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UNIVERSAL BOUNDS FOR EIGENVALUES

OF A BUCKLING PROBLEM II

QING-MING CHENG AND HONGCANG YANG

Abstract. In this paper, we investigate universal estimates for eigenvalues of
a buckling problem. For a bounded domain in a Euclidean space, we give a
positive contribution for obtaining a sharp universal inequality for eigenvalues
of the buckling problem. For a domain in the unit sphere, we give an important
improvement on the results of Wang and Xia.

1. Introduction

Let M be an n-dimensional complete Riemannian manifold and Ω ⊂ M a
bounded domain in M with piecewise smooth boundary ∂Ω. A Dirichlet eigen-
value problem for the Laplacian is given by

(1.1)

{
�u = −λu, in Ω,
u = 0, on ∂Ω,

which is also called a fixed membrane problem, where Δ denotes the Laplacian on
M . The spectrum of this eigenvalue problem is real and discrete.

The following eigenvalue problem of a biharmonic operator is called a buckling
problem:

(1.2)

⎧⎪⎨
⎪⎩

Δ2u =− ΛΔu in Ω,

u|∂Ω =
∂u

∂ν

∣∣∣∣
∂Ω

= 0,

which describes the critical buckling load of a clamped plate subjected to a uniform
compressive force around its boundary, where ν is the outward unit normal vector
field of the boundary ∂Ω. It is known that the spectrum of the buckling problem
is also real and discrete.

When Ω ⊂ Rn is a bounded domain in an n-dimensional Euclidean space Rn,
Payne, Pólya and Weinberger [17] and [18] proved the following inequality for eigen-
values of the eigenvalue problem (1.1): for k = 1, 2, . . .,

(1.3) λk+1 − λk ≤ 4

kn

k∑
i=1

λi.

One calls it a universal inequality since it does not depend on the domain Ω.
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On the other hand, Payne, Pólya and Weinberger [17] and [18] also studied
eigenvalues of the buckling problem on a bounded domain Ω in Rn and intended
to derive a universal inequality for eigenvalues of the buckling problem. But it is
very hard to deal with this problem. They only proved, for n = 2,

Λ2 ≤ 3Λ1.

As an open problem, Payne, Pólya and Weinberger [17] and [18] proposed the
following:

Problem. To determine whether one can obtain a universal inequality for eigen-
values of the buckling problem (1.2) on a bounded domain in a Euclidean space,
which is similar to the universal inequality (1.3) for the eigenvalues of the fixed
membrane problem (1.1).

For lower order eigenvalues, Hile and Yeh [14] and so on improved the result of
Payne, Pólya and Weinberger to

Λ2 ≤ n2 + 8n+ 20

(n+ 2)2
Λ1.

Furthermore, Ashbaugh [3] (cf. [2]) has obtained
n∑

i=1

Λi+1 ≤ (n+ 4)Λ1

and he has commented that to obtain a universal inequality for eigenvalues of
the buckling problem remains a challenge for mathematicians since 1955. Many
mathematicians have intended to attack this problem, but it has remained open for
almost 50 years.

As one knows, in order to obtain a universal inequality for eigenvalues of the
buckling problem, it is a key to find appropriate trial functions. Cheng and Yang [8],
by introducing a new method to construct trial functions for the buckling problem,
have obtained the following universal inequality for eigenvalues of the buckling
problem (1.2):

(1.4)
k∑

i=1

(Λk+1 − Λi)
2 ≤ 4(n+ 2)

n2

k∑
i=1

(Λk+1 − Λi)Λi.

Thus, the problem proposed by Payne, Pólya and Weinberger has been solved affir-
matively. By making use of the asymptotic formula of Weyl for eigenvalues of the
Dirichlet eigenvalue problem of the Laplacian and one of Agmon [1] and Pleijel [19]
for eigenvalues of the clamped plate problem, we can have the asymptotic formula
of eigenvalues for the buckling problem according to the variational characterization
for eigenvalues of the buckling problem:

(1.5) Λk ∼ 4π2

(ωnvolΩ)
2
n

k
2
n , k → ∞,

where ωn denotes the volume of the unit ball in Rn. By the results of Li and Yau
[16] and the variational characterization for eigenvalues, one can obtain a lower
bound for eigenvalues of the buckling problem (cf. Levine and Protter [15]):

(1.6)
1

k

k∑
j=1

Λj ≥
n

n+ 2

4π2

(ωnvolΩ)
2
n

k
2
n .
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On the other hand, by making use of the recursion formula in [9], one can obtain
an upper bound for eigenvalues of the buckling problem, which is sharp in the sense
of the order of k, if one can get a sharp universal inequality for eigenvalues of the
buckling problem as the following (cf. [8]):

Conjecture. Eigenvalues of the buckling problem on a bounded domain in a Eu-
clidean space Rn satisfy the following universal inequality:

k∑
i=1

(Λk+1 − Λi)
2 ≤ 4

n

k∑
i=1

(Λk+1 − Λi)Λi.

Therefore, the next landmark goal for the study on eigenvalues of the buckling
problem will be to prove the above sharp universal inequality.

