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For a bounded domain Q with a piecewise smooth boundary in a complete Riemannian
manifold M, we study eigenvalues of the Dirichlet eigenvalue problem of the Laplacian.
By making use of a fact that eigenfunctions form an orthonormal basis of L?(2) in place
of the Rayleigh-Ritz formula, we obtain inequalities for eigenvalues of the Laplacian. In
particular, for lower order eigenvalues, our results extend the results of Chen and Cheng
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J. Math. Soc. Japan 60 (2008) 325-339].
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1. Introduction

Let © € M be a bounded domain with a piecewise smooth boundary 0f2 in an
n-dimensional complete Riemannian manifold M. We consider the following Dirich-
let eigenvalue problem of the Laplacian:

Au=—du in Q,
u=20 on 0f).
It is well known that the spectrum of this problem is real and discrete:

O< A <A< A< oo,

(1.1)

where each \; has finite multiplicity which is repeated according to its multiplicity.
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When M is an n-dimensional Euclidean space R", Payne, Pdlya and Wein-
berger [18] proved

k
4
1= < — i- 1.2
Aks1 )\k_kn;/\ (1.2)
Hile and Protter [16] generalized the above result to
k

Ai k
Z — > — (1.3)

2N - A 4

In 1991, a much sharper inequality was obtained by Yang [20] (cf. [11]):

k k

D ki1 = A2 < =) (w1 — A (1.4)

i=1 i=1

S|

When M is an n-dimensional unit sphere S™(1), Cheng and Yang [9] have proved
an optimal universal inequality:

k k 9

Z()\k+1 —N)? < 1 Z()‘kJrl - )\i)<)\i + %) : (1.5)

i=1 i=1

3

For the Dirichlet eigenvalue problem of the Laplacian on a bounded domain in an
n-dimensional complete Riemannian manifold M, Chen and Cheng [6] and El Soufi,
Harrell and Tlias [15] have proved, independently,

k k
2 4 n’
> (e =207 < 13 0 =20 ) (16)
where HZ is a nonnegative constant which only depends on M and . When M is
the unit sphere, HZ = 1, the above inequality is best possible, which becomes the
result of Cheng and Yang [9]. For the Dirichlet eigenvalue problem of the Laplacian
on a bounded domain in a hyperbolic space, universal inequalities for eigenvalues
have been obtained by Cheng and Yang [12]. For complex projective spaces and so
on, see [9, 10].

For lower order eigenvalues of the eigenvalue problem (1.1), when M is the
Euclidean space R"™, the following conjecture of Payne, Polya and Weinberger is
well known:

Conjecture of PPW. For a bounded domain 2 in R", eigenvalues of the eigen-
value problem (1.1) satisfy

0
A2 Ao Jnj2,1
W T =
1 Lign  Jnj2-11
2
A A A In
) 2+ A3+ + +1§n_2 /2,1 7
A1 Jnj2—11
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where B" is the n-dimensional unit ball in R", j, 1. denotes the kth positive zero of
the standard Bessel function J,(x) of the first kind of order p.

For the conjecture (1) of Payne, Pélya and Weinberger, many mathematicians
studied it. For examples, Payne, Pélya and Weinberger [18], Brands [5], de Vries [14],
Chiti [13], Hile and Protter [16], Marcellini [17] and so on. Finally, Ashbaugh and
Benguria [2] (cf. [1, 3]) solved this conjecture.

For the conjecture (2) of Payne, Pélya and Weinberger, when n = 2, Brands [5]
improved the bound % < 6 of Payne, Pélya and Weinberger [18], he proved
’\2)\;1’\3 < 3++/7. Furthermore, Hile and Protter [16] obtained ’\2)\;1’\3 < 5.622.In [17],
Marcellini proved )‘%A? < (154-/345) /6. Recently, Chen and Zheng [7] have proved
’\2)\;1’\3 < 5.3507. For a general dimension n > 2, Ashbaugh and Benguria [4] proved

Ao+ A3+ -+ A1
AL

Furthermore, Ashbaugh and Benguria [4] (cf. Hile and Protter [16]) improved the
above result to

