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1. Introduction
A membrane has its transverse vibration governed by equation
Au=—\u, in$2
with the boundary condition
u=0, onoads2,
where A is the Laplacian in R" and £ is a bounded domain in R". It is classical that there is a

countable sequence of eigenvalues

* The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (B): No. 24340013. The second author
was supported by grant No. 11001087 of NSFC and the project of Pear River New Star of Guangzhou (Grant No. 2012]J2200028).
* Corresponding author.
E-mail addresses: cheng@fukuoka-u.ac.jp (Q.-M. Cheng), weiguoxin@tsinghua.org.cn (G. Wei).

0022-0396/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jde.2013.04.004



Q.-M. Cheng, G. Wei /]. Differential Equations 255 (2013) 220-233 221

D<A <Ay <A3<-- > 00,
and a sequence of corresponding eigenfunctions uq, uy, ..., ug, ... such that
AUy = — AUy, in$2.

The eigenfunctions form an orthonormal basis of L%(£2).

On the other hand, the vibration of a stiff plate differs from that of a membrane not only in the
equation which governs its motion but also in the way the plate is fastened to its boundary. A plate
spanning a domain £ in R" has its transverse vibrations governed by

Au= Tu, in$2,

ou (1.1)
u=—=0, onoas2,
av

where v denotes the outward unit normal to the boundary 9£2. Namely, not only is the rim of the
plate firmly fastened to the boundary, but the plate is clamped so that lateral motion can occur at
the edge. One calls it a clamped plate problem. It is known that this problem has a real and discrete
spectrum

O<nn<h< - <Ip<--— Foo,
where each [ has finite multiplicity which is repeated according to its multiplicity.

For the eigenvalues of the clamped plate problem (1.1), Agmon [1] and Pleijel [13] gave the fol-
lowing asymptotic formula,

1674 4
ﬂ(N—4I(”, k — oo.
(Bpvol(£2))n
This implies that
1< n 1674 4
=Y I~ ki, k— oo, (1.2)
ki © n+4 B, vol(2))n

where B, denotes the volume of the unit ball in R". Furthermore, Levine and Protter [9] proved that
the eigenvalues of the clamped plate problem (1.1) satisfy

n 1674 4
— Z Iy > ) y kn.
1 n+4 (Byvol(2))n

The formula (1.2) shows that the coefficient of ki is the best possible constant. Thus, it will be
interesting and very important to find the second term on k of the asymptotic expansion formula
of I. The authors [4] have made effort for this problem. We have improved the result due to Levine
and Protter [9] by adding to its right hand side two terms of lower order in k.

On the other hand, if one can obtain an upper bound with optimal order of k for eigenvalue I,
then one can know the exact second term on k. From our knowledge, there is no any result on
upper bounds for eigenvalue I} with optimal order of k. In [6], Cheng and Yang have established a
recursion formula in order to obtain upper bounds for eigenvalues of the Dirichlet eigenvalue problem
of the Laplacian. Hence, if one can get a sharper universal inequality for eigenvalues of the clamped
plate problem, we can also derive an upper bound for eigenvalue I} by making use of the recursion
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formula due to Cheng and Yang [6]. On the investigation of universal inequalities for eigenvalues of
the clamped plate problem, Payne, Pélya and Weinberger [12] proved

k
8(n+2)
N =< = =) I
i=1

Chen and Qian [3] and Hook [7], independently, extended the above inequality to

1
22 ak k

k
n ot
8(n+2) ZrkH—F, ;

i=1

Recently, answering a question of Ashbaugh [2], Cheng and Yang [5] have proved the following re-
markable estimate:

k

7 k
8(n+2
S (i — F,)\((" )) S (BT — 1)
i=1

i=1

N—=

Furthermore, Wang and Xia [14] have proved

k

k
8(n+2)
> Tig1 — > < —F > T — N
i=1 i=1

The first author has conjectured the following:

Conjecture. Eigenvalue I';’s of the clamped plate problem (1.1) satisfy

k k
8
D Tyt = 1P < = ) (Neyn = T (13)

j=1 j=1

If one can solve the above conjecture, then from the recursion formula of Cheng and Yang [6], we
can derive an upper bound for the eigenvalue I} with the optimal order of k. But it seems to be hard
to solve this conjecture.

In this paper, we will try to use a fact that eigenfunctions of the clamped plate problem (1.1) form
an orthonormal basis of the Sobolev space Wg’z([)) to get an upper bound for eigenvalues of the
clamped plate problem (1.1). A similar fact for the Dirichlet eigenvalue problem of the Laplacian is
also used by Li and Yau [10] and Kréger [8]. Furthermore, we will give an improvement of the lower
bound for eigenvalues in [4].