In [8], we decompose xp∇ui into

(1.7) xp∇ui = ∇hpi +wpi,

where the notation used may be found in section 2. We make use of the function
hip to construct appropriate trial functions. In order to get our universal inequality,
we estimated the L2-norm of wpi in [8]. As one knows that to find new appropriate
trial functions is very difficult, many years were spent constructing appropriate
trial functions in [8]. In this paper, we shall also use the trial functions constructed
in [8] and our main observation is to introduce new functions qpi and a careful
exploitation of ∇qpi = ∇(xpui − hpi) and Δwpi. Furthermore, the estimate on the
lower bound of the L2-norm of ∇qpi will play an important role in the proof of our
Theorem 1.1. In this paper, we will prove

Λi

n∑
p=1

‖∇qpi‖2 ≥ 5

3
.

If one can prove that the L2-norm of ∇qpi satisfies

(1.8) Λi

n∑
p=1

‖∇qpi‖2 ≥ 3,

then the sharp universal inequality in the above conjecture will be obtained (see
Remark 2.1 in section 2). In order to prove inequality (1.8), we have spent several
years. But we still cannot prove it. Hence, we hope to share our new ideas with
mathematicians who are interested in this field such that the landmark goal in the
study on eigenvalues of the buckling problem will be finally realized, which also is
one of our main purposes to publish this paper.

Theorem 1.1. Let Λi be the i-th eigenvalue of the buckling problem (1.2) for a
bounded domain Ω ⊂ Rn. Then, we have

(1.9)
k∑

i=1

(Λk+1 − Λi)
2 ≤

4(n+ 4
3 )

n2

k∑
i=1

(Λk+1 − Λi)Λi.

Remark 1.1. Since our universal inequality is a quadratic inequality of the eigen-
value Λk+1, we can obtain an upper bound of the gap between two consecutive
eigenvalues as in [8] from (1.9). We will not give the details.

When M is an n-dimensional unit sphere Sn(1), Wang and Xia [20] have studied
the buckling problem on a domain Ω in Sn(1). They have obtained a universal
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inequality for eigenvalues of the buckling problem; namely, they have proved that
eigenvalues of the buckling problem (1.2) on a domain Ω in the unit sphere Sn(1)
satisfy

2
k∑

i=1

(Λk+1 − Λi)
2(1.10)

≤
k∑

i=1

(Λk+1 − Λi)
2
{
δΛi +

δ2
(
Λi − (n− 2)

)
4(δΛi + n− 2)

}
(1.11)

+
1

δ

k∑
i=1

(Λk+1 − Λi)(Λi +
(n− 2)2

4
),(1.12)

where δ is an arbitrary positive constant.
According to our knowledge, we think that eigenvalues of the buckling problem

on a domain in Sn(1) should satisfy

k∑
i=1

(Λk+1 − Λi)
2 ≤ 4

n

k∑
i=1

(Λk+1 − Λi)(Λi +
n2

4
).

Since one needs to use covariant derivatives for the unit sphere, in order to exchange
the orders of covariant derivatives, one must use the Bochner formula, which is
different from the case of the Euclidean spaces. Thus, one needs to deal with the
terms of Ricci curvature. Hence, it will be very hard work to obtain the above
universal inequality. The second purpose in this paper is to give an important
improvement for the result of Wang and Xia.

Theorem 1.2. The eigenvalues Λi of the buckling problem (1.2) on a domain Ω in
the unit sphere Sn(1) satisfy

2
k∑

i=1

(Λk+1 − Λi)
2 + (n− 2)

k∑
i=1

(Λk+1 − Λi)
2

Λi − (n− 2)
(1.13)

≤
k∑

i=1

(Λk+1 − Λi)
2
{
Λi −

n− 2

Λi − (n− 2)

}
δi(1.14)

+
k∑

i=1

(Λk+1 − Λi)

δi
(Λi +

(n− 2)2

4
)(1.15)

for an arbitrary positive non-increasing monotone sequence {δi}ki=1.

Remark 1.2. It is obvious that our result is sharper than one of Wang and Xia
[20] even if we take δi = δ for any i. Since our universal inequality is a quadratic
inequality of Λk+1, we can obtain an explicit upper bound for the eigenvalue Λk+1

from (1.11).

In particular, when n = 2, we have

Corollary 1.1. The eigenvalues Λi of the buckling problem (1.2) on a domain Ω
in the unit sphere S2(1) satisfy

(1.16)
k∑

i=1

(Λk+1 − Λi)
2 ≤

k∑
i=1

(Λk+1 − Λi)Λ
2
i .
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Proof. Since n = 2, from Theorem 1.2 and taking δi =
1

Λi
, for i = 1, 2, . . . , k, for

which {δi}ki=1 is a positive non-increasing monotone sequence, we finish the proof
of Corollary 1.1. �

Remark 1.3. For recent developments in universal inequalities for eigenvalues of
the Dirichlet eigenvalue problem of the Laplacian and the clamped plate problem,
readers can see [4], [5], [6], [7], [9], [12], [13] and [21].

