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In this paper, we study n-dimensional hypersurfaces with constant mth mean curvature
in a unit sphere Sn+1(1) and construct many compact nontrivial embedded hypersur-
faces with constant mth mean curvature Hm > 0 in Sn+1(1), for 1 ≤ m ≤ n − 1.

Moreover, if the 2nd mean curvature H2 takes value between 1
(tan π

k
)2

and k2−2
n

for any

integer k ≥ 2 and n ≥ 3, then there exists an n-dimensional compact nontrivial embed-
ded hypersurface with constant H2 (i.e. constant scalar curvature) in Sn+1(1); If the 4th

mean curvature H4 takes value between 1
(tan π

k
)4

and k4−4
n(n−4)

for any integer k ≥ 3 and

n ≥ 5, then there exists an n-dimensional compact nontrivial embedded hypersurface
with constant H4 in Sn+1(1).
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1. Introduction

It is well known that Alexandrov ([1]) and Montiel–Ros ([10]) proved that the stan-
dard round spheres are the only possible oriented compact embedded hypersurfaces
with constant mth mean curvature Hm in a Euclidean space R

n+1, for m ≥ 1. On
the other hand, one knows that standard round spheres and Clifford hypersurfaces
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Sl(a)×Sn−l(b), 1 ≤ l ≤ n−1 are compact embedded hypersurfaces in a unit sphere
Sn+1(1). Hence, it is natural to ask the following:

Question. Do there exist compact embedded hypersurfaces with constant mth mean
curvature Hm in Sn+1(1) other than the standard round spheres and Clifford
hypersurfaces?

When m = 1, namely, when the mean curvature is constant, Ripoll ([13]) has
proved the existence of compact embedded hypersurfaces of S3(1) with constant
mean curvature (H �= 0,±

√
3

3 ) other than the standard round spheres and the
Clifford hypersurfaces. Then, Brito–Leite ([2]) have proved that there exist compact
embedded hypersurfaces with constant mean curvature H in Sn+1(1), which are not
isometric to the standard round spheres and the Clifford hypersurfaces. Recently,
Perdomo ([12]) has proved that there exists an n-dimensional compact nontrivial
embedded hypersurface with constant mean curvature H > 0 in Sn+1(1) if mean
curvature H takes value between 1

(tan π
k ) and (k2−2)

√
n−1

n
√

k2−1
, where any n ≥ 2 and any

integer k ≥ 2.
For m = 2, that is, when the scalar curvature is constant, Leite ([6]) has proved

that there exist compact nontrivial embedded hypersurfaces with constant scalar
curvature R satisfying (n − 1)(n − 2) < R < n(n − 1) in Sn+1(1). Furthermore,
Li–Wei ([8]) have proved that there exist many compact nontrivial embedded hyper-
surfaces with constant scalar curvature R satisfying R > n(n − 1) in Sn+1(1),
recently. But for m > 2, one knows little about existence of compact embedded
hypersurfaces with constant mth mean curvature Hm in Sn+1(1). In this paper,
we prove that there exist many compact nontrivial embedded hypersurfaces with
constant mth mean curvature Hm > 0 in Sn+1(1), for 1 ≤ m ≤ n−1. In particular,
for m = 4, we prove that there exist a lot of compact embedded hypersurfaces with
constant 4th mean curvature H4 in Sn+1(1) if it takes value between 1

(tan π
k )4 and

k4−4
n(n−4) for any integer k ≥ 3. Furthermore, for m = 1, our results reduce to the con-
clusion of Brito–Leite ([2]). For m = 2, we prove that there are many new compact
embedded hypersurfaces with constant scalar curvature satisfying R > n(n − 1) in
Sn+1(1), other than ones of Li–Wei ([8]).

2. Preliminaries

Let M be an n-dimensional hypersurface of a unit sphere Sn+1(1) with constant
mth mean curvature Hm. We choose a local orthonormal frame {eA}1≤A≤n+1 in
Sn+1, with dual coframe {ωA}1≤A≤n+1, such that, at each point of M , e1, . . . , en

are tangent to M and en+1 is the positively oriented unit normal vector. We shall
make use of the following convention on the ranges of indices:

1 ≤ A, B, C, . . . ,≤ n + 1; 1 ≤ i, j, k, . . . ,≤ n.
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Then the structure equations of Sn+1 are given by

dωA =
n+1∑
B=1

ωAB ∧ ωB, ωAB + ωBA = 0, (2.1)

dωAB =
n+1∑
C=1

ωAC ∧ ωCB − ωA ∧ ωB. (2.2)