Let £2 be a bounded domain with a smooth boundary 952 in the n-dimensional Euclidean space R".
Let d(x) = dist(x, 0£2) denote the distance function from the point x to the boundary 02 of £2. We
define

.Qr:{xe.Q)d(x)<%}.

Theorem 1.1. Let §2 be a bounded domain with a smooth boundary 32 in R". Then there exists a constant
ro > 0 such that eigenvalues of the clamped plate problem (1.1) satisfy
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k 4(n+4)(n%+2n+6) vol(£2ry)
1 Z 1 + n+2 vol(.QO) n 164 4
k

ki (1.4)
1(£2;, n_ 4 ’
(1— B2y 52 4 (g, vol(2)))

for k = vol(£2)rg.

Remark 1.1. Since vol(£2;,) — 0 when rop — oo, we know that the upper bound in Theorem 1.1 is
sharp in the sense of the asymptotic formula due to Agmon and Pleijel.

Corollary 1.1. Let $2 be a bounded domain with a smooth boundary 952 in R". If there exists a constant cg
such that

vol(£2,) < covol(2) T

=S| =

forr > vol(.Q)_Tl, then there exists a constant ry such that eigenvalues of the clamped plate problem (1.1)
satisfy

1 1674
- Z rj < ik id - (k‘ﬁl + coc(n)k%), (1.5)
‘o M4 (Buvol(2)n

for k =vol(£2)rj > ¢, where c(n) is a constant depending only on n.

Theorem 1.2. Let §2 be a bounded domain with a piecewise smooth boundary 052 in R". Eigenvalue I'j's of
the clamped plate problem (1.1) satisfy

1 2": n 1674 o
ki “nta (B vol(2))1

n+2 vol(2) n 4772
12n(n+4) 1(£2) n+2(BnVO1(_Q))%

(n + 2)2 <vol(.(2)>2
1152n(n + 42\ 1(R2)

kn

(1.6)

where 1(2) is the moment of inertia of £2.
2. Upper bounds for eigenvalues
In this section, we will study the upper bounds for eigenvalues of the clamped plate problem (1.1).

Proof of Theorem 1.1. Since d(x) is the distance function from the point x to the boundary 952 of £2,
we define a function f; for any fixed r by

1, xe 2, dx) >
fr®) =1 r2d?x), xe 2, dx) <
0, the other.

ﬁl»—k ﬁl.—t

(2.1)
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Let u; be an orthonormal eigenfunction corresponding to the eigenvalue I, that is, u; satisfies

Azuj:Fjuj, in £2,
ouj
uj=—=0, onods2,
av
/ui(x)uj(x)dx:aij, foranyi, j.
Q

Thus, {u;} forms an orthonormal basis of the Sobolev space Wg’z(a?). For an arbitrary fixed point

zeR" and r > 0, a function

&rz(X) = el#x fr(x),

with i = +4/—1, belongs to the Sobolev space WS’Z(Q). Hence, we have

where

Defining a function

we have ¢ = 5]

g0 =) arj@u;(x),

j=1

ar j(2) = | &r,z(X)u;j(x)dx.

/

k
PeX) = gr2(%) — > ar j(@uj (%),

j=1

9% _ 0 on 92 and

/(pk(X)Uj(X)dX=O, forj=1,2,...,k.

2

Therefore, ¢y is a trial function. From the Rayleigh-Ritz formula, we have

f|A¢I<(X)|2dX-

Tt f ok 0] dx <
2 2

From the definition of ¢, and (2.1), we have

/\wk(x>\2dx=
2

2

/

£

k
gz = _ar j(2)uj(Xx)
j=1

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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2 ¢ 2
= /\fr(x)} dx =Y |ar j(@)]
2 j=1

k
> vol(2) —vol(2p) — Y Jar.j2)[°. (2.7)
=1

From (2.5) and Stokes’ formula, we infer

k 2
f |Agr(0)|* dx = f Agr (%) — Y arj@)Aujx)| dx
2 Q j=1
k 2
:/<|Agr,z(X)}2+ Zar,j(Z)A”j(X) )dX
2 i=1

k k
- f (Agr,z(m > arj@Auj(0) + Agr () Y _arj(2)Au j(x)) dx

Q j=1 j=1

k
:f‘Agr’z(x)‘zdx—ij|am~(z)}2
2 j=1

k
_ f\—|z|2fr(x) +2i(z. V@) + Afr 0| dx =Y Iy @)

2 Jj=1

k
N / {(~122 fr0) + Afr0) +4(z, V0 Jdx = > Tl ;@ F (28)
2 =1
since

Agrz(x) =" (= |z fr(x) + 2i(z, V fr(0) + A fr(x)).

