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FIRST EIGENVALUE OF JACOBI OPERATOR OF
HYPERSURFACES WITH CONSTANT SCALAR CURVATURE*

QING-MING CHENG

Abstract. Let M be an n-dimensional compact hypersurface with constant
scalar curvature n(n−1)r, r > 1, in a unit sphere Sn+1(1). We know that such

hypersurfaces can be characterized as critical points for a variational problem
of the integral

R

M HdM of the mean curvature H. In this paper, we study first
eigenvalue of the Jacobi operator Js of M . We derive an optimal upper bound

for the first eigenvalue of Js and this bound is attained if and only if M is a
totally umbilical and non-totally geodesic hypersurface or M is a Riemannian
product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1.

1. Introduction

Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1) of dimension
n + 1. We denote the second fundamental form of M and its squared norm by α
and S, respectively. Then, a Schrödinger operator

Jm = −∆ − S − n,

where ∆ stands for the Laplace-Beltrami operator, arose naturally in the study
of the stability of both minimal hypersurfaces in Sn+1(1) and hypersurfaces with
constant mean curvature in Sn+1(1). The Jm is called Jacobi operator or a stability
operator, which represents the second variation of the volume. Its spectral behavior
is directly related to the instability of such hypersurfaces (cf. [18] and [5]).

On the other hand, for any C2-function f , denoting its Hessian by (fij), we
define a differential operator

¤f =
n∑

i,j=1

(nHδij − hij)fij ,

where H and hij denote the mean curvature and components of the second funda-
mental form of M . The differential operator ¤ was introduced and used by S. Y.
Cheng and Yau in [11] to study compact hypersurfaces with constant scalar curva-
ture in Sn+1(1). They proved that if M is an n-dimensional compact hypersurface
with constant scalar curvature n(n−1)r, r ≥ 1, and if the sectional curvature of M
is non-negative, then M is a totally umbilical hypersurface Sn(c) or a Riemannian
product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1, where Sk(c) denotes a sphere
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of radius c. We should notice that the differential operator ¤ is self-adjoint. By
making use of the similar method which has been used by Nakagawa and the author
in [9] and the differential operator ¤ introduced by S.Y. Cheng and Yau, Li [14] has
proved that if M is an n-dimensional compact hypersurface with constant scalar
curvature n(n− 1)r, r ≥ 1, and if S ≤ (n− 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , then M is a to-

tally umbilical hypersurface or a Riemannian product Sn−1(c)× S1(
√

1 − c2) with
c2 = n−2

nr ≤ n−2
n . Furthermore, the Riemannian product Sn−1(c) × S1(

√
1 − c2)

has been characterized in [6], [7], [8] and [10].
In [1], Alencar, do Carmo and Colares have studied the stability of hypersurfaces

with constant scalar curvature in Sn+1(1). In this case, the Jacobi operator Js is
given by

Js = −¤ − {n(n − 1)H + nHS − f3},

which is associated to the variational characterization of hypersurfaces with con-
stant scalar curvature in Sn+1(1), where f3 =

∑n
j=1 k3

j and kj ’s are the principal
curvatures of M (cf. [16] and [17]). The spectral behavior of Js is also directly
related to the instability of hypersurfaces with constant scalar curvature.

The first eigenvalue of the Jacobi operator Jm of minimal hypersurfaces in
Sn+1(1) was studied by Simons [18], Wu [19] and Perdomo [15]. A characteri-
zation of Clifford torus is given by the first eigenvalue of the Jacobi operator Jm,
that is, they proved that if M is an n-dimensional compact orientable minimal
hypersurface in Sn+1(1), then, the first eigenvalue λJm

1 of the Jacobi operator Jm

satisfies

(1) λJm
1 = −n and M is totally geodesic.

(2) λJm
1 ≤ −2n and λJm

1 = −2n if and only if M is a Clifford torus Sm(
√

m
n )×

Sn−m(
√

n−m
n ), 1 ≤ m ≤ n − 1.