When restricted to M , we have ωn+1 = 0 and

0 = dωn+1 =
n∑

i=1

ωn+1i ∧ ωi. (2.3)

By Cartan’s lemma, there exist functions hij such that

ωin+1 =
n∑

j=1

hijωj , hij = hji. (2.4)

This gives the second fundamental form of M , B =
∑

i,j hijωiωjen+1. The mean
curvature H is defined by H = 1

n

∑
i hii. From (2.1)–(2.4), we obtain the structure

equations of M (see [4, 7])

dωi =
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0, (2.5)

dωij =
n∑

k=1

ωik ∧ ωkj − 1
2

n∑
k,l=1

Rijklωk ∧ ωl. (2.6)

and the Gauss equations

Rijkl = δikδjl − δilδjk + (hikhjl − hilhjk), (2.7)

R − n(n − 1) = n(n − 1)(r − 1) = n2H2 − S, (2.8)

where Rijkl denotes the components of the Riemannian curvature tensor of M ,
R = n(n − 1)r is the scalar curvature of M and S =

∑n
i,j=1 h2

ij is the square norm
of the second fundamental form of M .

Let hijk denote the covariant derivative of hij . We then have∑
k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj . (2.9)

Thus, by exterior differentiation of (2.4), we obtain the Codazzi equation

hijk = hikj . (2.10)

We choose e1, . . . , en such that

hij = λiδij . (2.11)
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Let Hm be mth mean curvature of M , then we have

Cm
n Hm =

∑
1≤i1<i2<···<im≤n

λi1 . . . λim , (2.12)

where Cm
n = n!

m!(n−m)! .
In [11], Otsuki proved the following

Lemma 2.1 ([11]). Let M be an n-dimensional hypersurface in a unit sphere
Sn+1(1) such that the multiplicities of principal curvatures are all constant. Then
the distribution of the space of principal vectors corresponding to each principal
curvature is completely integrable. In particular, if the multiplicity of a principal
curvature is greater than 1, then this principal curvature is constant on each integral
submanifold of the corresponding distribution of the space of principal vectors.

From Lemma 2.1, we can easily obtain the following theorem.

Theorem 2.1. Let M be an n-dimensional oriented complete hypersurface in a
unit sphere Sn+1(1) with constant mth mean curvature Hm and with two distinct
principal curvatures. If the multiplicities of these two distinct principal curvatures
are greater than 1, then M is isometric to Riemannian product Sk(a) × Sn−k(b),
2 ≤ k ≤ n − 2.

3. A Representation Formula of Principal Curvatures

Now, let us consider that M is an n-dimensional oriented hypersurface with constant
mth mean curvature Hm and with two distinct principal curvatures in Sn+1(1). If
multiplicities of these two distinct principal curvatures are all great than 1, then we
can deduce from Theorem 2.1 that M is isometric to Sk(a)×Sn−k(b), 2 ≤ k ≤ n−2.
Hence, we shall assume that one of these two distinct principal curvatures is simple,
that is, we assume

λ1 = λ2 = · · · = λn−1 = λ, λn = µ. (3.1)

Since Hm is constant, we obtain from (2.12) that

Cm
n Hm = Cm

n−1λ
m + Cm−1

n−1 λm−1µ. (3.2)

By Lemma 2.1, let us denote the integral submanifold through x ∈ M , correspond-
ing to λ by Mn−1

1 (x). We write

dλ =
∑

i

λ,iωi, dµ =
∑

j

µ,jωj . (3.3)

If m ≥ 2 and λ = 0 at some point p, then Hm ≡ 0, it follows that λ ≡ 0 on M

(also see [14]). If λ ≡ 0, the sectional curvature of M is not less than 1 from Gauss
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Eq. (2.7), then we have from [15] that M is totally umbilical. This is a contradiction.
Hence we can assume that λ > 0 on M if m ≥ 2. Then (3.2) yields

µ =
Cm

n Hm − Cm
n−1λ

m

Cm−1
n−1 λm−1

=
nHm − (n − m)λm

mλm−1
. (3.4)

From Lemma 2.1 and (3.4), one has

λ,1 = · · · = λ,n−1 = 0. (3.5)

From the formula

λ − µ =
n(λm − Hm)

mλm−1
, (3.6)

we obtain that

λm − Hm �= 0. (3.7)

By means of (2.9) and (2.11), we obtain∑
k

hijkωk = δijdλj + (λi − λj)ωij . (3.8)

We adopt the notational convention that

1 ≤ a, b, c, . . . ≤ n − 1.