<n-+4. (1.7)

Ao 4 Az 4o+ An A
2t AstFAngl gy AL (1.8)
)\1 /\2

Very recently, Cheng and Qi [8] have proved that, for any 1 < j < n+2, eigenvalues
satisfy at least one of the following:

Ao A1

2 g A

N Y
/\2+/\3+"'+)\n+1<n+3+ﬁ
A - )\j'

When M is the n-dimensional unit sphere S™(1), that is, for a bounded domain §2
in S™(1), Sun, Cheng and Yang [19] have proved
A by N 2
pt st ot A g 7 (1.9)
)\1 /\1
For a general complete Riemannian manifold M, Chen and Cheng [6] have proved
that there exists a nonnegative constant Hy such that

. 22
Ao + A3 + +/\n+1§n+4+n 0
A1 A1
In this paper, by making use of the fact that eigenfunctions form an orthonormal

basis of L?(Q2) in place of the Rayleigh-Ritz formula, we obtain inequalities for
eigenvalues of the Laplacian. In particular, we improve the above result.

(1.10)

2. Estimates for Lower Order Eigenvalues

In this section, first of all, we will mainly focus our mind on the investigation for
lower order eigenvalues of the Dirichlet eigenvalue problem of the Laplacian by
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making use of the fact that eigenfunctions form an orthonormal basis of L?(£2) in
place of the Rayleigh—Ritz formula. We prove the following theorem.

Theorem 2.1. Let M be an n-dimensional complete Riemannian manifold, Q@ C M
a bounded domain with a piecewise smooth boundary 0. Then, the lower order
eigenvalues of the Dirichlet eigenvalue problem of the Laplacian satisfy

VRIS VIR W 22
2+ A3+ -+ +1§n+ Qo n 0 44),
A1 A1

where Hy is a nonnegative constant depending only on M and Q and Qg is given by
1 )\1 n2H0 /\1 /\1 nQHg 2 )\1 TLQHg
=—|[2—-— +34+ — 3 41— —
©@o=3 ( Ag) A MV G Wi vy B X2) Ao

Remark 2.2. It is not hard to prove, from /A\—; <1,

2H0

4.
" +

Qo <

In particular, when M is an n-dimensional complete minimal submanifold in
the Euclidean space RY, we have

Corollary 2.3. Let Q be a bounded domain in an n-dimensional complete minimal
submanifold M in RN . Then, we have

/\2+)\3+"'+/\n+1< 49 /3+£
)\1 )\2

Since M is a complete Riemannian manifold, from a theorem of Nash, there exists
an isometric immersion ¢ : M — R” from M into a Euclidean space R". Let
(x',...,2™) denote an arbitrary local coordinate system of M. For any point p € Q,
we can write o(p) = (y1,¥2,...,yn) with

ya:ya(xl,...,x"), 1<a<N,

which is the position vector of p in R™. Thus, we have

g2 2 e Zayﬁ o 2y Oy
i = 9 ort’ Oxi ) —~ ot 6y = O Dy Ozt Oz’
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where g denotes the induced metric of M from R, (,) is the standard inner product
in RY. We denote the gradient of a function f by Vf. Then, the following lemma
holds, which is proved by Chen and Cheng [6].

Lemma 2.4.

N N
Z Vyouvya = Z |vya|2 =
a=1 a=1
N
Z Aya = TL2|H‘2,
i =
Z Ayavya - Oa
a=1

and for any function u € C(M),

N N
Z(g(Vym Vu)) Z (Vo - Vu)? = |Vul?,
a=1

a=1

where |H| is the mean curvature of M.

