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We study the weak stability index of an immersion φ : M → Sn+1(1) ⊂ Rn+2 of an
n-dimensional compact Riemannian manifold. We prove that the weak stability index
of a compact hypersurface M with constant scalar curvature in Sn+1(1), which is not
totally umbilical, is greater than or equal to n + 2 if the mean curvature H1 and H3
are constant, and that the equality holds if and only if M is
Sm(c) × Sn−m(

√
1 − c2). As an application, we show that the weak stability index of

an n-dimensional compact hypersurface with constant scalar curvature in Sn+1(1),
which is neither totally umbilical nor a Clifford hypersurface, is greater than or equal
to 2n + 4 if the mean curvature H1 and H3 are constant.

1. Introduction

Let φ : M → Sn+1(1) ⊂ Rn+2 be an isometric immersion of an n-dimensional com-
plete Riemannian manifold. For any point x ∈ M , we will denote by TxM and
NxM the tangent space and normal space of M at x, respectively. Let us denote by
ν : M → Sn+1(1) a normal vector field along M . The shape operator Ax : TxM →
TxM is given by Ax(v) = −dνx(v) = −β′(0), where β(t) = ν(α(t)) and α(t) is any
smooth curve in M such that α(0) = x and α′(0) = v. We know that the linear
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map Ax is symmetric and that its eigenvalues k1(x), . . . , kn(x) are called principal
curvatures of M at x.

We consider elementary symmetric functions Sm(x) of the principal curvatures
of M defined by

det(tI − Ax) =
n∑

m=0

(−1)mSm(x)tn−m.

Now, Hm(x) = Sm(x)/Cm
n with Cm

n = n!/m!(n − m)! is called the mth mean
curvature of M , namely,

Hm(x) =
1

Cm
n

∑
1�i1<i2<···<im�n

ki1(x) · · · kim
(x).

Hence, the mean curvature H(x) of M satisfies H(x) = (k1(x) + · · · + kn(x))/n =
H1(x), the scalar curvature

R(x) = n(n − 1)r(x) = n(n − 1) + 2S2(x) = n(n − 1) + n(n − 1)H2(x)

and the Gauss–Kronercker curvature K(x) of M is

K(x) = k1(x) · · · kn(x) = Hn(x) = Sn(x).

For any C2 function f defined on M , let (f,ij) denote its Hessian. A differential
operator � defined by

�f =
n∑

i,j=1

(nHδij − hij)f,ij ,

where hij denotes components of the second fundamental form of M , was intro-
duced by Cheng and Yau in [5] to study compact hypersurfaces with constant
scalar curvature in Sn+1(1). They proved that if M is an n-dimensional compact
hypersurface with constant scalar curvature n(n − 1)r, r � 1, and if the sectional
curvature of M is non-negative, then M is a totally umbilical hypersurface Sn(c)
or a Clifford hypersurface Sm(c) × Sn−m(

√
1 − c2), 1 � m � n − 1, where Sk(c)

denotes a sphere of radius c. Cheng [4] and Li [6] also used the differential operator
� to study complete hypersurfaces with constant scalar curvature.

In [1], Alencar et al . studied the stability of compact hypersurfaces with constant
scalar curvature n(n − 1)r in Sn+1(1). In this case, its Jacobi operator Js is given
by

Js = � + {n(n − 1)H + nHS − f3} = � + {(n − 1)S1 + (S1S2 − 3S3)},

where

S =
n∑

i=1

k2
i , f3 =

n∑
i=1

k3
i .

It is not difficult to prove that if r > 1, then Js is elliptic. The spectral behaviour
of Js is directly related to the instability of hypersurfaces with constant scalar
curvature in Sn+1(1).
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Definition 1.1 (cf. [2, 8]). Let M be an n-dimensional, compact, orientable hyper-
surface with constant scalar curvature n(n−1)r, r > 1, in Sn+1(1). A weak stability
index of M , IndT (M) is the maximal dimension of any subspace V of C∞

T (M) on
which the quadratic form Q is negative definite, where

C∞
T (M) =

{
u ∈ C∞(M) :

∫
M

u dv = 0
}

and Q(u, u) = −
∫

M

uJs(u) dv.

We study compact hypersurfaces with constant scalar curvature in Sn+1(1) and
we will estimate the weak stability index.

Theorem 1.2. Let M be a compact hypersurface in Sn+1(1) with constant scalar
curvature R = n(n − 1)r > n(n − 1). If H1 and H3 are constant, then

(i) the weak stability index IndT (M) of M is equal to zero: in this case, M is
totally umbilical, or

(ii) the weak stability index IndT (M) of M is greater than or equal to n + 2, and
the equality holds if and only if M is Sm(c)×Sn−m(

√
1 − c2), where c satisfies

nm +
√

m[(2 − n)m + (n − 1)(n + 2)]
(n − 1)(n + 2)

� c2 � (nm + n − 2) +
√

(n − m)(3n − 2m + nm − 2)
(n − 1)(n + 2)

.