From (3.1), (3.2) and (3.8), we have

hijk = 0, if i �= j, λi = λj , (3.9)

haab = 0, haan = λ,n, (3.10)

hnna = 0, hnnn = µ,n. (3.11)

Combining this with (2.10) and the formula∑
i

haniωi = dhan +
∑

i

hinωia +
∑

i

haiωin = (λ − µ)ωan, (3.12)

we obtain from (3.10) and (3.6)

ωan =
λ,n

λ − µ
ωa =

mλm−1λ,n

n(λm − Hm)
ωa. (3.13)

Therefore we have

dωn =
∑

a

ωna ∧ ωa = 0. (3.14)

Notice that we may consider λ to be locally a function of the parameter s, where s is
the arc length of an orthogonal trajectory of the family of the integral submanifolds
corresponding to λ. We may put

ωn = ds.
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Thus, for λ = λ(s), we have

dλ = λ,nds, λ,n = λ′(s). (3.15)

From (3.6) and (3.13), we get

ωan =
mλm−1λ,n

n(λm − Hm)
ωa =

mλm−1λ′(s)
n(λm − Hm)

ωa = {log|λm − Hm|1/n}′ωa, (3.16)

which shows that the integral submanifolds Mn−1
1 (x) corresponding to λ is umbilical

in M and Sn+1(1).
On the other hand, we can deduce from (3.16) that

∇enen =
n∑

k=1

ωni(en)ei = 0.

According to the definition of geodesic, we know that the integral curve of the
principal vector field en corresponding to the principal curvature µ is a geodesic.

This proves the following result:

Lemma 3.1. If M is an n-dimensional oriented complete hypersurface (n ≥ 3)
in Sn+1(1) with constant mth mean curvature Hm and with two distinct principal
curvatures, one of which is simple, then

(1) the integral submanifold Mn−1
1 (x) through x ∈ M corresponding to λ is umbil-

ical in M and Sn+1(1),
(2) the integral curve of the principal vector field en corresponding to the principal

curvature µ is a geodesic.

Now we state our Theorem 3.1 as follows:

Theorem 3.1. If M is an n-dimensional oriented complete hypersurface (n ≥ 3)
in Sn+1(1) with constant mth mean curvature Hm and with two distinct principal
curvatures one of which is simple, then M is isometric to a complete hypersurface
of revolution Sn−1(c(s)) × M1 (i.e. the warped product of Sn−1(c(s)) and M1),
where Sn−1(c(s)) is of constant curvature [(log | λm − Hm |1/n)′]2 + λ2 + 1. And
w =| λm−Hm |−1/n satisfies the following ordinary differential equation of order 2:

d2w

ds2
− w

{
(n − m)(w−n + Hm)(2−m)/m

mwn
− Hm(w−n + Hm)(2−m)/m − 1

}
= 0.

(3.17)
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Proof. According to the structure equations of Sn+1(1) and (3.16), we may
compute

dωan =
n−1∑
b=1

ωab ∧ ωbn + ωan+1 ∧ ωn+1n − ωa ∧ ωn

= (log |λm − Hm|1/n)′
n−1∑
b=1

ωab ∧ ωb − λµωa ∧ ds − ωa ∧ ds,

dωan = d[(log |λm − Hm|1/n)′ωa]

= {log |λm − Hm|1/n}′′ds ∧ ωa + {log |λm − Hm|1/n}′dωa

= {−(log |λm − Hm|1/n)′′ + [(log |λm − Hm|1/n)′]2}ωa ∧ ds

+ (log |λm − Hm|1/n)′
n−1∑
b=1

ωab ∧ ωb.

Then we obtain from two equalities above that

{log |λm − Hm|1/n}′′ − [(log |λm − Hm|1/n)′]2 − λµ − 1 = 0. (3.18)

Combining (3.18) with (3.6), we have

{log |λm − Hm|1/n}′′ − [(log |λm − Hm|1/n)′]2 +
(n − m)λm − nHm

mλm−2
− 1 = 0.