Very recently, Aĺıas, Barros and Brasil [3] have extended the above results to com-
pact hypersurfaces with constant mean curvature in Sn+1(1). They have obtained
that if M is an n-dimensional compact orientable hypersurface with constant mean
curvature in Sn+1(1), then, the first eigenvalue λJm

1 of the Jacobi operator Jm

satisfies

(1) λJm
1 = −n(1 + H2) and M is totally umbilical or

(2) λJm
1 ≤ −2n(1+H2)+ n(n−2)√

n(n−1)
|H|max

√
S − nH2 and equality holds if and

only if M is a Riemannian product Sn−1(c) × S1(
√

1 − c2).

We should notice that the first eigenvalue of Jacobi operator Jm of the totally
umbilical hypersurface Sn+1(1) is different from the one of the Riemannian product
Sn−1(c) × S1(

√
1 − c2) in Sn+1(1).

Since the Laplace-Beltrami operator is always elliptic, the Jacobi operator Jm is
always elliptic. But, in general, the operator ¤, and hence the Jacobi operator Js

are not elliptic. When r > 1, the differential operator ¤ is elliptic. In fact, from
Gauss equation (2.4) in section 2, we have that the mean curvature H satisfies
n2H2 > S. Hence, we can assume H > 0. Thus, the differential operator ¤ is
elliptic if and only if nH − kj > 0 for j = 1, 2, · · · , n, where kj ’s are the principal
curvatures of M . If, for some j, nH ≤ kj holds, then n2H2 ≤ k2

j ≤ S. This is
impossible.
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When r = 1, let ki, i = 1, 2, · · · , n, denote the principal curvatures of M . We
consider the elementary symmetric functions Sr of the principal curvatures:

S0 = 1, Sr =
∑

i1<···<ir

ki1 · · · kir (1 ≤ r ≤ n).

¤ is elliptic if and only if n ≥ 3 and the S3 6= 0 on M (cf. [4], [2] and [12]).
In [4], Aĺıas, Brasil and Sousa have studied the first eigenvalue of the Jacobi

operator Js of an n-dimensional hypersurface with constant scalar curvature n(n−
1). They have proved that if M is an n-dimensional compact orientable hypersurface
with constant scalar curvature n(n − 1), in Sn+1(1) and if n ≥ 3 and S3 does not
vanish on M , then, the first eigenvalue λJs

1 of the Jacobi operator Js satisfies

λJs
1 ≤ −2n(n − 1)min |H|

Further, the equality holds if and only if M is a Riemannian product Sm(c) ×
Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1, with scalar curvature n(n − 1).

In this paper, we investigate the first eigenvalue of the Jacobi operator Js of an n-
dimensional hypersurface with constant scalar curvature n(n − 1)r, r > 1 and give
a characterization of the totally umbilical and non-totally geodesic hypersurface
and the Riemannian product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1 by the first

eigenvalue of Js. Namely, we will prove the following:

Theorem 1.1. Let M be an n-dimensional compact orientable hypersurface with
constant scalar curvature n(n − 1)r, r > 1, in Sn+1(1). Then, the Jacobi operator
Js is elliptic, the mean curvature H does not vanish on M and the first eigenvalue
λJs

1 of the Jacobi operator Js satisfies

λJs
1 ≤ −{2n(n−1)+n2(n−1)(r−1)}min |H|+n(n−1)(r−1){(n−1)(r−1)+1} 1

min |H|

and the equality holds if and only if either M is totally umbilical and non-totally
geodesic, or M is a Riemannian product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1,

with r > 1.

Corollary 1.2. Let M be an n-dimensional compact orientable hypersurface with
constant scalar curvature n(n − 1)r, r > 1, in Sn+1(1). Then, the Jacobi operator
Js is elliptic and the first eigenvalue λJs

1 of the Jacobi operator Js satisfies

λJs
1 ≤ −n(n − 1)r

√
r − 1

and the equality holds if and only if M is totally umbilical and non-totally geodesic.

Remark 1.3. We should notice that the totally umbilical hypersurfaces do not ap-
pear in the result of [4]. From the proof of theorem 1.1 in section 3, we shall see
that our results do hold for the case where r = 1, if we assume that the Jacobi
operator Js is elliptic. Hence, the result in [4] can be seen as a direct consequence
of the theorem 1.1.