Given an arbitrary vector v ∈ Rn+2, we define functions lv : M → R and
fv : M → R by lv(x) = 〈φ(x), v〉 and fv(x) = 〈ν(x), v〉.

Theorem 1.3. Let φ : M → Sn+1 be an isometric immersion of an n-dimensional
complete Riemannian manifold M with constant ratio of the Gauss–Kronercker
curvature and the (n − 1)th mean curvature, that is, Sn(x) = cSn−1(x), where c is
a constant. If lv = λfv, for some non-zero vector v and some real number λ, then
φ(M) is either a totally umbilical sphere or a Clifford hypersurface.

Theorem 1.4. Let φ : M → Sn+1 be an isometric immersion of an n-dimensional
complete Riemannian manifold M with constant scalar curvature n(n − 1)r, where
r satisfies

r �= 2
(2k + m)n2 − (2k2 + 4k + 2km + m)n + 2k(m + k + 1)

n(2k + m)(2(n − 1) − (2k + m))

for 0 � m � n − 2 and 1 � k � n − 1 − m. If lv = λfv, for some non-zero vector v
and some real number λ, then φ(M) is either a totally umbilical sphere or a Clifford
hypersurface.

We now have the following corollary of theorem 1.2 and theorem 1.4.

Corollary 1.5. Let M be a compact hypersurface in Sn+1(1) with constant scalar
curvature n(n − 1)r, with r > 1 and

r �= 2
(2k + m)n2 − (2k2 + 4k + 2km + m)n + 2k(m + k + 1)

n(2k + m)(2(n − 1) − (2k + m))
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for 0 � m � n − 2, 1 � k � n − 1 − m. If H1 and H3 are constants, then either

(i) M is totally umbilical,

(ii) M is a Clifford hypersurface or

(iii) the weak stability index of M is greater than or equal to 2n + 4.

Theorem 1.6. Let φ : M → Sn+1 be an isometric immersion with constant Gauss–
Kronercker curvature c, c �= ±1, of an n-dimensional complete Riemannian mani-
fold. If lv = λfv for some non-zero vector v and some real number λ, then φ(M) is
either a totally umbilical sphere or a Clifford hypersurface.

2. The weak stability index of Clifford hypersurfaces

In this section we will compute the weak stability index of the Clifford hypersurface
Sm(c) × Sn−m(

√
1 − c2), 1 � m � n − 1.

Since Sm(c) × Sn−m(
√

1 − c2), 1 � m � n − 1, is an isoparametric hypersurface
in Sn+1(1), its principal curvatures are given by

k1 = · · · = km = −
√

1 − c2

c
, km+1 = · · · = kn =

c√
1 − c2

. (2.1)

Hence, its mean curvature H, the squared norm S = |A|2 of the second fundamental
form and f3 are given by

H =
nc2 − m

nc
√

1 − c2
, (2.2)

S = |A|2 =
nc4 − 2mc2 + m

c2(1 − c2)
, (2.3)

f3 =
−m(1 − c2)3/2

c3 +
(n − m)c3

(1 − c2)3/2 . (2.4)

From the Gauss equation, we have

R − n(n − 1) = n(n − 1)(r − 1)

= n2H2 − S

=
n(n − 1)c4 + 2m(1 − n)c2 + m(m − 1)

c2(1 − c2)
, (2.5)

where R is the scalar curvature. Thus, we infer that r > 1 if and only if

c2 >
m(n − 1) +

√
m(n − 1)(n − m)

n(n − 1)
or c2 <

m(n − 1) −
√

m(n − 1)(n − m)
n(n − 1)

.

(2.6)
If the scalar curvature R = n(n−1)r > n(n−1), we know from the Gauss equation
n2H2 = S + n(n − 1)(r − 1) that the mean curvature H does not vanish. Without
loss of generality, assume the mean curvature H > 0, that is,

c2 >
m

n
. (2.7)
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From (2.6) and (2.7), we have that

1 > c2 >
m(n − 1) +

√
m(n − 1)(n − m)

n(n − 1)
. (2.8)

Therefore, we have

n(n − 1)H + nHS − f3 =
(n − 2m)(n − 1)c4 + 2m(m − 1)c2 − m(m − 1)

c3(1 − c2)3/2 , (2.9)

and the Jacobi operator Js = � + {n(n − 1)H + nHS − f3} becomes

Js = � +
(n − 2m)(n − 1)c4 + 2m(m − 1)c2 − m(m − 1)

c3(1 − c2)3/2 . (2.10)

Thus, the eigenvalues of Js are given by

λJs
i = λ�

i +
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2 , (2.11)

where λ�
i denotes the eigenvalues of the differential operator �.