(3.19)

We know that λm − Hm �= 0. If λm − Hm < 0, from (3.6), we have

λ2 − λµ =
n(λm − Hm)

mλm−2
< 0. (3.20)

According to the Gauss equation (2.7), we know that the sectional curvature of
M is not less than 1. From [3, 15], we know that M is isometric to a totally
umbilical hypersurface. This is impossible because M has two distinct principal
curvatures. Hence, λm − Hm > 0. Let us define a positive function w(s) over
s ∈ (−∞, +∞) by

w = (λm − Hm)−1/n, (3.21)

then (3.19) reduces to

d2w

ds2
− w

{
(n − m)(w−n + Hm)(2−m)/m

mwn
− Hm(w−n + Hm)(2−m)/m − 1

}
= 0.

(3.22)

Integrating (3.22), we obtain(
dw

ds

)2

= C − w2(w−n + Hm)
2
m − w2, (3.23)

where C is the constant of integration.
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We consider the frame {x, e1, e2, . . . , en, en+1} in the Euclidean space R
n+2.

Then, by (2.4), (3.13) and (3.18), we obtain

dea =
n−1∑
b=1

ωabeb + ωanen + ωan+1en+1 − ωaen+2

=
n−1∑
b=1

ωabeb + (log |λm − Hm|1/n)′ωaen − λωaen+1 − ωaen+2

=
n−1∑
b=1

ωabeb + {(log |λm − Hm|1/n)′ − λen+1 − en+2}ωa

d{(log |λm − Hm|1/n)′ − λen+1 − en+2}

= {(log |λm − Hm|1/n)′′ − λ′en+1}ds

+ (log |λm − Hm|1/n)′
(

n−1∑
a=1

ωnaea + ωnn+1en+1

)

−λ

(
n−1∑
a=1

ωn+1aea + ωn+1nen

)
−

n−1∑
a=1

ωaea − ωnen

≡ {(log |λm − Hm|1/n)′′ − λµ − 1}enωn

−{λ′ + (log |λm − Hm|1/n)′µ}en+1ωn (mod {e1, . . . , en−1})

= (log |λm − Hm|1/n)′{(log |λm − Hm|1/n)′en − λen+1 − en+2}ds.

By putting

W = e1 ∧ e2 ∧ · · · ∧ en−1 ∧ {(log |λm − Hm|1/n)′en − λen+1 − en+2},
(3.24)

we can show that

dW = (log |λm − Hm|1/n)′Wds. (3.25)

(3.25) shows that n-vector W in R
n+2 is constant along Mn−1

1 (x). Hence there
exists an n-dimensional linear subspace En(s) in R

n+2 containing Mn−1
1 (x). (3.25)

also implies that the n-vector field W only depends on s and by integrating it,
we get

W =
{

λm(s) − Hm

λm(s0) − Hm

}1/n

W (s0). (3.26)

Theorefore, we have that En(s) is parallel to En(s0) in R
n+2 for every s.
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From the calculation

dωab −
n−1∑
c=1

ωac ∧ ωcb = ωan ∧ ωnb + ωan+1 ∧ ωn+1b − ωa ∧ ωb

= −{[(log |λm − Hm|1/n)′]2 + λ2 + 1}ωa ∧ ωb,

we see that the curvature of Mn−1
1 (x) is [(log |λm−Hm|1/n)′]2+λ2+1 and Mn−1

1 (x)
is locally isometric to Sn−1(c(s)). Therefore, M is isometric to a complete hyper-
surface of revolution Sn−1(c(s)) × M1 (i.e. the warped product of Sn−1(c(s)) and
M1). This proves Theorem 3.1.

4. A Representation Formula of Period

One knows that the following immersion:

x : Mn ↪→ Sn+1(1) ⊂ Rn+2,

(s, t1, . . . , tn−1) �→ (y1(s)ϕ1, . . . , y1(s)ϕn, yn+1(s), yn+2(s)). (4.1)

ϕi = ϕi(t1, . . . , tn−1), ϕ2
1 + · · · + ϕ2

n = 1 (4.2)

is a parametrization of a rotational hypersurface generated by a curve
(y1(s), yn+1(s), yn+2(s)), called the profile curve. Since the curve (y1(s), yn+1(s),
yn+2(s)) belongs to S2(1) and the parameter s can be chosen as its arc length, we
have

y2
1(s) + y2

n+1(s) + y2
n+2(s) = 1, ẏ2

1(s) + ẏ2
n+1(s) + ẏ2

n+2(s) = 1 (4.3)

where the dot denotes the derivative with respect to s and from (4.3) we can obtain
yn+1(s) and yn+2(s) as functions of y1(s). In fact, we can write (see [5, 9])

y1(s) = cosϑ(s), yn+1(s) = sinϑ(s) cos θ(s), yn+2(s) = sinϑ(s) sin θ(s).