2. Proof of Theorem 1.1

For the convenience of the readers, we review the method for constructing trial
functions introduced by Cheng and Yang [8]. In this section, Ω is assumed to be
a bounded domain in Rn. For functions f and h, we define the Dirichlet inner
product (f, h)D of f and h by

(f, h)D =

∫
Ω

〈∇f,∇h〉.

The Dirichlet norm of a function f is defined by

||f ||D = {(f, f)D}1/2 =

(∫
Ω

n∑
α=1

|∇αf |2
)1/2

.

Let ui be the i-th orthonormal eigenfunction of the buckling problem (1.2) corre-
sponding to the eigenvalue Λi; namely, ui satisfies

(2.1)

⎧⎪⎨
⎪⎩

Δ2ui = −ΛiΔui in Ω,

ui|∂Ω = ∂ui

∂ν

∣∣
∂Ω

= 0,

(ui, uj)D =
∫
Ω
〈∇ui,∇uj〉 = δij .

H2
2 (Ω) defined by

H2
2 (Ω) = {f : f,∇αf,∇α∇βf ∈ L2(Ω), α, β = 1, . . . , n}

is a Hilbert space with norm ‖ · ‖2:

‖f‖2 =

⎛
⎝∫

Ω

|f |2 +
∫
Ω

|∇f |2 +
n∑

β,α=1

(∇α∇βf)
2

⎞
⎠

1/2

.

Let H2
2,D(Ω) be a subspace of H2

2 (Ω)defined as

H2
2,D(Ω) =

{
f ∈ H2

2 (Ω) : f |∂M =
∂

∂ν
f

∣∣∣∣
∂Ω

= 0

}
.

The biharmonic operator Δ2 defines a selfadjoint operator acting on H2
2,D(Ω) with

discrete eigenvalues {0 < Λ1 ≤ Λ2 ≤ · · · ≤ Λk ≤ · · · } for the buckling problem
(1.2), and the eigenfunctions defined in (2.1),

{ui}∞i=1 = {u1, u2, . . . , uk, . . .},
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form a complete orthogonal basis for the Hilbert space H2
2,D(Ω). We define an

inner product (f ,h) for vector-valued functions f = (f1, f2, . . . , fn) ∈ Rn and
h = (h1, h2, . . . , hn) ∈ Rn by

(f ,h) ≡
∫
Ω

〈f ,h〉 =
∫
Ω

n∑
α=1

fαhα.

The norm of f is defined by

‖f‖ = (f , f)1/2 =

{∫
Ω

n∑
α=1

(fα)2

}1/2

.

Denote a Hilbert space H2
1(Ω) of the vector-valued functions as

H2
1(Ω) = {f : fα,∇βf

α ∈ L2(Ω), for α, β = 1, . . . , n}
with norm ‖ · ‖1:

‖f‖1 =

⎛
⎝‖f‖2 +

∫
Ω

n∑
α,β=1

|∇αf
β |2

⎞
⎠

1/2

.

Let H2
1,D(Ω) ⊂ H2

1(Ω) be a subspace of H2
1(Ω) spanned by the vector-valued func-

tions {∇ui}∞i=1, which form a complete orthonormal basis of H2
1,D(Ω).

It is easy to see that for any f ∈ H2
2,D(Ω), ∇f ∈ H2

1,D(Ω) and for any h ∈
H2

1,D(Ω), there exists a function f ∈ H2
2,D(Ω) such that h = ∇f .

Let xp for p = 1, 2, . . . , n be the p-th coordinate function of Rn. For the vector-
valued function xp∇ui, i = 1, . . . , k, we decompose it into

(2.2) xp∇ui = ∇hpi +wpi,

where hpi ∈ H2
2,D(Ω) and ∇hpi is the projection of xp∇ui onto H2

1,D(Ω) and wpi ⊥
H2

1,D(Ω). Thus,

(2.3) (wpi,∇u) =

∫
Ω

n∑
j=1

wj
pi∇ju = 0, for any u ∈ H2

2,D(Ω).

Therefore, since H2
2,D(Ω) is dense in L2(Ω) and C1(Ω) is dense in L2(Ω), we have,

for any function h ∈ C1(Ω) ∩ L2(Ω),

(2.4) (wpi,∇h) = 0.

Hence, from the definition of wpi and (2.4), we have

(2.5)

{
wpi|∂Ω = 0,

‖divwpi‖2 = 0 (divwpi ≡
∑n

j=1 ∇jw
j
pi).

We define the function ϕpi by

(2.6) ϕpi = hpi −
k∑

j=1

bpijuj ,

where

bpij =

∫
xp〈∇ui,∇uj〉 = bpji.
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It is easy to check, from definition (2.2) of hpi, that ϕpi satisfies

(2.7) ϕpi|∂Ω =
∂ϕpi

∂ν
|∂Ω = 0 and (ϕpi, uj)D = (∇ϕpi,∇uj) = 0,

for any j = 1, 2, . . . , k. Hence, we know that ϕpi is a trial function.
In order to prove our Theorem 1.1, we prepare three lemmas.

Lemma 2.1. For any p and i, we have

(2.8) 1 + 2‖〈∇xp,∇ui〉‖2 = 2

∫
xpui〈∇xp,∇(Δui)〉.