According to the definition of the function f;, we have

0, Xe, dx) > 1,
Afr®) =1 1r2Ad?(x), xe€2,dx) <1,
0, the other.

Hence, we obtain, from the Schwarz inequality and |Vd(x)|?> =1,

f {(-122 ) + Af () +4{z. V (0)

2

< |z|* vol(2) + 24r?|z)? vol(£2,) + /(Afr(x))zdx. (2.9)
2

For a point x € 2, there is a point y = y(x) € 0£2 such that d(x) = dist(x, y), then we know that
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n—1
2
Ad2x)=2n—) ————, 2.10
() > 1o T (2.10)
j=1
where k1,k>,...,kp_1 are the principal curvatures of 952 at the point y. Since the boundary 92 of

the domain §2 is smooth and a compact hypersurface, one has that all of k; are bounded. Without
loss of generality, we can assume that |k;(y)| <« for any y € 9§2, 1< j <n—1, then it follows that
if r > rg > nk, then we see from (2.10)

0 < Ad*(x) <2n, xe 2

and

/ (Afr(0))? dx < 4n’r* vol(£2,).
2

Hence, if r > rg, then we obtain

k
/ympk(x)\z dx < |2I* vol(£2) + 242|212 vol(2r) + 4n?rtvol(2y) — Y Ijlar ;@[

Q j=1
(2.11)
From (2.6), (2.7) and (2.11), we have
Tie41(vol(£2) — vol(£2))
< |z vol(£2) + 24r?|z)? vol(£2;) + 4n’r* vol(£2,) + Xk:(rkﬂ — T \ar,j(z){z, (212)
j=1

here r > rg.
Let B, (r) denote the ball with a radius r and the origin 0 in R". By integrating the above inequality
on the variable z on the ball B,(r), we derive

1" Bn(vol(£2) — vol(§2;)) I+1

n n
<, <n o vol($2) + 24n T vol(£2;) + 4n’ VOKQr))

k
2
- Z(n<+] —Tyj) f lar,j(2)|"dz, 1 >r10. (2.13)
=1 Bn(r)

From Parseval’s identity for Fourier transform, we have

/ |ar,j(z)|2dz</|ar,j(z)\2dz
Rn

Bn(r)

2
:/’/e“z”‘)fr(x)uj(x)dx dz

R® R"
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- 2 2
=(27r)”/|fruj(z)| d2=(2ﬂ)”f\fr(><)uj(><)} dx
R" R"

< 2m)". (2.14)

We obtain

"By (vol(£2) — vol(§2;)) It

n n
< rn+4Bn (n — vol(2) + 24n 2 vol($2;) + 4n? Vol(.Qr)>
+(2n)”2(1“k+1 — Iy, r>ro. (2.15)
j=1

Taking r = 2”(3,1(\/01(91;’:/01(9,0)))%' noting k > vol(§2)rg and 2”1 > 1, then we can obtain r > rg and

’%F _a Vol + 241 vol(82,) + 4n* vol(£2,) 1 At
] n
1+k (vol(£2) — vol(§2;,)) " BZ‘
n n 2 vol(QrO)
o+ (2415 + 4n°)
g L e LA+t (2.16)
(1 - VO](_QO) ) (BTI VOI(Q))”
This completes the proof of Theorem 1.1. O
Proof of Corollary 1.1. From (2.16) we have
k+1 vol(£2r)
i 1+4GS +mm+HRE n 1674 (14 (2.17)
Iy < 1($2r,)  n+4 ‘ )
Tk (1 Soronly s n+4 (B, vol(2))i
: =2 1+k % h
Since r ”(Bn(vol(sz)—vol(szro))) , we have

1

vol(£2;) B} vol(£2y,)
<o 1—
vol(£2) 2 vol(£2)

1
) (1+k)~7.