(4.4)

We can deduce from (4.3) that

ϑ̇2 + θ̇2 sin2 ϑ = 1. (4.5)

It follows from Eq. (4.5) that ϑ̇2 ≤ 1. Combining these with ϑ̇2 = ẏ2
1

1−y2
1
, we have

ẏ2
1 + y2

1 ≤ 1. (4.6)

We can get the plane curve ζ from α by projection of S2
+ = {(y1, yn+1, yn+2) | y1 ≥

0, y2
1 + y2

n+1 + y2
n+2 = 1} onto the unit disk E = {(yn+1, yn+2) | y2

n+1 + y2
n+2 ≤ 1}.

Then the plane curve ζ can be written as

yn+1(s) = sin ϑ(s) cos θ(s), yn+2(s) = sin ϑ(s) sin θ(s). (4.7)

Writing r(s) = y1(s), (4.5) can be written as

θ̇2 =
1 − ϑ̇2

sin2 ϑ
=

1 − r2 − ṙ2

(1 − r2)2
. (4.8)
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Do Carmo and Dajczer proved the following

Lemma 4.1 ([3]). Let Mn be a rotational hypersurface of Sn+1(1). Then the
principal curvatures λi of Mn are

λi = λ =
√

1 − r2 − ṙ2

r
(4.9)

for i = 1, . . . , n − 1, and

λn = µ = − r̈ + r√
1 − r2 − ṙ2

. (4.10)

On the other hand, let us fix a point p0 ∈ M , let γ(u) be the only geodesic in M

such that γ(0) = p0 and γ′(0) = en(p0). From (3.16), we know that γ(u) = en(γ(u)).
Note that γ(u) is also a line of curvature. Let us denote by g(u) = w(γ(u)). Since
Hm is constant, we know from (3.23) that

(g′)2 + g2(g−n + Hm)
2
m + g2 = C. (4.11)

From (4.11), we have C > 0. Moreover, it is not so difficult to know that

q(x) = C − x2(x−n + Hm)
2
m − x2 (4.12)

is positive on a interval (t1, t2) with 0 < t1 < t2 and q(t1) = q(t2) = 0. From (4.11),
we know that g(u) is periodic. And the period is the following

T = 2
∫ t2

t1

1√
C − t2(t−n + Hm)

2
m − t2

dt. (4.13)

One can know from the following lemma the relation between hypersurfaces
with two distinct principal curvature and rotational hypersurfaces.

Lemma 4.2 ([3, 15]). Let M be a complete hypersurface in a unit sphere Sn+1(1).
Assume that the principal curvatures λ1, . . . , λn of M satisfy λ1 = λ2 = · · · =
λn−1 = λ �= 0, λn = µ = µ(λ) and λ �= µ, then M is a rotational hypersurface.

On the other hand, if Sk(a) denote a sphere with radius a, then the sectional
curvature of Sk(a) is equal to 1

a2 . From (4.1), Theorem 3.1 and Lemma 4.2, we have

1
r2

= [(log |λm − Hm|1/n)′]2 + λ2 + 1.

Then we know from (3.23), (4.11) that

r(u) =
g(u)√

C
, g(u) = (λm − Hm)−

1
n . (4.14)

From (4.14), one can have that the period of r(u) is also T , that is
2
∫ t2

t1
1q

C−t2(t−n+Hm)
2
m −t2

dt, therefore we obtain from (4.8), (4.9), (4.11) that the
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period P (Hm, n, c) of hypersurfaces is

P (Hm, n, C) = θ(T ) =
∫ T

0

√
1 − r2 − ṙ2

1 − r2
ds

=
∫ T

0

r(s)λ(s)
1 − r2(s)

ds = 2
∫ T

2

0

r(s)λ(s)
1 − r2(s)

ds. (4.15)

It is clear that the profile curve gives rise to an immersed hypersurface if and
only if the period P (Hm, n, C) is a rational multiple of 2π, and to an embedded
hypersurface if and only if the period P (Hm, n, C) = 2π

k for some integer k (also
see [6, 11, 12]).

5. Embedded Hypersurfaces with Constant Hm > 0

From Sec. 4, one knows that embedded problem is equivalent to find some constant
C and some integer k such that P (Hm, n, C) = 2π

k . In order to estimate the period
P (Hm, n, C), we will give the following lemma ([11, 12]).