Since the differential operator � is self-adjoint and the Clifford hypersurface is
closed, we have λ�

1 = 0, and its corresponding eigenfunctions are non-zero constant
functions. Hence,

λJs
1 =

(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)
c3(1 − c2)3/2

with multiplicity one and its corresponding eigenfunctions are non-zero constant
functions. Hence, λJs

1 does not contribute to IndT (M). Since the other eigenfunc-
tions u of Js other than the first eigenfunctions are orthogonal to the constant
functions, namely,

∫
M

u = 0, we know that the other eigenvalues of Js contribute
to IndT (M) if they are negative.

Let ∆1 and ∆2 denote the Laplacians on Sm(c) and on Sn−m(
√

1 − c2), respec-
tively. We can derive

�f = (nHδi,j − hi,j)fi,j = (nH − k1)∆1f + (nH − kn)∆2f.

Hence, the eigenvalues λ�
l are given by

λ�
l = (nH − k1)λ∆1

i + (nH − kn)λ∆2
j , (2.12)

the multiplicity of λ�
l is the sum of the products m

λ
∆1
i

m
λ

∆2
j

for all possible values
of λ∆1

i and λ∆2
j which satisfy

λ�
l = (nH − k1)λ∆1

i + (nH − kn)λ∆2
j ,

where m
λ

∆j
i

denotes the multiplicity of λ
∆j

i .
We recall that the eigenvalues of the Laplacian ∆1 on Sm(c) are given by

λ∆1
i =

(i − 1)(m + i − 2)
c2 , i = 1, 2, 3, . . . ,
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with multiplicities

m
λ

∆1
1

= 1, m
λ

∆1
2

= m + 1 and m
λ

∆1
i

= Ci−1
m+i−1 − Ci−3

m+i−3, i = 3, 4, . . . ,

and the eigenvalues of the Laplacian ∆2 on Sn−m(
√

1 − c2) are given by

λ∆2
j =

(j − 1)(n − m + j − 2)
1 − c2 , j = 1, 2, 3, . . .

with multiplicities

m
λ

∆2
1

= 1, m
λ

∆2
2

= n − m + 1

and

m
λ

∆2
j

= Cj−1
n−m+j−1 − Cj−3

n−m+j−3, j = 3, 4, . . . .

Therefore, we infer that

λJs

l = λ�
l +

(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)
c3(1 − c2)3/2

= (nH − k1)λ∆1
i + (nH − kn)λ∆2

j

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2

=
(

nc2 − m

c
√

1 − c2
+

√
1 − c2

c

)
(i − 1)(m + i − 2)

c2

+
(

nc2 − m

c
√

1 − c2
− c√

1 − c2

)
(j − 1)(n − m + j − 2)

1 − c2

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2 . (2.13)

It is not difficult to prove that

(nH − k1)λ∆1
2 + (nH − kn)λ∆2

2

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2 = 0.

Thus, in order to calculate the weak stability index, it suffices to estimate when

(nH − k1)λ∆1
i + (nH − kn)λ∆2

j < (nH − k1)λ∆1
2 + (nH − kn)λ∆2

2 (2.14)

for i = 1, j > 1 and i > 1, j = 1. By a direct calculation, we obtain, from (2.8),

(nH − k1)λ∆1
1 + (nH − kn)λ∆2

2

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2

=
m(c2 − 1)[(n − 1)c2 − (m − 1)]

c3(1 − c2)3/2

< 0 (2.15)



On some rigidity results of hypersurfaces in a sphere 483

with multiplicity n − m + 1, and

(nH − k1)λ∆1
2 + (nH − kn)λ∆2

1

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2

=
(n − m)[(1 − n)c4 + mc2]

c3(1 − c2)3/2

< 0 (2.16)

with multiplicity m + 1. Therefore, the weak stability index IndT (M) � n + 2 for
M = Sm(c) × Sn−m(

√
1 − c2) with constant scalar curvature n(n − 1)r, r > 1.