]

Taking ¢ = 4(n+2 +n)(n+ 4) cg, we have

vol(£2r,) 1
k+1 e 1+c(1- vol(.QO) ) (1+k)y~™n g 16774 o -
1+kZ = vol($2ry) nid n+4 T (1+ <)n (2.18)
(1- ~Vol(R2) ) (Bn VOl(.Q))n

Since there exists a constant « such that

VOl(.QrO) Co
VOI(Q) (] + k)%

<a<l1
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. 1 .
with rg = (%)ﬁ, we define a function

1 _1
14+c1(1=v)a(1+k)"n
n+4

1—-v)y

G(v) =

. 1
with G(0) =14 c1(1+ k) n. Since

4 3 1 -1
1+ 5 +c(1+ ) —v)a(1+k)"n

2n+4 ’

(1—v)™n

G'(v)=

by Lagrange mean value theorem, there exists 0 < 6 < 1 such that
G(v) =G(0) + G (Ov)v.
Hence, there exists a constant c(n) only depending on n such that

G(v) =G(0)+G'(Ov)v

4 3v(1 — gv)a -1
1+4 41+ A —0v)n(1+k)n
v

1
=1+c(1+k~ 1+

(1—9\/)2”:4
4 3
1 I+ 4a+3) _1
<14+c(1+k)n+ n s —Co(1+k)™n
(1—-0a) n

<1+ coc(m)(1+k) 7,

that is,
ol(2r) 1 1
T+ 11— o) (1 4k

vol(§2r,) . n+4
(1— vol(.Q% )

<1+ cocm)(1+k)~m,

Therefore, we obtain
1 n 1674

—_— I <
14k 4 Y
j=1

(U +I01 + cocm)(1 +k)n).
n VO n

This finishes the proof of Corollary 1.1. O

3. Lower bounds for eigenvalues

In this section, we will give a proof of Theorem 1.2. The following Lemma 3.1 will play an impor-
tant role in the proof of Theorem 1.2.

Lemma 3.1. For constants b > 2, n > 0, if ¥ : [0, +00) — [0, +0o0) is a decreasing function such that

—n<Y'(s) <0
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and

]

A= /sb—lw(s) ds > 0,

0

then, we have

.¢]

/s“%(s)ds > blj(bm#w(or%‘ +
0

YN
3b(b+4)772( P vO

(b +2)?
T2+ 4 Y

1
>
b+4

q(b)

F(bm”%w(m“’b—”

04+

bt 4 bt2 -2
(bA) 5 ¢ (0)"P + (bA) 5 ¢ (0) P

3b(b + 4)n?

(b +2)2

4
72bb +a2gi VO (1)

where

(13b>+56b%—52b—32) (b+2)> B
(12)%D% (b+4)2 , forb>4o0rb=2,

(4b>+11b2—16b+4) (b+2)*
3x(12)3b3(b+4)3ns s fOT 2<b<4.

qb) =

Proof. By defining

(P
_ n
O=—rT0

we have ¢(0) =1 and —1 < ¢’(t) < 0. Hence, without loss of generality, we can assume
Y(0)=1 and n=1.

Define

e ¢]

D ::/sb”x/r(s)ds. (3.2)
0
If D = o0, the conclusion is correct. Hence, one can assume that

o0

D= fsb+31p(s) ds < oo.
0
Thus, lims_, o0 $?134(s) = 0 holds. Putting h(s) = —y’(s) for s > 0, we have

o0

0<h(s) <1, /h(s)ds:w(O):l.
0
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By making use of integration by parts, one has

fsbh(s) ds:b/sb_lw(s)ds:bA, (3.3)
0 0
/ sPT4h(s)ds < (b +4)D (3.4)
0

since ¥ (s) > 0. By the same assertion as in [11], one can infer that there exists an € > 0 such that

e+1 00
/ sPds = / sPh(s)ds = bA, (3.5)
€ 0

€+1 oo}

/ sPHds < f sP*4h(s)ds < (b + 4)D. (3.6)

€ 0

Since function f(s) defined by
f(s) =bsPt* — (b + 4)t4s? + 47014 — 47P+2(s — )2, forany T > 0, (3.7)

only has two critical points, one is s = t, the other one is in the interval (0, ), we have f(s) > 0. By
integrating the function f(s) from € to € + 1, we deduce, from (3.5) and (3.6),

1
bb+4)D — (b +4)T*bA+ 4" > Zr"*2 forany 7 > 0. (3.8)

Hence, we have, for any 7 > 0,

e¢]

/sb+31p(s) ds=D >

0

1
b4+ 4)T*bA — 474 4 — b2 1 3.9
b(b+4){( AT TotgT (3.9)

For b >4 or b =2, we have, from Taylor expansion formula,

4 2(4—b) 24 2(4 —b)(4—2b) 4
1
1+1t)p > bt+ = 353 t
(4—b)2 —b)(4—3b) ,
t
+ 35 :
b+2 b+2) (b+2), b+2)2-Db);
1+t >1 t t t.
(1+6) t Tt 357

Since it is not hard to prove

(=l
+

1 00
L / / sPh(s)ds = bA, (3.10)
0 0
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by making use of the inequality (s? — 1)(h(s) — x(s)) >0 for s € [0, 00), where yx is the characteristic
function of the interval [0, 1], we have

(b+1)bA > 1.