Proof. From the Stokes’ formula, we have∫
〈xpui∇xp,∇(Δui)〉

= −
∫

div(xpui∇xp)Δui

= −
∫

uiΔui −
∫

xpΔui〈∇xp,∇ui〉,∫
xpΔui〈∇xp,∇ui〉

= −
∫
〈∇xp,∇ui〉2 −

∫
xp〈∇ui,∇〈∇xp,∇ui〉〉

= −‖〈∇xp,∇ui〉‖2 +
∫

div(xp∇〈∇xp,∇ui〉)ui

= −‖〈∇xp,∇ui〉‖2 +
∫
〈∇xp,∇〈∇xp,∇ui〉〉ui +

∫
xpuiΔ〈∇xp,∇ui〉

= −‖〈∇xp,∇ui〉‖2 −
∫
〈∇xp,∇ui〉2 +

∫
xpui〈∇xp,∇(Δui)〉.

Since ‖∇ui‖2 = 1, we have

1 + 2‖〈∇xp,∇ui〉‖2 = 2

∫
xpui〈∇xp,∇(Δui)〉.

�

According to xp∇ui = ∇hpi +wpi and ∇(xpui) ∈ H2
1,D(Ω), we have

(2.9) ui∇xp = ∇(xpui)−∇hpi −wpi = ∇qpi −wpi

with ∇qpi = ∇(xpui)−∇hpi and qpi ∈ H2
2,D(Ω). Hence, we derive

(2.10) ‖ui‖2 = ‖∇qpi‖2 + ‖wpi‖2.

Lemma 2.2. For any p and i,

(2.11) 3‖〈∇xp,∇ui〉‖2 − 2Λi‖∇qpi‖2 =
1

2
− 1

2
Λi‖ui‖2.
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Proof. Since, from the Stokes’ formula,

∫
xpui〈∇xp,∇(Δui)〉

=

∫
Δ(xpui)〈∇xp,∇ui〉

= −
∫
〈ui∇xp,∇

(
Δ(xpui)

)
〉

= −
∫
〈∇qpi,∇

(
Δ(xpui)

)
〉 (from (2.4) and (2.9))

=

∫
qpiΔ

2(xpui)

=

∫
qpi

(
4〈∇xp,∇(Δui)〉 − Λix

pΔui

)
= −4

∫
Δui〈∇qpi,∇xp〉 − Λi

∫
qpix

pΔui

and

−Λi

∫
qpix

pΔui = Λi

∫
〈∇qpi, x

p∇ui〉+ Λi

∫
qpi〈∇xp,∇ui〉

= Λi

∫
〈∇qpi, x

p∇ui〉 − Λi

∫
〈∇qpi, ui∇xp〉

= Λi

∫
〈∇qpi, x

p∇ui〉 − Λi‖∇qpi‖2,

− 4

∫
Δui〈∇qpi,∇xp〉

= −4

∫
〈∇(Δqpi), ui∇xp〉

= 4

∫
Δqpi〈∇xp,∇ui〉

= −4

∫
〈∇qpi,∇〈∇xp,∇ui〉〉

= −4

∫
〈ui∇xp,∇〈∇xp,∇ui〉〉

= 4‖〈∇xp,∇ui〉‖2,

we obtain
(2.12)∫

xpui〈∇xp,∇(Δui)〉 = 4‖〈∇xp,∇ui〉‖2 + Λi

∫
〈∇qpi, x

p∇ui〉 − Λi‖∇qpi‖2.

From Lemma 2.1 and the above equality, we have

(2.13) 6‖〈∇xp,∇ui〉‖2 − 2Λi‖∇qpi‖2 − 1 = −2Λi

∫
〈∇qpi, x

p∇ui〉.
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Furthermore, from (2.4), xp∇ui = ∇hpi+wpi and ∇qpi = ∇(xpui)−∇hpi, we have∫
〈∇qpi, x

p∇ui〉

=

∫
〈∇qpi,∇hpi〉

=

∫
〈∇qpi,∇(xpui)−∇qpi〉

=

∫
〈∇qpi,∇(xpui)〉 − ‖∇qpi‖2

=

∫
〈ui∇xp,∇(xpui)〉 − ‖∇qpi‖2

= ‖ui‖2 +
∫
〈ui∇xp, xp∇ui〉 − ‖∇qpi‖2.

(2.14)

Since ∫
〈ui∇xp, xp∇ui〉 = −‖ui‖2 −

∫
〈ui∇xp, xp∇ui〉,

we obtain ∫
〈ui∇xp, xp∇ui〉 = −1

2
‖ui‖2.

According to (2.13) and (2.14), we have

3‖〈∇xp,∇ui〉‖2 − 2Λi‖∇qpi‖2 =
1

2
− 1

2
Λi‖ui‖2.

This finishes the proof of Lemma 2.2. �

Lemma 2.3. For any i,

(2.15) Λi

n∑
p=1

‖wpi‖2 ≥ (n− 1)

holds.