Moreover, IndT (M) = n + 2 if and only if

(nH − k1)λ∆1
1 + (nH − kn)λ∆2

3 � (nH − k1)λ∆1
2 + (nH − kn)λ∆2

2 (2.17)

and

(nH − k1)λ∆1
3 + (nH − kn)λ∆2

1 � (nH − k1)λ∆1
2 + (nH − kn)λ∆2

2 . (2.18)

Since

(nH − k1)λ∆1
1 + (nH − kn)λ∆2

3

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2

=
(n − 1)(n + 2)c4 − 2nmc2 + m(m − 1)

c3(1 − c2)3/2 , (2.19)

(nH − k1)λ∆1
3 + (nH − kn)λ∆2

1

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2

=
(n + 2)(1 − n)c4 + (2nm + 2n − 4)c2 + (m + 2)(1 − m)

c3(1 − c2)3/2 (2.20)

and

c2 >
m(n − 1) +

√
m(n − 1)(n − m)

n(n − 1)
,

we obtain that IndT (M) = n + 2 if and only if

nm +
√

m[(2 − n)m + (n − 1)(n + 2)]
(n − 1)(n + 2)

� c2 � (nm + n − 2) +
√

(n − m)(3n − 2m + nm − 2)
(n − 1)(n + 2)

.

In addition, it is interesting to point out that the weak stability index of Clifford
hypersurfaces Sm(c) × Sn−m(

√
1 − c2) converge to infinity as c2 converges to 1.
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In fact, we can obtain that, for every j � 3,

(nH−k1)λ∆1
1 +(nH−kn)λ∆2

j +
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2 < 0

if and only if
m(n − 1) +

√
m(n − 1)(n − m)

n(n − 1)
< c2 < pj ,

where

pj =
m((j − 1)(n − m + j − 2) + 2(m − 1)) +

√
D

2(n − 1)((j − 1)(n − m + j − 2) − (n − 2m))
,

D = m2((j − 1)(n − m + j − 2) + 2(m − 1))2

− 4m(m − 1)(n − 1)((j − 1)(n − m + j − 2) − (n − 2m)).

For every i � 3, we have

(nH − k1)λ∆1
i + (nH − kn)λ∆2

1

+
(n − 2m)(1 − n)c4 + 2m(1 − m)c2 + m(m − 1)

c3(1 − c2)3/2 < 0

if and only if
qi < c2 < 1,

where

qi =
−((n + m − 2)(i − 1)(m + i − 2) + 2m(1 − m)) −

√
E

2(1 − n)((i − 1)(m + i − 2) + (n − 2m))
,

E = ((n + m − 2)(i − 1)(m + i − 2) + 2m(1 − m))2

− 4(1 − n)(m − 1)((i − 1)(m + i − 2) + (n − 2m))((1 − i)(m + i − 2) + m).

Hence, we know that if

m(n − 1) +
√

m(n − 1)(n − m)
n(n − 1)

< pj+1 � c2 < pj ,

then

IndT (M) = n + 2 +
j∑

l=3

m
λ

∆2
l

= m + Cj−2
n−m+j−2 + Cj−1

n−m+j−1.

If qi < c2 � qi+1 < 1, then

IndT (M) = n + 2 +
i∑

l=3

m
λ

∆1
l

= n − m + 1 + Ci−1
m+i−1 + Ci−2

m+i−2.

Moreover, {qi} ↗ 1 and IndT (M) ↗ ∞ as i ↗ ∞.
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3. Proofs of theorems

In this section, we will prove our theorems.

Proof of theorem 1.2. If M is a totally umbilical hypersurface, then IndT (M) = 0.
Hence, we can assume that M is not totally umbilical.

For a fixed vector v ∈ Rn+2, gradients of the functions lv = 〈φ, v〉 and fv = 〈ν, v〉
are given by

∇lv = vT, ∇fv = −A(vT), (3.1)

where vT denotes the tangent component of v along the immersion φ. By a direct
calculation, we have

�lv = (n2H2 − |A|2)fv + n(1 − n)Hlv = 2S2fv − (n − 1)S1lv, (3.2)

�fv = (f3 − nH|A|2)fv + (n2H2 − |A|2)lv = (3S3 − S1S2)fv + 2S2lv. (3.3)

Hence, we derive

Jslv = (n2H2 − |A|2)fv + (nH|A|2 − f3)lv = 2S2fv + (S1S2 − 3S3)lv, (3.4)

Jsfv = n(n − 1)Hfv + (n2H2 − |A|2)lv = (n − 1)S1fv + 2S2lv. (3.5)

We consider a function fv + αlv, where α ∈ R is a real number. Since

Js(fv + αlv) = [(n − 1)S1 + 2αS2]fv + [2S2 + α(S1S2 − 3S3)]lv (3.6)

and S1, S2 and S3 are constant, we can derive that functions fv + αlv are eigen-
functions of Js if α is a solution of the following quadratic equation:

2S2α
2 + [(n − 1)S1 − S1S2 + 3S3]α − 2S2 = 0 (3.7)

and −(n − 1)S1 − 2αS2 is an eigenvalue of Js.
Since the equation (3.7) has two different real roots,