Lemma 5.1. Let ε and δ be positive numbers and f : (t0 − ε, t0 + ε) → R and
y : (−δ, δ)×(t0−ε, t0 +ε) → R be two smooth functions such that f(t0) = f ′(t0) = 0
and f ′′(t0) = −2a < 0. If for any small c > 0, t1(c) < t0 < t2(c) are such that
f(t1(c)) + c = 0 = f(t2(c)) + c, then

lim
c→0+

∫ t2(c)

t1(c)

y(c, t)dt√
f(t) + c

=
y(0, t0)π√

a
.

We next state our main theorem.

Theorem 5.1. For any n ≥ 5 and any integer k ≥ 3, if 4th mean curvature H4

takes value between 1
(tan π

k )4 and k4−4
n(n−4) , then there exists an n-dimensional compact

nontrivial embedded hypersurface with constant H4 > 0 in Sn+1(1).

Proof. Firstly, we consider the general case: 1 ≤ m ≤ (n − 1) and Hm ≥ 0.
From (4.11), one has

(g′)2 = q(g), where q(v) = C − v2(v−n + Hm)
2
m − v2. (5.1)

A direct calculation shows that

q′(v) = 2v
{
−(v−n + Hm)

2
m +

n

m
v−n(v−n + Hm)

2−m
m − 1

}
(5.2)

= −2v

{
(v−n + Hm)

2−m
m

[
m − n

m
v−n + Hm

]
+ 1
}

q′′(v) = −2(v−n + Hm)
2−2m

m

m2
{(2n2 − 3nm + m2)v−2n

+ m(n2 − 3n + 2m)Hmv−n + m2H2
m} − 2 < −2. (5.3)

From (5.3), one obtains that q′(v) is a decreasing function of v in [0, +∞).
From (5.2), one has q′(v) > 0 if v → 0; q′(v) < 0 if v → ∞. Hence there exists
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0 < v0 < ∞ such that q′(v0) = 0. Moreover, the function q(v) is a monotone
increasing function of v in (0, v0] and decreasing function of v in [v0, +∞). Hence,
for some value of C, the function q has two positive roots t1 and t2, such that
t1 ≤ t2, q(t1) = q(t2) = 0 and q(t) > 0 if t ∈ (t1, t2).

In particular, if m = 4 and H4 = 1, we have form (5.2) that the only positive
root of q′(v) is

v0 =
(

(n − 4)2

8n − 16

) 1
n

, (5.4)

and the maximum of q(v) is q(v0) = C − c0, where

c0 = v2
0((v

−n
0 + 1)

1
2 + 1) =

(
(n − 4)2

8n − 16

) 2
n

×
(

n

n − 4
+ 1
)

. (5.5)

Therefore, whenever C > c0, the function q(v) has two positive roots denoted by
t1(C) and t2(C). In this special case, (5.3) reduces to

q′′(v0) = −4(n − 2)2

n
: � −2a. (5.6)

Hence, we get from (4.15) that

P (H4, n, C) = 2
∫ T

2

0

r(s)λ(s)
1 − r2(s)

ds, (5.7)

it follows from r(s) = g(s)√
C

and λ(s) = (g−n + 1)
1
4 that

P (H4 = 1, n, C) = 2
∫ T

2

0

√
Cg(s)(g−n(s) + 1)

1
4

C − g2(s)
ds. (5.8)

Substituting t = g(s), one derives from g(0) = t1(C), g(T
2 ) = t2(C) and (5.8) that

P (H4 = 1, n, C) = 2
∫ t2(C)

t1(C)

√
Ct(t−n + 1)

1
4

C − t2
1√
q(t)

ds. (5.9)

From (5.4)–(5.6), we know that the function q(v)− (C − c0) satisfies the conditions
in Lemma 5.1, hence we apply Lemma 5.1 to function q(v) − (C − c0), then we
obtain

lim
C→c+

0

P (H4 = 1, n, C) =
2π√

a

√
c0v0(v−n

0 + 1)
1
4

c0 − v2
0

=
2π

√
n − 2

n − 2
. (5.10)

On the other hand, we will estimate P (Hm, n, C) when C → ∞, we make the
substitution t = r(s) and obtain

P (Hm, n, C) = 2
∫ t2(C)√

C

t1(C)√
C

t((
√

Ct)−n + Hm)
1
m

(1 − t2)
√

1 − t2(1 + (Hm + (
√

Ct)−n)
2
m )

dt.