Proof. Since

(2.16) ∇β(x
p∇αui)−∇α(x

p∇βui) = ∇βw
α
pi −∇αw

β
pi,

where wα
pi = xp∇αui − ∇αhpi denotes the α-th component of wpi, we infer, from

div(wpi) = 0, that

(2.17)

‖∇wpi‖2 =

n∑
α,β=1

‖∇αw
β
pi‖2

=
1

2

n∑
α,β=1

‖∇βw
α
pi −∇αw

β
pi‖2 + ‖div(wpi)‖2

=
1

2

n∑
α,β=1

‖∇β(x
p∇αui)−∇α(x

p∇βui)‖2

= 1− ‖∇pui‖2.
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Furthermore, we have

Δwα
pi = Δ(xp∇αui −∇αhpi)

= Δ(xp∇αui)−∇α

(
div(∇hpi)

)

= Δ(xp∇αui)−∇α

(
div(xp∇ui)

)
= ∇p∇αui −∇αx

pΔui.

Thus, we obtain

(2.18) Δwpi = ∇〈∇xp,∇ui〉 −Δui∇xp.

For any positive constant εi, we have

(2.19)

‖∇wpi‖2 = −
∫
〈wpi,Δwpi〉

= −
∫
〈wpi,∇〈∇xp,∇ui〉 −Δui∇xp〉

≤ εi
2
‖wpi‖2 +

1

2εi
‖∇〈∇xp,∇ui〉 −Δui∇xp‖2.

Since, from (2.17),

n∑
p=1

‖∇wpi‖2 = n− 1,
n∑

p=1

‖∇〈∇xp,∇ui〉‖2 = Λi,

by taking the sum on p from 1 to n for (2.19), we have

(n− 1) ≤ εi
2

n∑
p=1

‖wpi‖2 +
n− 1

2εi
Λi.

Putting

εi =

√
(n− 1)Λi∑n
p=1 ‖wpi‖2

,

we obtain

Λi

n∑
p=1

‖wpi‖2 ≥ (n− 1).

This completes the proof of Lemma 2.3. �

Proof of Theorem 1.1. Since ϕpi is a trial function, from the Rayleigh-Ritz inequal-
ity, we have

(2.20) Λk+1‖∇ϕpi‖2 ≤
∫

ϕpiΔ
2ϕpi = −

∫
∇ϕpi · ∇(Δϕ)pi.
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By making use of the same arguments as in Cheng and Yang [8], we have, for any
p and i,

(Λk+1 − Λi)‖∇ϕpi‖2 ≤ 1 + 3‖∇pui‖2 − Λi(‖ui‖2 − ‖wpi‖2) +
k∑

j=1

(Λi − Λj)b
2
pij ,

(2.21)

1 + 2

k∑
j=1

bpijcpij = −2

∫
Ω

〈∇ϕpi,∇〈∇xp,∇ui〉〉,(2.22)

where

cpij =

∫
〈∇〈∇xp,∇ui〉,∇uj〉 = −cpji.

Hence, we have, for any positive constant δi,

(Λk+1 − Λi)
2(1 + 2

k∑
j=1

bpijcpij)

= (Λk+1 − Λi)
2

∫
Ω

−2〈∇ϕpi,∇〈∇xp,∇ui〉 −
k∑

j=1

cpij∇uj〉

≤ δi(Λk+1 − Λi)
3‖∇ϕpi‖2 +

1

δi
(Λk+1 − Λi)

⎛
⎝‖∇〈∇xp,∇ui〉‖2 −

k∑
j=1

c2pij

⎞
⎠ .

From (2.21) and ‖ui‖2 = ‖∇qpi‖2 + ‖wpi‖2, we obtain

(Λk+1 − Λi)
2(1 + 2

k∑
j=1

bpijcpij)

≤ δi(Λk+1 − Λi)
2

(
1 + 3‖∇pui‖2 − Λi‖∇qpi‖2 +

k∑
j=1

(Λi − Λj)b
2
pij

)

+
1

δi
(Λk+1 − Λi)

⎛
⎝‖∇〈∇xp,∇ui〉‖2 −

k∑
j=1

c2pij

⎞
⎠ .

(2.23)

By taking the sum on p from 1 to n, we derive

(Λk+1 − Λi)
2(n+ 2

n∑
p=1

k∑
j=1

bpijcpij)

≤ δi(Λk+1 − Λi)
2

(
n+ 3− Λi

n∑
p=1

‖∇qpi‖2 +
n∑

p=1

k∑
j=1

(Λi − Λj)b
2
pij

)

+
1

δi
(Λk+1 − Λi)

⎛
⎝Λi −

n∑
p=1

k∑
j=1

c2pij

⎞
⎠ .

(2.24)

From Lemma 2.2, Lemma 2.3 and

‖ui‖2 = ‖∇qpi‖2 + ‖wpi‖2,
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we infer that

Λi

n∑
p=1

‖∇qpi‖2 ≥ 5

3
.

Thus, we obtain, for any i,

(Λk+1 − Λi)
2(n+ 2

n∑
p=1

k∑
j=1

bpijcpij)

≤ δi(Λk+1 − Λi)
2

(
n+

4

3
+

n∑
p=1

k∑
j=1

(Λi − Λj)b
2
pij

)

+
1

δi
(Λk+1 − Λi)

⎛
⎝Λi −

n∑
p=1

k∑
j=1

c2pij

⎞
⎠ .