α± =
S1S2 − (n − 1)S1 − 3S3 ∓

√
D

4S2
,

where D = [(n − 1)S1 − S1S2 + 3S3]2 + 16S2
2 > 0, the corresponding eigenvalues λ

of Js are given by

λ± = −(n − 1)S1 − 2α±S2 =
−S1S2 − (n − 1)S1 + 3S3 ±

√
D

2
. (3.8)

According to H2 = r−1 > 0 and the Gauss equation, we can choose the orientation
such that H = H1 > 0. Then we have the following inequalities [7]:

H2
1 � H2, H1H2 � H3, H2

2 � H1H3. (3.9)
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From (3.8) and (3.9) we infer that

λ− =
−S1S2 − (n − 1)S1 + 3S3 −

√
D

2
< λ+

=
−S1S2 − (n − 1)S1 + 3S3 +

√
D

2
< 0. (3.10)

In fact,

− S1S2 − (n − 1)S1 + 3S3

= −n2(n − 1)
2

H1H2 − n(n − 1)H1 +
n(n − 1)(n − 2)

2
H3

� −n2(n − 1)
2

H1H2 − n(n − 1)H1 +
n(n − 1)(n − 2)

2
H1H2

= −n(n − 1)H1H2 − n(n − 1)H1

< 0

and

[−S1S2 − (n − 1)S1 + 3S3]2 − D

= 4[−3(n − 1)S1S3 + (n − 1)S2
1S2 − 4S2

2 ]

= −2n2(n − 1)2(n − 2)H1H3

+ 2n3(n − 1)2H2
1H2 − 4n2(n − 1)2H2

2

� 2n2(n − 1)2[−(n − 2)H2
2 + nH2

2 − 2H2
2 ]

= 0.

Therefore, λ− and λ+ are negative eigenvalues of Js. Putting

U± = {fv + α±lv : v ∈ Rn+2}, (3.11)

we have Jsu + λ±u = 0 for any u ∈ U±.
On the other hand, if u ∈ U±, then

�u + (S1S2 − 3S3)u + (n − 1)S1u + λ±u = 0. (3.12)

Set µ± = (S1S2 − 3S3) + (n − 1)S1 + λ±. Then

µ+ = −λ− > −λ+ = µ− > 0,

∫
M

u dv = 0. (3.13)

Hence, functions belonging to U± are non-constant eigenfunctions of the � and
they satisfy the condition

∫
M

u = 0.
Hence,

IndT (M) � dim(U− ⊕ U+) = dimU− + dimU+, (3.14)
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since U− and U+ are eigenspaces of � associated to different eigenvalues. Define
ϕ± : Rn+2 → U± by

ϕ±(v) = fv + α±lv.

Claim 3.1. ker ϕ− ∩ ker ϕ+ = ∅.

Assume that there exists a unit vector v ∈ ker ϕ− ∩ ker ϕ+. Then we have

fv + α+lv = 0 = fv + α−lv.

It follows that lv = 0 = fv. This means that M is a totally geodesic equator of
Sn+1(1), which is impossible. Thus, kerϕ− ∩ ker ϕ+ = ∅. Therefore,

dim kerϕ− + dim kerϕ+ = dim(kerϕ− ⊕ ker ϕ+) � n + 2.

Because of dim U± = n + 2 − dim kerϕ±, we obtain

IndT (M) � dim U− + dimU+

= 2(n + 2) − (dim kerϕ− + dim kerϕ+)
� n + 2. (3.15)

If IndT (M) = n + 2, then we have dim(kerϕ− ⊕ ker ϕ+) = n + 2, that is, Rn+2 =
ker ϕ− ⊕ ker ϕ+. Then we have, for any point p ∈ M ,

TpM = TpM ∩ Rn+2 = (TpM ∩ ker ϕ−) ⊕ (TpM ∩ ker ϕ+).

Let TpM
± = TpM ∩ ker ϕ±. Assume that 0 �= v ∈ TpM

−, then fv + α−lv = 0 on
M . It follows that α− �= 0. Otherwise, fv = 0 and M is totally geodesic. This is
impossible. Since fv + α−lv ≡ 0, we have ∇(fv + α−lv) = −A(vT) + α−vT = 0 on
M . From v ∈ TpM

−, we know that vT(p) = v and Ap(v) = α−v, that is, TpM
− is

a subspace of TpM with constant principal curvature α−. By the same assertion,
we can show that TpM

