[R2 4 52)°

and

—7[p(k.)? — o(k.)? —3,o(k) (k)(p(k‘*) o(k))] + (p(ke) —o(k)) (9 99)

1 1,1
— _ 2 2
=14k, — 6(k, + 1/ k2 + 27) +6(— ke /R4 52)°

Substituting (2.27-2.29) into (2.25), we obtain

(k) +1)° = t(k.)®

i 300 = Gl 50 = (s i )
[ i - h s e Sl D] 40
T P L S s By

Now we make some estimates for some terms in the right hand side of (2.30). The
first term can be estimated as follows:

1.1 3 1,_25 1 25 1
b+ K24 =2) 7 (K2 — Sy /K2 + o5) >50kF — kS 2.31
(he b g J 2 57) " (il = Ghey [+ 57) 25 72 231
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Here we use the inequality /k2 + 2—17 < k,+ ﬁ since k, is large. The second term

1S )
723 -3
—_ k. 3. 2.32
16~54-18k ( 3)

l 2 i%_ _ 2 i% 2 § 2 i
o (Rt k*+27) ( k;*+\/k:*+27) (k*+4/<;* k*+27) 25

The fourth term is

7 / 1.1 / 117 7-925 1 7.95 1
— | (ks k24 —)3 —(—k, k24+—)3| > ki — k. 2.
144 [( + *+27) ( + *+27) } - 144 16 - 54

(2.34)
Therefore, using (2.31-2.34) in (2.30), we have
8 g 25 1 T7.25 5 7 5.2 1 25 _1
o) 1) —t(ke)” >—k ekl —— ki — =k
(t(k) +1) Hka)® 2 ki + —okd — ok + =k o6k
_ik/f% (2_35)
16-54-18""
25 1 7-25 s T
_4k + 3 k 24k

Here we used the fact that k&, > 1. In fact, noticing k, > (”’LB#(”LH)%, it is not

difficult to observe that k, = 4kL3(w3) *M~* > 7 := % ~ 210.25 when n = 3.

Hence, when o > 2—747'*%, the following inequality

5 7

ak? > k*a
24
holds for k. € [1,+00). Since 1 — g 23 <1-— i L2375 A 0.9911, we can conclude
that )
23 7 7-23 5
(t(k.) +1)° = t(k.)® sz + 123 asks, (2.36)

where a3 = 0.991. Therefore, using (2.36), we derive

oo 3wz M8
6 _0%3 8 8
3w3/0 roW(r)dr = 67 (t(ke) +1) —t(ky)

3.23wsM8 1 25wiM® s
> = 0 g3 T T ggk3 2.37
=" 22417 sk (2:37)
4 2
_ 3 (2n) NI (2m) QV(Q)k%.
T (wsV(Q2))3 8§ " (wsV ()5 ()
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At the same time, it follows from (1.7) that

oo 3 (2m)?* s 1 V()
3w3/0 r*Wy(r)dr ngks + Eﬁ?, Q) k, (2.38)

where 3 = 0.986. Substituting (2.37) and (2.38) into (2.24), we obtain

er Z%ﬂk% + (1%@ + 3-“) (<L)2k§

pu (wsV ()2 8 I(Q) 5 ) (wsV(Q))5 (2.39)
a  V(Q)
— k.
METNTO)
When n = 4, it follows from (2.21) that
k +00 +oo
Z I'; 24w4/ W (r)dr + 4auJ4/ oW (r)dr. (2.40)
j=1 0 0

Now we make an estimate for the lower bound of f0+°° r"Wy(r)dr. Since

/0+°° ﬂ\I!s('r)d'r = 7];428 [(t(k:*) + 1)9 _ t(k*)g} ’

we need to estimate (¢(k.)+ 1)9 —t(k,)?. The equation (2.14) becomes (t+1)5—t°> =
k. when n = 4. Its positive root t(k,) is

where 0(k,) = 7&01%% — 1. Then we have

(k) +1)° = t(k.)°

63 9 1
=90(k,)® + 210(k,)° + —0(k.)* + —0(k.)* + —
9 , 6 18 3 7 .
25/{:*+25/€ v/ 20k, + 25k +50\/ 0k, +5 0
12 1
>0 12V0yp 18,
25 25 25

Here we used the fact that k, > 1. In fact, noticing k, > M(L)%, it is not

w2 n+2

~ 2275.56 when n = 4.

difficult to observe that k, = 5kL*(w,) "M > o := %
1

Hence, when o > 5—20_2, the following inequality

Oék?*% > @k*’
25

12



holds for k, € [0, 4+00). Since 1 — %a <1-— %a*% ~ 0.9859, we can conclude
that

0 2 12V5 3 2.42
* 1 - * e *27 :
(t(k) +1)" = t(k.)° 25!{:* ook (2.42)
where ay = 0.985. Therefore, using (2.42), we deduce
+0o0 9
7 _waM 9 9
4w4/0 r'U(r)dr = 1SI° (t(ke) + 1) — t(ky)
w4M9 2 2\/5W4M9 3
ki + —————auk? 2.43
SE I 243)
1 (2 1 27)? Q
e 1 en V@),

2w,V (Q) 6 (wyV ()2 1(Q)

Meanwhile, from (1.7), we have

+eo 2 (@22 s 1 _V(Q)
4w W (r)dr >———F k2 + — k 2.44
4/0 (r)dr =3 (wV(Q))? ERNT0) (2.44)
where £y = 0.983. Substituting (2.43) and (2.44) into (2.40), we obtain
k 4 2
S, >1 (27T)Q k2 + <1a4—v(g) - 2—a) _@n k2
= 2&)4‘/( ) 6 [( ) 3 (w4V(Q))2 (245)
a V()
bk 1(Q) b

Therefore, synthesizing (2.23), (2.39) and (2.45), we conclude that (1.18) is true.
This concludes the proof of Theorem 3. O

Proof of Thereom 4 When n = 3, using (2.35), we derive

e 3.25ws M8 7 3waMB 5 waMB
6 >73 ;{3 3 ;{3 _ 3
3W3/0 oW (r)dr > S2a 7 Sk L o k.
4 2
B G0 M S N ) 2V(Q)k§__( (Q)) .
T (wsV ()3 8 (w3 V()5 1() 256 \ 1(Q)
(2.46)
Substituting (2.38) and (2.46) into (2.24), we have
k 4 ,
Sory2d Gy (JHE) S _Bo
=1 T (wsV ()3 Q) 5 ) (wsV(Q)F (2.47)

L V() a \V(O),
+< 256 1(12) _ﬁ)

13



When n = 4, it follows from (2.41) that

too M? 2B M2 3wy M?
4 W, (r)dr >k il ¥ S sl
i /0 P r)dr 2 2rre ks T 2515
LB L GeR V), LV,
2wV (Q) 6 (w V' (Q))z 1(Q) SO\ I(Q) )
(2.48)
Substituting (2.44) and (2.48) into (2.40), we obtain
k 4 2
= 2wV () 6 1(Q) 3 ) (wV(Q))2 (2.49)

)
Therefore, combining (2.47) and (2.49), we conclude that (1.19) is true. This com-
pletes the proof of Theorem 4. O
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