(2.25)

By taking the sum for i from 1 to k and noticing that bpij is symmetric and cpij is
antisymmetric on i, j, we have

n
k∑

i=1

(Λk+1 − Λi)
2 − 2

n∑
p=1

k∑
i,j=1

(Λk+1 − Λi)(Λi − Λj)bpijcpij

≤ (n+
4

3
)

k∑
i=1

δi(Λk+1 − Λi)
2 +

k∑
i=1

1

δi
(Λk+1 − Λi)Λi

−
n∑

p=1

k∑
i,j=1

δi(Λk+1 − Λi)(Λi − Λj)
2b2pij −

k∑
i,j=1

1

δi
(Λk+1 − Λi)c

2
pij

+
n∑

p=1

k∑
i,j=1

δi(Λk+1 − Λi)(Λi − Λj)
2b2pij

+

n∑
p=1

k∑
i,j=1

δi(Λk+1 − Λi)
2(Λi − Λj)b

2
pij .

(2.26)

Since, for a non-increasing monotone sequence {δi}ki=1,

n∑
p=1

k∑
i,j=1

δi(Λk+1 − Λi)(Λi − Λj)
2b2pij +

n∑
p=1

k∑
i,j=1

δi(Λk+1 − Λi)
2(Λi − Λj)b

2
pij

=
1

2

n∑
p=1

k∑
i,j=1

(Λk+1 − Λi)(Λk+1 − Λj)(Λi − Λj)(δi − δj)b
2
pij ≤ 0,

we conclude from (2.26) and the above formula, for a non-increasing monotone
sequence {δi}ki=1, that

n
k∑

i=1

(Λk+1 − Λi)
2 ≤ (n+

4

3
)

k∑
i=1

δi(Λk+1 − Λi)
2 +

k∑
i=1

1

δi
(Λk+1 − Λi)Λi.

In particular, putting

δi =
n

2(n+ 4
3 )
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for any i, we obtain

k∑
i=1

(Λk+1 − Λi)
2 ≤

4(n+ 4
3 )

n2

k∑
i=1

(Λk+1 − Λi)Λi.

This finishes the proof of Theorem 1.1. �
Remark 2.1. If one can prove, for any i,

Λi

n∑
p=1

‖∇qpi‖2 ≥ 3,

one will infer that
k∑

i=1

(Λk+1 − Λi)
2 ≤ 4

n

k∑
i=1

(Λk+1 − Λi)Λi,

which solves the conjecture.

3. Proof of Theorem 1.2

For the unit sphere

Sn(1) =

{
(x1, x2, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

(xp)2 = 1

}
,

we denote the induced metric on Sn(1) by the canonical metric 〈·, ·〉 on Rn+1 also.
For any p, we have

(3.1) ∇i∇jx
p = −gijx

p, Δxp = −nxp,

where gij denotes the components of the metric tensor of Sn(1). Let ui be the
i-th orthonormal eigenfunction of the buckling problem (1.2) corresponding to the
eigenvalue Λi; namely, ui satisfies

(3.2)

⎧⎪⎨
⎪⎩

Δ2ui = −ΛiΔui in Ω,

ui|∂Ω = ∂ui

∂ν

∣∣
∂Ω

= 0,

(ui, uj)D =
∫
Ω
〈∇ui,∇uj〉 = δij .

For constructing trial functions, we use the same notation as in section 2. We would
like to remark that vector-valued functions in this section have n+ 1 components.
Although the orders of differentiations of functions in the Euclidean space can be
exchanged freely, we must do it very carefully for the covariant differentiations of
functions in the case of the unit sphere.

Since xp for p = 1, 2, . . . , n+ 1 is a coordinate function of Rn+1, for the vector-
valued function xp∇ui, i = 1, . . . , k, we decompose it into

(3.3) xp∇ui = ∇hpi +wpi,

where hpi ∈ H2
2,D(Ω) and ∇hpi is the projection of xp∇ui onto H2

1,D(Ω) and wpi ⊥
H2

1,D(Ω). Thus, we have, for any function h ∈ C1(Ω) ∩ L2(Ω),

(3.4) (wpi,∇h) = 0.

Hence, wpi satisfies

(3.5)

{
wpi|∂Ω = 0,

‖divwpi‖2 = 0.
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We define the function ϕpi by

(3.6) ϕpi = hpi −
k∑

j=1

bpijuj ,

where

bpij =

∫
xp〈∇ui,∇uj〉 = bpji.

It is easy to check that ϕpi satisfies

ϕpi|∂Ω =
∂ϕpi

∂ν
|∂Ω = 0 and (ϕpi, uj)D = (∇ϕpi,∇uj) = 0,

for any j = 1, 2, . . . , k, that is, ϕpi is a trial function. Since
∑n+1

p=1 (x
p)2 = 1, from

(3.3), we have, for any i,

(3.7) 1 =

n+1∑
p=1

‖∇hpi‖2 +
n+1∑
p=1

‖wpi‖2.