(5.11)
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Putting

q̃ = 1 − t2(1 + (Hm + (
√

Ct)−n)
2
m ), (5.12)

we deduce from (5.1) and (5.12) that

q̃

(
v√
C

)
=

q(v)
C

,

since the function q has two positive roots t1 and t2, one has from the relationship
between q and q̃ that q̃ has two positive roots t1√

C
, t2√

C
and t1√

C
≤ t2√

C
. Moreover,

if C converges to +∞, then t1√
C

converges to 0, t2√
C

converge to 1q
1+H

2
m

m

. (When

m = 1, also see [12].) Hence we obtain from (5.11) that

lim
C→∞

P (Hm, n, C) = 2
∫ 1r

1+H

2
m
m

0

tH
1
m
m

(1 − t2)
√

1 − t2(1 + H
2
m
m )

dt = 2 arctan
1

H
1
m
m

.

(5.13)

In particular, if m = 4 and H4 = 1, we have from (5.13) that

lim
C→∞

P (H4 = 1, n, C) = 2 arctan
1

(H4)
1
4

=
π

2
. (5.14)

Next, we consider the case m = 4 and 0 < H4 �= 1.
In this case, we have from (5.2) that the only positive root of q′ is

v0 =

(√
n(n − 4)H4 + 4 − nH4 + 4H4 − 2

4H4(1 − H4)

) 1
n

. (5.15)

A direct calculation shows that q(v0) = C − c0, where

c0 = v2
0(v

−n
0 + H4)

1
2 + v2

0

=

(√
n(n − 4)H4 + 4 − nH4 + 4H4 − 2

4H4(1 − H4)

) 2
n

(5.16)

×

( H4(

√
n(n − 4)H4 + 4 − nH4 + 2)√

n(n − 4)H4 + 4 − nH4 + 4H4 − 2

) 1
2

+ 1


 .

q′′(v0) =
−2H

1
2
4

(|√n(n − 4)H4 + 4 − nH4 + 2|) 3
2 (|√n(n − 4)H4 + 4 − nH4 + 4H4 − 2|) 1

2

×{n2(n − 4)H2
4 + n(−n2 + 4n + 4)H4 − 4n

+ [n2 − 2n + (−n2 + 2n)H4]
√

n(n − 4)H4 + 4} : � −2a. (5.17)

Therefore, whenever C > c0, q(v) has two positive roots denoted by t1 and t2.
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Using the results of Sec. 4, we have from (4.15) that

P (H4, n, C) = 2
∫ T

2

0

r(s)λ(s)
1 − r2(s)

ds. (5.18)

In this special case, (4.14) is equivalent to r(s) = g(s)√
C

and λ(s) = (g(s)−n + H4)
1
4 ,

then it follows from (5.18) that

P (H4, n, C) = 2
∫ T

2

0

√
Cg(s)(g(s)−n + H4)

1
4

C − g2(s)
ds. (5.19)

Doing the substitution t = g(s) and applying Lemma 5.1, one concludes from
g(0) = t1 and g(T

2 ) = t2 that

lim
C→c+

0

P (H4, n, C) =
2π

√
c0√

a
√

c0 − v2
0

= 2π
|(n − 2)(n − nH4) + (nH4 − n)

√
n(n − 4)H4 + 4| 12

|n2(n − 4)H2
4 + n(−n2 + 4n + 4)H4 − 4n

+ [n2 − 2n + (−n2 + 2n)H4]
√

n(n − 4)H4 + 4| 12

= 2π
|(n − 2) −√n(n − 4)H4 + 4| 12

|(n(4 − n)H4 − 4) + (n − 2)
√

n(n − 4)H4 + 4| 12

=
2π

[n(n − 4)H4 + 4]
1
4
. (5.20)

On the other hand, we know from (5.13) that

lim
C→∞

P (H4, n, C) = 2 arctan
1

H
1
4
4

. (5.21)

Therefore, for any fixed H4 > 0, the function P (H4, n, C) takes all the values
between

A(H4) = 2 arctan
1

H
1
4
4

, B(H4) =
2π

[n(n − 4)H4 + 4]
1
4
. (5.22)

It is not so difficult to know that A(H4) and B(H4) are decreasing functions
of H4,

A

(
1

(tan π
k )4

)
= B

(
k4 − 4

n(n − 4)

)
=

2π

k
, (5.23)

where k ≥ 3 is any integer, then we deduce that the number 2π
k lies between A(H4)

and B(H4). Hence, by the continuity of P (H4, n, C), there exists some constant
C1 such that P (H4, n, C1) = 2π

k . If the period is 2π
k , then there exists a compact
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embedded hypersurface with constnat H4 which is not isometric to a round sphere
or a Clifford hypersurface. We complete the proof of Theorem 5.1.