+ is a subspace of TpM with constant principal curvature
α+. If Tp0M

− = ∅ at some point p0, then we have Tp0M = Tp0M
+, that is, p0

is an umbilical point; it follows that |A|2(p0) − nH2(p0) = 0. Since H1 = H and
|A|2 = n2H2 − n(n − 1)H2 are constants, we know that |A|2 − nH2 = 0 on M ,
this means that M is totally umbilical. This is a contradiction. Therefore, we derive
that M has two different constant principal curvatures. From Cartan theorem, we
know that M is a Clifford hypersurface Sm(c) × Sn−m(

√
1 − c2) and

nm +
√

m[(2 − n)m + (n − 1)(n + 2)]
(n − 1)(n + 2)

� c2 � (nm + n − 2) +
√

(n − m)(3n − 2m + nm − 2)
(n − 1)(n + 2)

since IndT (M) = n + 2. This completes the proof of theorem 1.2.

Proof of theorem 1.3. Without loss of generality we will assume that M is not
totally umbilical. For any fixed vector v in Rn+2, vT : M → Rn+2 defined by

vT(x) = v − lv(x)x − fv(x)ν(x) for all x ∈ M
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is a tangent vector field on M because 〈vT(x), x〉 = 0 and 〈vT(x), ν(x)〉 = 0 for
every point x ∈ M . By multiplying the equation lv = λfv by an appropriated
constant, we may assume that |v| = 1. We will also assume that lv is not constant.
Otherwise, M ⊂ Sn(c) for some c. According to the completeness of M we have
M = Sn(c), that is, M is totally umbilical.

Since lv is not constant, then λ �= 0. From [3], we know that principal curvatures
of M along the integral curve of vT are

λ1(βx(s)) = − 1
λ

,

λi(βx(s)) = − 1
λ

+
(1 + λ2)(λ−1 + λi(x))

λ(λ − λi(x)) cos(ws) + (1 + λλi(x))
, 2 � i � n.

For every x ∈ N = Sn(1) ∩ M (see [3]), let

I1(x) = {i ∈ {2, . . . , n} : λi(x) = −λ−1},

I2(x) = {i ∈ {2, . . . , n} : λi(x) = λ},

I3(x) = {2, . . . , n} \ (I1(x) ∪ I2(x)).

Letting us denote the number of elements in Ii(x) by ni, for i = 1, 2, 3, then, we
have n1 + n2 + n3 = n − 1. If i ∈ I1 and j ∈ I2, then λi(βx(s)) = −λ−1 and
λj(βx(s)) = λ.

Claim 3.2. I3(x) = ∅.

In fact, for every i ∈ I3(x), ai(x) = λ−1 +λi(x) �= 0 and bi(x) = λ(λ−λi(x)) �= 0.
For each point x ∈ M and s ∈ (−π/2w, π/2w), we infer that

Sn(βx(s))

=
n∏

i=1

λi(βx(s))

=
(

− 1
λ

)n1+1

(λ)n2

n3∏
j=1

(
− 1

λ
+

(1 + λ2)aj(x)
bj(x) cos(ws) + λaj(x)

)

=
(

− 1
λ

)n−n2

(λ)n2 +
(

− 1
λ

)n1+1

(λ)n2

n3∑
k=1

(
− 1

λ

)n3−k

(1 + λ2)k

×
( ∑

j1<···<jk

aj1(x) · · · ajk
(x)

(bj1(x) cos(ws) + λaj1(x)) · · · (bjk
(x) cos(ws) + λajk

(x))

)
,

(3.16)

Sn−1(βx(s))

=
n∑

i=1

λ1(βx(s)) · · · ̂λi(βx(s)) · · ·λn(βx(s))

= (n1 + 1)
(

− 1
λ

)n1

(λ)n2

n3∏
j=1

(
− 1

λ
+

(1 + λ2)aj(x)
bj(x) cos(ws) + λaj(x)

)
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+ n2

(
− 1

λ

)n1+1

(λ)n2−1
n3∏

j=1

(
− 1

λ
+

(1 + λ2)aj(x)
bj(x) cos(ws) + λaj(x)

)

+
n3∑
i=1

(
− 1

λ

)n1+1

(λ)n2

n3∏
j=1, j �=i

(
− 1

λ
+

(1 + λ2)aj(x)
bj(x) cos(ws) + λaj(x)

)

= (n1 + 1)
(

− 1
λ

)n1

(λ)n2

(
− 1

λ

)n3

+ n2

(
− 1

λ

)n1+1

(λ)n2−1
(

− 1
λ

)n3

+ n3

(
− 1

λ

)n1+1

(λ)n2

(
− 1

λ

)n3−1

+
n3∑

k=1

(
− 1

λ

)n1+n3−k

(λ)n2−1
{

(n1 + 1)λ − n2
1
λ

+ (n3 − k)λ
}

(1 + λ2)k

×
( ∑

j1<···<jk

aj1(x) · · · ajk
(x)