Lemma 3.1. For any i, we have

(3.8)

n+1∑
p=1

‖wpi‖2 ≤ Λi − (n− 1)

Λi − (n− 2)
.

Proof. From
∑n+1

p=1 (x
p)2 = 1, we have

1 =

n+1∑
p=1

‖〈∇xp,∇ui〉‖2

= −
n+1∑
p=1

∫
xpdiv{〈∇xp,∇ui〉∇ui}

= −
n+1∑
p=1

∫
xp〈∇xp,∇ui〉Δui −

n+1∑
p=1

∫
〈xp∇ui,∇〈∇xp,∇ui〉〉

= −
n+1∑
p=1

∫
〈∇hpi,∇〈∇xp,∇ui〉〉.

For any positive constant εi, we have

(3.9) 1 ≤ εi

n+1∑
p=1

‖∇hpi‖2 +
1

4εi

n+1∑
p=1

‖∇〈∇xp,∇ui〉‖2.

According to the following Bochner formula for a smooth function f :

1

2
Δ|∇f |2 = |∇2f |2 + 〈∇f,∇(Δf)〉+ Ric(∇f,∇f)

= |∇2f |2 + 〈∇f,∇(Δf)〉+ (n− 1)|∇f |2,
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where Ric and ∇2f denote the Ricci tensor of Sn(1) and the Hessian of f , respec-
tively, we can derive, from (3.1) and by making use of a direct computation,

(3.10) Δ〈∇xp,∇ui〉 = −2xpΔui + 〈∇xp,∇(Δui)〉+ (n− 2)〈∇xp,∇ui〉.
Hence, we have

n+1∑
p=1

‖∇〈∇xp,∇ui〉‖2

= −
n+1∑
p=1

∫
〈∇xp,∇ui〉Δ〈xp,∇ui〉

= −
n+1∑
p=1

∫
〈∇xp,∇ui〉

{
−2xpΔui + 〈∇xp,∇(Δui)〉+ (n− 2)〈∇xp,∇ui〉

}

= −
n+1∑
p=1

{∫
〈∇xp,∇ui〉〈∇xp,∇(Δui)〉+ (n− 2)〈∇xp,∇ui〉2

}

= −
∫
〈∇ui,∇(Δui)〉 − (n− 2)‖∇ui‖2

= Λi − (n− 2),

that is,

(3.11)

n+1∑
p=1

‖∇〈∇xp,∇ui〉‖2 = Λi − (n− 2).

Here we have used
n+1∑
p=1

∫
〈∇xp,∇ui〉〈∇xp,∇(Δui)〉 =

∫
〈∇ui,∇(Δui)〉.

Therefore, from (3.9), we obtain

1 ≤ εi

n+1∑
p=1

‖∇hpi‖2 +
1

4εi

(
Λi − (n− 2)

)
.

From (3.7), we have

1 + εi

n+1∑
p=1

‖wpi‖2 ≤ εi +
1

4εi

(
Λi − (n− 2)

)
.

Taking

εi =
Λi − (n− 2)

2
,

we complete the proof of Lemma 3.1. �

Proof of Theorem 1.2. By making use of the trial function ϕpi and the same argu-
mants as in Wang and Xia [20], we have, for any p and i,

(3.12) (Λk+1−Λi)‖∇ϕpi‖2 ≤ Ppi+ ‖〈∇xp,∇ui〉‖2+Λi‖wpi‖2 +
k∑

j=1

(Λi−Λj)b
2
pij ,
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where

Ppi =

∫
〈∇(xp)2, ui∇(Δui) + Λiui∇ui〉.

Defining

Zpi = ∇〈∇xp,∇ui〉 −
n− 2

2
xp∇ui,

cpij =

∫
〈∇uj , Zpi〉 = −cpji

has been proved in Wang and Xia [20]. Since

γpi = −2

∫
〈xp∇ui, Zpi〉

= −2

∫
〈∇hpi +wpi, Zpi〉

= −2

∫
〈∇ϕpi +

k∑
j=1

bpij∇uj +wpi, Zpi〉

= −2

∫
〈∇ϕpi, Zpi −

k∑
j=1

cpij∇uj〉 − 2

k∑
j=1

bpijcpij + (n− 2)‖wpi‖2,

we have

γpi + 2
k∑

j=1

bpijcpij = −2

∫
〈∇ϕpi, Zpi −

k∑
j=1

cpij∇uj〉+ (n− 2)‖wpi‖2.

Hence, for any positive constant δi, we have, according to (3.12),

(Λk+1 − Λi)
2

(
γpi + 2

k∑
j=1

bpijcpij

)
−(n− 2)(Λk+1 − Λi)

2‖wpi‖2

≤ δi(Λk+1 − Λi)
3‖∇ϕpi‖2 +

1

δi
(Λk+1 − Λi)

⎛
⎝‖Zpi‖2 −

k∑
j=1

c2pij

⎞
⎠

≤ δi(Λk+1 − Λi)
2

{
Ppi + ‖〈∇xp,∇ui〉‖2 + Λi‖wpi‖2 +

k∑
j=1

(Λi − Λj)b
2
pij

}

+
1

δi
(Λk+1 − Λi)

⎛
⎝‖Zpi‖2 −

k∑
j=1

c2pij

⎞
⎠ .