Acknowledgements. We would like to express our gratitude to the referee for
him/her to tell us the paper [4] and the valuable suggestions.
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2. Prelimenary

Throughout this paper, all manifolds are assumed to be smooth and connected
without boundary. Let M be an n-dimensional hypersurface in a unit sphere
Sn+1(1). We choose a local orthonormal frame {e1, · · · , en, en+1} and the dual
coframe {ω1, · · · , ωn, ωn+1} in such a way that {e1, · · · , en} is a local orthonormal
frame on M . Hence, we have

ωn+1 = 0

on M . From Cartan’s lemma, we have

(2.1) ωin+1 =
n∑

j=1

hijωj , hij = hji.

The mean curvature H and the second fundamental form α of M are defined,
respectively, by

H =
1
n

n∑
i=1

hii, α =
n∑

i,j=1

hijωi ⊗ ωjen+1.

When the mean curvature H of M is identically zero, we recall that M is by
definition a minimal hypersurface.

From the structure equations of M , Gauss equation and Codazzi equation are
given by

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk),(2.2)

hijk = hikj .(2.3)

From (2.2), we have

n(n − 1)r = n(n − 1) + n2H2 − S,(2.4)

where n(n − 1)r and S denote the scalar curvature and the squared norm of the
second fundamental form of M , respectively.

For any C2-function f on M , we define its gradient and Hessian by

df =
n∑

i=1

fiωi,

n∑
j=1

fijωj = dfi +
n∑

j=1

fjωji.

Thus, the differential operator ¤ is defined by

¤f =
n∑

i,j=1

(nHδij − hij)fij .

3. Proofs of results

First of all, we will consider the first eigenvalue of the Jacobi operator Js of both
the totally umbilical and non-totally geodesic hypersurface and the Riemannian
product Sm(c) × Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1.
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Example 3.1. Let M be a totally umbilical and non-totally geodesic hypersurface
in Sn+1(1). In this case, ¤ = (n − 1)H∆ and

Js = −¤ − {n(n − 1)H + nHS − f3} = −{(n − 1)H∆ + n(n − 1)H(1 + H2)}.

Hence,
λJs

1 = −n(n − 1)H(1 + H2) = −n(n − 1)r
√

r − 1,

from Gauss equation (2.4). Since

n(n − 1)r
√

r − 1

={2n(n − 1) + n2(n − 1)(r − 1)}H − n(n − 1)(r − 1){(n − 1)(r − 1) + 1} 1
H

,

we know that

λJs
1 = n(n − 1)r

√
r − 1

= −{2n(n − 1) + n2(n − 1)(r − 1)}H

+ n(n − 1)(r − 1){(n − 1)(r − 1) + 1} 1
H

.

¤

Example 3.2. Let Sm(c) × Sn−m(
√

1 − c2), 1 ≤ m ≤ n − 1, be a hypersurface
with r > 1 in Sn+1(1). In this case, the position vector is x = (x1,x2) ∈ Sm(c) ×
Sn−m(

√
1 − c2) and the unit normal vector at the point x = (x1,x2) ∈ Sm(c) ×

Sn−m(
√

1 − c2) is given by en+1 = (−
√

1−c2

c x1,
c√

1−c2 x2). Its principal curvatures
are given by

k1 = · · · = km =
√

1 − c2

c
, km+1 = · · · = kn = − c√

1 − c2
.

Thus, the mean curvature H of Sm(c) × Sn−m(
√

1 − c2) satisfies

(3.1) nH =
m − nc2

c
√

1 − c2
.

Since

n(n − 1)(r − 1) = n2H2 − S

=
(m − nc2)2

c2(1 − c2)
− m

1 − c2

c2
− (n − m)

c2

1 − c2

=
n(n − 1)c4 − 2m(n − 1)c2 + m(m − 1)

c2(1 − c2)

=
(n − 1)(nc2 + n − 2m)(c2 − 1) + (n − m)(n − 1 − m)

c2(1 − c2)
,

(3.2)

we know that r > 1 if and only if either

0 < c2 <
m

n
−

√
m(n − m)
n
√

n − 1
or

m

n
+

√
m(n − m)
n
√

n − 1
< c2 < 1.
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Since the principal curvatures of Sm(c) × Sn−m(
√

1 − c2) are constant, we know
that S and f3 are constant. Because the differential operator ¤ is self-adjoint and
elliptic, we have that the first eigenvalue of the Jacobi operator Js is given by

(3.3) λJs
1 = −{n(n − 1)H + nHS − f3}.