(bj1(x) cos(ws) + λaj1(x)) · · · (bjk
(x) cos(ws) + λajk

(x))

)
,

(3.17)

where ·̂ means that this term is deleted.
For any point x ∈ M , we have Sn(x) = cSn−1(x). Since βx(s) ∈ M , then

Sn(βx(s)) = cSn−1(βx(s)), it follows from (3.16) and (3.17) that(
− 1

λ

)n−n2−1

(λ)n2−1
{

− 1 +
n2

λ
c − (n1 + 1)λc − n3λc

}

+
n3∑

k=1

(
− 1

λ

)n1+n3−k

(λ)n2−1(1 + λ2)k

{
− 1 +

n2

λ
c − (n1 + 1)λc − (n3 − k)λc

}

×
( ∑

j1<···<jk

aj1(x) · · · ajk
(x)

(bj1(x) cos(ws) + λaj1(x)) · · · (bjk
(x) cos(ws) + λajk

(x))

)
= 0,

which means that, for every s ∈ (−π/2w, π/2w), cos(ws) is a root of the following
polynomial equation on X,(

− 1
λ

)n−n2−1

(λ)n2−1
{

− 1 +
n2

λ
c − (n1 + 1)λc − n3λc

}

+
n3∑

k=1

(
− 1

λ

)n1+n3−k

(λ)n2−1(1 + λ2)k

×
{

− 1 +
n2

λ
c − (n1 + 1)λc − (n3 − k)λc

}

×
( ∑

j1<···<jk

aj1(x) · · · ajk
(x)

(bj1(x)X + λaj1(x)) · · · (bjk
(x)X + λajk

(x))

)
= 0. (3.18)

We know that the polynomial equation should have finite roots, but equation (3.18)
has infinite roots. So we can deduce that the coefficients of Xq in equation (3.18)
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are zero for any integer q ∈ {0, 1, 2, . . . }. Hence, we obtain that the coefficients of
Xn3 are zero, that is,(

− 1
λ

)n−n2−1

(λ)n2−1
{

− 1 +
n2

λ
c − (n1 + 1)λc − n3λc

}
= 0. (3.19)

From (3.19), we have

c =
−1

(n1 + 1)λ − n2λ−1 + n3λ
=

−λ

(n − n2)λ2 − n2
,

so

−1 +
n2

λ
c − (n1 + 1)λc =

−n3λ
2

(n − n2)λ2 − n2
�= 0.

Substituting c into (3.18) and noting that the constant term of equation (3.18)
equals zero, we obtain

n3∑
k=1

(
− 1

λ

)n1

(λ)n2−1(−1)n3−kCk
n3

(1 + λ2)k

×
{

− 1 +
n2

λ
c − (n1 + 1)λc − (n3 − k)λc

} n3∏
i=1

ai(x)

= (−1)n1+1 n3λ
2n3+n2−n1−1(λ2 + 1)
(n − n2)λ2 − n2

n3∏
i=1

ai(x)

= 0,

then we have
n3∏
i=1

ai(x) = 0.

This is a contradiction with ai(x) �= 0. Hence, I3(x) = ∅ for every x ∈ N . Thus,
we derive that all the principal curvatures of M at the points of N are constant
and that they are equal to either −λ−1 or λ. Using the same arguments as in [3] we
can conclude that M is either a totally umbilical sphere or a Clifford hypersurface.
This completes the proof of theorem 1.3.

Proof of theorem 1.4. Without loss of generality, we will assume that M is not
totally umbilical. For any fixed vector v in Rn+2, we know that vT : M → Rn+2 is
a tangent vector field on M . By making use of the same notation as in the proof
of theorem 1.3, we may assume that |v| = 1 and lv is not constant. Since lv is not
constant, then λ �= 0. From [3], we know that principal curvatures of M along the
integral curve of vT are

λ1(βx(s)) = − 1
λ

,

λi(βx(s)) = − 1
λ

+
(1 + λ2)(λ−1 + λi(x))

λ(λ − λi(x)) cos(ws) + (1 + λλi(x))
, 2 � i � n.
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For each x ∈ N , by making use of the same notation as in the proof of theorem 1.3,
we have the following claim.

Claim 3.3. I3(x) = ∅.