Taking
1
1 b+2 2\ 1D
— A 14+ —2 _ (bAYT
v=( )b(+12(b+4)( ”)’
we have
1
(b + 4)T%hA — 47P+4 4 §rb+2
b+ b+2 b
— (bAY'"*b (b — bA)T bA)T
bA) b( 3(b+4)( )T )( 20+a) ) )
1 b+2 5
—oAFE 1+ —2 _pa)T ) . 311
+3( ) (+12(b+4)( ) (3.11)
Putting
b+2 2
=—  (bAYD
12(b+4)( )P

we derive, for b >4 or b =2,

4
b+2 =2 b+2 —2\?
(b 3(b+4)(b ) )( 12(b + 4) (bA)? )

= (b—4t)(1 +1)d
24-b) , 24-b)@E-2b) 4

> (b - 4t)<1 + Et+

b2 3b3
(4—b)(2—Db)(4—3Db) 4

" - )
o 2(4+b)t2 _ 4(4_b)(4+b)t3 _ (4—-Db)(2 _b)(4+b)t4
N b 3b2 b3

B 4(4—b)(2—b)(4—3b)t5

3b4

_ 2(4+Db) 2 4(4—-Db)(4+b) 3 (4—-b)2—-b)(4+Db) 4
>b b t 3p2 t b3 t
. 2(4+b)( b+2 2\* 4@4-b)@A+b)( b+2 2\’
=b=— (12(b+4)(bA) b) B 3b2 (12(b+4>(bA) b)

(4—b)2—b)(4+Db) [ b+2 2\
B b3 <1z(b+4) GA ) ’ G12)
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b+2

b+2 —2\ b
(1 + 12(b + 4) (bA? )

=140
(b+2)t (b+2) , (b+2)(2_b)t3
b b2 353
2+b( b+2 2\ 2+b[ b+2 2\
=1+ (12(b+4)(bA)b)Jr b2 (12(b+4)(bA)b>

(b+2)2—b)( b+2 2\’
3p3 <1z(b+4)(bA)b) '

>1+

(3.13)

From (3.11), (3.12) and (3.13), we obtain
1
(b + 4)7%hA — 47h+4 4 §rb+2

> b(bA)+5

24+b)/ b+2 \?
b (12(b+4)) bA)

44—by4+by [ b+2 \’ 2
a 3b2 <12(b+4)) (b

4—b)2—b)@4+b) [ b+2 \* | 4
B b3 <12(b+4)) bA)

b

1 2 24b/ b+2 24b/ b+2 \° 5
—(bA) T bA bA)! =5
30T+ =1 (12(b+4))( )+ 3 <12(b+4)) (bA)

(b+2)2-b)( b+2 \> | 4
9b3 (12(b+4)> bAy

_ a1z 1 (042

=bbA T + 3(bA) ) b(b+4)
4b-1)b+4) [ b+2 \’ 2

* 3h2 (12(b+4)> (A

(b2 —4)8—3b) [ b+2 \’ s
36b3 <12(b+4)) bA). (3.14)

(bA)

From b >4 or b =2 and (3.10), we have

(bAYb >

=

W =

(b+1)i

since (b + 1)% <3, and

4b—-1)(b+4) (b*>—4)(8—3b) 2 _ 13b3 +56b% — 52b — 32

3p2 603 T2 12b3 G15)

According to (3.9), (3.14) and (3.15), we obtain
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o0
/sb+31//(s)ds:D
0
1
} b 4 4bA_4 b+4 - b+2
b(b+4){( + 4T Tt
s 1 > 1 (b+2)?
> IppA) '+ A+ —— 2 pA
b(b+4){( ST b 4 O
13b3 4+56b2—-52b—32/ b+2 \°
ey + (bA) =5 .
12b3 12(b + 4)

For 2 < b < 4, we can obtain the following inequality using the same method as the case of b > 4,

o0
/sb+3w(s)ds:D
0
4 1 2 1 (b+2)?
> dpbA) "t + A FE+ —— 2 pA
b(b+4){ GAYTP + 3 (0A) +72b(b+4)( )
12b3 b2 — 48b + 12 2 \>
N +33 8h + b+ b3,
9b3 12(b + 4)

This finishes the proof of Lemma 3.1. O

Proof of Theorem 1.2. Using the same method as that of [4] and Lemma 3.1, we can prove Theo-
rem 1.2. O
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