Furthermore, from (3.1), we have

n(n − 1)H + nHS − f3

=n(n − 1)H + nH{m1 − c2

c2
+ (n − m)

c2

1 − c2
}

− m
(1 − c2)

3
2

c3
+ (n − m)

c3

(1 − c2)
3
2

=nH

{
n − 1 + m

1 − c2

c2
+ (n − m)

c2

1 − c2

− m

m − nc2

(1 − c2)2

c2
+

(n − m)
m − nc2

c4

(1 − c2)

}
=

nH

m − nc2

{
(n − 1)(m − nc2) +

m(1 − c2){m − 1 − (n − 1)c2}
c2

+
(n − m)c2{m − (n − 1)c2}

1 − c2

}
.

(3.4)

On the other hand, from (3.1) and (3.2), we have

n(n − 1)(r − 1)
1

n2H2

=
(n − 1)(nc2 + n − 2m)(c2 − 1) + (n − m)(n − 1 − m)

(m − nc2)2
,

(3.5)

{2n(n − 1) + n2(n − 1)(r − 1)}H

= nH
(n − 1){(n − 2)c2 + n − 2m}(c2 − 1) + (n − m)(n − 1 − m)

c2(1 − c2)
.

(3.6)
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Therefore, we obtain, from (3.2), (3.5) and (3.6), by making use of a direct compu-
tation

{2n(n − 1) + n2(n − 1)(r − 1)}H

− n(n − 1)(r − 1){(n − 1)(r − 1) + 1} 1
H

=nH
(n − 1){(n − 2)c2 + n − 2m}(c2 − 1) + (n − m)(n − 1 − m)

c2(1 − c2)

− nH
(n − 1)(nc2 + n − 2m)(c2 − 1) + (n − m)(n − 1 − m)

(m − nc2)2

× {n(n − 2)c2 + (n − 1)(n − 2m)}(c2 − 1) + (n − m)(n − 1 − m)
c2(1 − c2)

=
nH

(m − nc2)2c2(1 − c2)

{
2(n − 1)c2(1 − c2)(m − nc2)2

+ {(n − 1)(nc2 + n − 2m)(c2 − 1) + (n − m)(n − 1 − m)}

×
[
(m − nc2)2 −

[
{n(n − 2)c2 + (n − 1)(n − 2m)}(c2 − 1)

+ (n − m)(n − 1 − m)
]]}

=
nH

(m − nc2)2c2(1 − c2)

{
2(n − 1)c2(1 − c2)(m − nc2)2

+
[
(n − 1)(nc2 + n − 2m)(c2 − 1) + (n − m)(n − 1 − m)

]
(m − nc2)(1 − 2c2)

}
=

nH

(m − nc2)c2(1 − c2)

{
2(n − 1)c2(1 − c2)(m − nc2)

+ (n − 1)(nc2 − m)(c2 − 1)(1 − 2c2) + (n − m){(n − 1)c2 − m}(1 − 2c2)
}

=
nH

(m − nc2)

{
(n − 1)(m − nc2)

c2

+
(n − m){(n − 1)c2 − m}

c2
+

(n − m){m − (n − 1)c2}
1 − c2

}
=

nH

m − nc2

{
(n − 1)(m − nc2) +

m(1 − c2){m − 1 − (n − 1)c2}
c2

+
(n − m)c2{m − (n − 1)c2}

1 − c2

}
.

Hence, we infer, from (3.4) and the above equality, that

λJs
1 = − {n(n − 1)H + nHS − f3}

= − {2n(n − 1) + n2(n − 1)(r − 1)}H

+ n(n − 1)(r − 1){(n − 1)(r − 1) + 1} 1
H

.

¤



8 QING-MING CHENG

Remark 3.3. We must notice that the first eigenvalue of the Jacobi operator Js of
both the totally umbilical and non-totally geodesic hypersurface and the Riemann-
ian product Sm(c)× Sn−m(

√
1 − c2) has the same representation formula. But, as

we have seen in the introduction, the first eigenvalue of the Jacobi operator Jm of
the totally umbilical hypersurface is different from one of the Riemannian product
Sn−1(c) × S1(

√
1 − c2). It is a very interesting fact.