For constant Hm > 0, we can prove the following

Theorem 5.2. For any integer 1 ≤ m ≤ n− 1, there exist many nontrivial embed-
ded hypersurfaces with constant Hm > 0 in Sn+1(1).

Proof. On one hand, we consider the case Hm = 0. By using the similar arguments
with the proof of Theorem 5.1, we have that

v0 =
(

n − m

m

) m
2n

, c0 =
(

n − m

m

)m
n

× n

n − m
, q′′(v0) = −4n

m
: � −2a.

(5.24)

From (4.14), (4.15) and Lemma 5.1, we obtain

lim
C→c+

0

P (Hm = 0, n, C) =
2π

√
c0√

a
√

c0 − v2
0

=
√

2π, (5.25)

by continuity arguments, we can fix Hm sufficiently small such that

lim
C→c+

0

P (Hm, n, C) > π. (5.26)

On the other hand, we deduce from (5.13) and Hm > 0 that

lim
C→∞

P (Hm, n, C) = 2 arctan
1

H
1
m
m

< π. (5.27)

By (5.26), (5.27) and the continuity of P (Hm, n, C), there exists c+
0 < C2 < ∞,

such that P (Hm, n, C2) = π. We complete the proof of Theorem 5.2.

Remark 5.1. When m = 1, Theorem 5.2 reduces to the results of Brito and
Leite ([2]).

Using the similar arguments as above, we can obtain the following:
When m = 2, we have:

Proposition 5.1. For any n ≥ 3 and any integer k ≥ 2, if H2 = R−n(n−1)
n(n−1)

takes value between 1
(tan π

k )2 and k2−2
n , then there exists an n-dimensional compact

nontrivial embedded hypersurface M with constant 2nd mean curvature H2 > 0 (i.e.
scalar curvature R > n(n − 1)) in Sn+1(1), where R is the scalar curvature of M .

Proof. In this case, m = 2. By using the similar arguments with the proof of
Theorem 5.1, one has that

v0 =
(

n − 2
2(H2 + 1)

) 1
n

, c0 =
(

n − 2
2(H2 + 1)

) 2
n

× n(H2 + 1)
n − 2

, (5.28)
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q′′(v0) = −2n(H2 + 1) : � −2a, (5.29)

lim
C→c+

0

P (H2, n, C) =
2π

√
c0√

a
√

c0 − v2
0

=
2π√

nH2 + 2
. (5.30)

On the other hand, one sees from (5.13) that

lim
C→∞

P (H2, n, C) = 2 arctan
1

H
1
2
2

. (5.31)

For any fixed H2 > 0, the function P (H2, n, C) takes all the values between

E(H2) = 2 arctan
1

H
1
2
2

, F (H2) =
2π√

nH2 + 2

since P (H2, n, C) is a continuous function. By a direct calculation, one obtains that
E(H2) and F (H2) are decreasing functions and

E

(
1

(tan π
k )2

)
= F

(
k2 − 2

n

)
=

2π

k
,

where k ≥ 2 is any integer, then it follows that the number 2π
k lies between E(H4)

and F (H4). Hence, there exists some constant C3 such that P (H2, n, C3) = 2π
k , that

is, there exists a compact embedded hypersurface with constnat H2 (i.e. constant
scalar curvature) which is not isometric to a round sphere or a Clifford hypersurface.
We complete the proof of Proposition 5.1.

Remark 5.2. Since H2 = R−n(n−1)
n(n−1) , by a direct calculation, one concludes that

when 3 ≤ n ≤ 6, Proposition 5.2 reduces to Theorems 1.1 and 1.2 due to Li–Wei
([8]); when n > 6 and k = 2, Proposition 5.2 reduces to Theorem 1.3 due to
Li–Wei ([8]). In Proposition 5.2, we find there exist a lot of new examples satisfying
R > n(n− 1). Hence, Proposition 5.2 is the generalization of Li–Wei’s results ([8]).

Remark 5.3. For some special 4 �= m > 3, we can also obtain some nontrivial
embedded hypersurfaces with Hm = constant in Sn+1(1) using the same methods.
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