In fact, for every i ∈ I3(x), ai(x) = λ−1 +λi(x) �= 0 and bi(x) = λ(λ−λi(x)) �= 0.
For each s ∈ (−π/2w, π/2w) we obtain

2S2(βx(s))

=
∑
i �=j

λi(βx(s))λj(βx(s))

=
(

− 1
λ

)(
−n1

λ
+ n2λ +

n3∑
i=1

(
− 1

λ
+

(1 + λ2)ai(x)
bi(x) cos(ws) + λai(x)

))

− n1

λ

(
−n1

λ
+ n2λ +

n3∑
i=1

(
− 1

λ
+

(1 + λ2)ai(x)
bi(x) cos(ws) + λai(x)

))

+ n2λ

(
−n1 + 1

λ
+ (n2 − 1)λ +

n3∑
i=1

(
− 1

λ
+

(1 + λ2)ai(x)
bi(x) cos(ws) + λai(x)

))

+
n3∑

j=1

(
− 1

λ
+

(1 + λ2)aj(x)
bj(x) cos(ws) + λaj(x)

)

×
(

−n1 + 1
λ

+ n2λ +
n3∑

i=1,i �=j

(
− 1

λ
+

(1 + λ2)ai(x)
bi(x) cos(ws) + λai(x)

))

=
1
λ2 (n1 + n3)(n1 + n3 + 1) − 2n2(n1 + n3 + 1) + n2(n2 − 1)λ2

+ 2(1 + λ2)
(

−n1 + n3

λ
+ n2λ

)( n3∑
k=1

ak(x)
bk(x) cos(ws) + λak(x)

)

+
∑
i �=j

(1 + λ2)2
ai(x)

bi(x) cos(ws) + λai(x)
× aj(x)

bj(x) cos(ws) + λaj(x)
.

This means that, for every s ∈ (−π/2w, π/2w), cos(ws) is a root of the following
polynomial equation on X:{

2S2 − 1
λ2 (n1 + n3)(n1 + n3 + 1) + 2n2(n1 + n3 + 1) − n2(n2 − 1)λ2

}

×
n3∏
i=1

(bi(x)X + λai(x))

= 2(1 + λ2)(−n1 + n3

λ
+ n2λ)

( n3∑
k=1

(
ak(x) ×

n3∏
i=1, i �=k

(bi(x)X + λai(x))
))

+
∑
i �=j

(1 + λ2)2ai(x)aj(x) ×
n3∏

k=1, k �=i, k �=j

(bk(x)X + λak(x)).
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Since the polynomial equation should only have finite roots, we derive that the
coefficients of Xq are zero for any integer q ∈ {0, 1, 2, . . . }. It follows that

2S2 =
1
λ2 (n1 + n3)(n1 + n3 + 1) − 2n2(n1 + n3 + 1) + n2(n2 − 1)λ2

and

2(1 + λ2)
(

−n1 + n3

λ
+ n2λ

)
n3λ

n3−1
n3∏
i=1

ai

+ (1 + λ2)2n3(n3 − 1)λn3−2
n3∏
i=1

ai = 0. (3.20)

Since

r �= 2
(2k + m)n2 − (2k2 + 4k + 2km + m)n + 2k(m + k + 1)

n(2k + m)(2(n − 1) − (2k + m))
,

0 � m � n − 2, 1 � k � n − 1 − m and 2S2 = n(n − 1)(r − 1),

we obtain

2S2 =
1
λ2 (n1 + n3)(n1 + n3 + 1) − 2n2(n1 + n3 + 1) + n2(n2 − 1)λ2

= n(n − 1)(r − 1)

�= (n − 1)
n(m2 − 4k) + 4k(m + k + 1)

(2k + m)(2(n − 1) − (2k + m))
. (3.21)

Letting m = n3 − 1 and k = n1 + 1, we then have, from (3.21), that

2S2 �= (n − 1)
n[(n3 − 1)2 − 4(n1 + 1)] + 4(n1 + 1)(n1 + n3 + 1)

(2n1 + n3 + 1)[2(n − 1) − (2n1 + n3 + 1)]
. (3.22)

By using (3.21) and (3.22), we infer that

λ2 �= 2n1 + n3 + 1
2n2 + n3 − 1

. (3.23)

Hence, we can deduce from (3.20) and (3.23) that
n3∏
i=1

ai = 0.

This is in contradiction with ai �= 0. Therefore, I3(x) = ∅. By using the same
arguments as in the proof of theorem 1.3, we conclude that M is either a totally
umbilical sphere or a Clifford hypersurface. This completes the proof of theorem 1.4.

Proof of corollary 1.5. If M is neither a totally umbilical sphere nor a Clifford
hypersurface, we obtain from theorem 1.4 that fv + α±lv �≡ 0 for any fixed vector
v ∈ Rn+2. Then dimU+ = dimU− = n + 2. It follows from equation (3.14) that
IndT (M) � 2n + 4.
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Proof of theorem 1.6. We can prove theorem 1.6 using similar arguments to those
used in the proof of theorem 1.4.
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