Proof of Theorem 1.1. Since r > 1, from the assertion in the introduction, we know
that ¤ is elliptic and n2H2 − S = n(n − 1)(r − 1) > 0. Hence, H 6= 0. Thus, we
can assume H > 0. We choose a local field of orthonormal frames e1, · · · , en on M
such that, at the point that we consider,

hij =
{

ki if i = j,

0 if i 6= j,

where ki’s are the principal curvatures of M . Thus,

¤(nH) = nH∆(nH) −
n∑

i=1

ki(nH)ii.

From the Gauss equation (2.4), we have

nH∆(nH) =
1
2
∆(nH)2 − |∇(nH)|2 =

1
2
∆S − |∇(nH)|2.

By making use of a standard computation of Simons’ type formula (cf. [11], [1] and
[18]), we have

1
2
∆S =

n∑
i,j,k=1

h2
ijk +

n∑
i=1

ki(nH)ii + nS − n2H2 + nHf3 − S2.

Hence, we infer

¤(nH) =
n∑

i,j,k=1

h2
ijk − n2|∇H|2 + nS − n2H2 + nHf3 − S2.

Therefore, we have

JsH = − ¤H − {n(n − 1)H + nHS − f3}H

= −
{

1
n

n∑
i,j,k=1

h2
ijk − n|∇H|2 + S − nH2 + Hf3

− S2

n
+ n(n − 1)H2 + nH2S − Hf3

}
= −

{
1
n

n∑
i,j,k=1

h2
ijk − n|∇H|2 + S + n(n − 2)H2 + nH2S − S2

n

}

= −
[

1
n

n∑
i,j,k=1

h2
ijk − n|∇H|2 + 2n(n − 1)H2

+ n2(n − 1)(r − 1)H2 − n(n − 1)(r − 1){(n − 1)(r − 1) + 1}
]
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From the min-max principle, we have

λJs
1 ≤

∫
M

HJsHdM∫
M

H2dM

= −
∫

M
H( 1

n

∑n
i,j,k=1 h2

ijk − n|∇H|2)dM∫
M

H2dM

−
∫

M
H{2n(n − 1) + n2(n − 1)(r − 1)}H2dM∫

M
H2dM

+

∫
M

Hn(n − 1)(r − 1){(n − 1)(r − 1) + 1}dM∫
M

H2dM

≤−
{

2n(n − 1) + n2(n − 1)(r − 1)
}

min |H|

+ n(n − 1)(r − 1)
{

(n − 1)(r − 1) + 1
}

1
min |H|

.

Here we have used the following inequality (cf. [1] and [14]):
n∑

i,j,k=1

h2
ijk ≥ n2|∇H|2,

which can be proved by using the Gauss equation (2.4) and r > 1. When the
equality holds, we know that H is constant and

∑n
i,j,k=1 h2

ijk = 0 on M , that
is, the second fundamental form of M is parallel. Hence, M is an isoparametric
hypersurface with at most two distinct principal curvatures (cf. [13]). Thus, M
is totally umbilical and non-totally geodesic or a Riemannian product Sm(c) ×
Sn−m(

√
1 − c2), 1 ≤ m ≤ n − 1.

¤
Proof of Corollary 1.2. From Gauss equation (2.4) and r > 1, we have n(n−1)H2 ≥
n2H2 − S = n(n − 1)(r − 1) > 0. Hence, |H| ≥

√
r − 1 and the equality holds at

umbilical points. Since |H| ≥
√

r − 1 > 0, we have H 6= 0. From |H| ≥
√

r − 1, we
infer

− {2n(n − 1) + n2(n − 1)(r − 1)}min |H|

+ n(n − 1)(r − 1){(n − 1)(r − 1) + 1} 1
min |H|

≤ −n(n − 1)r min |H| ≤ −n(n − 1)r
√

r − 1.

Therefore, we know that the first eigenvalue of the Jacobi operator Js satisifies
λJs

1 ≤ −n(n − 1)r
√

r − 1. When equality holds, we know

λJs
1 = − {2n(n − 1) + n2(n − 1)(r − 1)}min |H|

+ n(n − 1)(r − 1){(n − 1)(r − 1) + 1} 1
min |H|

= − n(n − 1)r
√

r − 1.

Hence, H is constant from the theorem 1.1 and S = nH2. Namely, M is totally
umbilical. If M is totally umbilical, from the example 3.1, we know that λJs

1 =
−n(n − 1)r

√
r − 1.

¤
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