(3.13)
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By taking the sum on p from 1 to n, we derive

(Λk+1 − Λi)
2
n+1∑
p=1

(
γpi + 2

k∑
j=1

bpijcpij

)
−(n− 2)(Λk+1 − Λi)

2
n+1∑
p=1

‖wpi‖2

≤ δi(Λk+1 − Λi)
2
n+1∑
p=1

{
Ppi + ‖〈∇xp,∇ui〉‖2

+ Λi‖wpi‖2 +
k∑

j=1

(Λi − Λj)b
2
pij

}

+
1

δi
(Λk+1 − Λi)

n+1∑
p=1

⎛
⎝‖Zpi‖2 −

k∑
j=1

c2pij

⎞
⎠ .

(3.14)

Since

γpi = −2

∫
〈xp∇ui, Zpi〉

= −2

∫
〈xp∇ui,∇〈∇xp,∇ui〉 −

n− 2

2
xp∇ui〉

= 2

∫
〈∇xp,∇ui〉2 + 2

∫
Δui〈xp∇xp,∇ui〉+ (n− 2)

∫
(xp)2〈∇ui,∇ui〉,

we have

n+1∑
p=1

γpi = n.

From the definition of Zpi, we have

n+1∑
p=1

‖Zpi‖2

=
n+1∑
p=1

∫
|∇〈∇xp,∇ui〉 −

n− 2

2
xp∇ui|2

=

n+1∑
p=1

{
‖∇〈∇xp,∇ui〉‖2 − (n− 2)

∫
〈∇〈∇xp,∇ui〉, xp∇ui〉+

(n− 2)2

4
‖xp∇ui‖2

}

= Λi +
(n− 2)2

4
(from (3.11)).

Since Ppi =
∫
〈∇(xp)2, ui∇(Δui) + Λiui∇ui〉, we have

n+1∑
p=1

Ppi = 0.
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From Lemma 3.1 and (3.14), we obtain

(Λk+1 − Λi)
2

(
n+ 2

n+1∑
p=1

k∑
j=1

bpijcpij

)
−(n− 2)(Λk+1 − Λi)

2Λi − (n− 1)

Λi − (n− 2)

≤ δi(Λk+1 − Λi)
2

{
1 + Λi

Λi − (n− 1)

Λi − (n− 2)
+

n+1∑
p=1

k∑
j=1

(Λi − Λj)b
2
pij

}

+
1

δi
(Λk+1 − Λi)

(
Λi +

(n− 2)2

4

)
− 1

δi
(Λk+1 − Λi)

n+1∑
p=1

k∑
j=1

c2pij ,

that is,

2(Λk+1 − Λi)
2 + (n− 2)

(Λk+1 − Λi)
2

Λi − (n− 2)

≤ δi(Λk+1 − Λi)
2

{
Λi −

(n− 2)

Λi − (n− 2)

}
+

1

δi
(Λk+1 − Λi)

(
Λi +

(n− 2)2

4

)

− 2(Λk+1 − Λi)
2
n+1∑
p=1

k∑
j=1

bpijcpij + δi(Λk+1 − Λi)
2
n+1∑
p=1

k∑
j=1

(Λi − Λj)b
2
pij

− 1

δi
(Λk+1 − Λi)

n+1∑
p=1

k∑
j=1

c2pij .

(3.15)

Since, for a non-increasing monotone sequence {δi}ki=1,

n∑
p=1

k∑
i,j=1

δi(Λk+1 − Λi)(Λi − Λj)
2b2pij +

n∑
p=1

k∑
i,j=1

δi(Λk+1 − Λi)
2(Λi − Λj)b

2
pij

=
1

2

n∑
p=1

k∑
i,j=1

(Λk+1 − Λi)(Λk+1 − Λj)(Λi − Λj)(δi − δj)b
2
pij ≤ 0

and

− 2

k∑
i=1

(Λk+1 − Λi)
2
n+1∑
p=1

k∑
j=1

bpijcpij −
k∑

i=1

δi(Λk+1 − Λi)

n∑
p=1

k∑
j=1

(Λi − Λj)
2b2pij

−
k∑

i=1

1

δi
(Λk+1 − Λi)

n+1∑
p=1

k∑
j=1

c2pij

= −
n∑

p=1

k∑
i,j=1

(√
δi(Λk+1 − Λi)(Λi − Λj)bpij −

1√
δi

√
(Λk+1 − Λi)cpij

)2

≤ 0,
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by taking the sum on i from 1 to k for (3.15), we obtain

(3.16)

2

k∑
i=1

(Λk+1 − Λi)
2 + (n− 2)

k∑
i=1

(Λk+1 − Λi)
2

Λi − (n− 2)

≤
k∑

i=1

δi(Λk+1 − Λi)
2

{
Λi −

(n− 2)

Λi − (n− 2)

}

+
k∑

i=1

1

δi
(Λk+1 − Λi)

(
Λi +

(n− 2)2

4

)
.

This completes the proof of Theorem 1.2. �
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