Proof of Theorem 2.1. Let u; be the eigenfunction corresponding to the eigen-

value \; such that {u;}32, becomes an orthonormal basis of L*(2). Hence,

Jo wiug = 6;5 for Vi, j =1,2,.... Defining

Gy Z/yaulujH,
Q

since u; does not change sign in €2, we can assume u; > 0 in . We consider the
N x N-matrix A = (aq;). From the orthogonalization of Gram and Schmidt, there
exist an upper triangle matrix R = (R,;) and an orthogonal matrix @ = (gag)
such that R = QA. Thus,

R Z Gapag; = / Z Gapypuitjr1 =0, for1<j<a <N
B=1

Defining 3, = ny\f:l JarY~, We have

N
/ YaU1Ujp1 = / quyvuluﬁl =0, forl<j<a<N.
Q Qi
Putting

Za:goz_bo“ ba=/§au%7 fOrlSOéSN
Q
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and
Aqj :/ 2o U1y,
Q
we have
Ayj =0, for 1<j<a<N (2.1)
Defining
B.; = / u;Vza - Vg
Q

and

from the Stokes theorem, we obtain

—/\jAaj :/QzaulAuj:/QA(zaul)uj

= /(2Vza -Vur — Mzaur + w1 Aza)u;
Q

—A1da;j + 2Baj + Coy,
namely,

Since {u;}32, is an orthonormal basis in L*(Q2) and A,; =0, for 1 < j < a < N,
we have

Zalll = Z Agju; and |[zeui?® = Z A (2.3)
j=o+1 j=a+1
Furthermore,
/ufzaAza: > AgiCaj, (2.4)
a j=a+1
2/ zau1Vza-Vu1 =2 Z Aa]‘Ba]‘ = Z ()\1 _)‘j)A?yj — Z AajCaj.
@ j=a+1 j=a+l j=a+l
(2.5)
Since for any function f € C?(Q) N C(Q),
2 [ fuvs-vu = [ arare [ 19rPa, (26)
Q Q Q
we have
/|Vza|2u1 /zau1(2Vza Vuy +u1Azy). (2.7)

1250067-6
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‘We obtain

oo

S 0y - M)Az, /|VZOZ|2 2 (2.8)

j=a+1

For any positive integer k, we have

%) k
ST —AAL = ) (- A4+ Z (A — A1)A
j=a+1 j=a+1 Jj=k+1

k

> Z (N — /\1)Ai]‘ + (Akg1 — A1) Z Ai]‘

j=at1 j=k+1
k 0o
= Z (A = A)A%; + Nerr — M) Z A%
j=a+1 Jj=a+1
= (Aky1 — A1) Z A
j=a+1
k 00
= D (= A AL+ Qe — M) Y A2
j=a+1 j=a+1
Thus, we infer
(vt = M)zl < 3 O [vapad, @9
j=a+1
and, in particular,
(hass = A)lzatr P < [ V20 (2.10)
Q
For any «, we have
V2| < 1. (2.11)

In fact, for any fixed point py € €2, we can choose a new coordinate system y =
(U1,.-.,9yn) of RY given by ¢(p) — ¢(po) = 7(p)B such that %h’o’“'vayn I po
span Tp, M and at po, g(a%i, %) = 0;j, where B = (bag) € O(N) is an N x N
orthogonal matrix.

|vza|2(p0) = g(vzaa vza)
N

= Z Qavqaﬂg(v:y’yav:l/ﬁ)
By=1
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Z da~vqapy <Z by VY Z bﬂvvfgv>

By=1
N
= Z Qa'yb'yuQOzﬁbﬂvg(Vgﬂa Vgu)
Byspv=1
2
n N
=> D aasbsi | <1, (2.12)
Jj=1 \pB=1

since B is an orthogonal matrix when B and ) are orthogonal matrices. Therefore,
(2.11) holds because pg is an arbitrary point. Since Lemma 2.4 also holds for z,
from the definition of z,, for any positive constant ¢ > %, we have, from Lemma 2.4
and (2.11),

N
a+1 /\1 /|Vza\2 t+1
oz:l
N
>Z j+1 = A1) /\VZ7|2 T Q=) Z |VZA|2“§+1
A=n+179
n
—Z =0 [ 195 R+ Qi =) [ 0= 301952 |
j=1

_Z 1A /\sz|2 B (Asn — A1) /Z 1—|Vz|?)ul™
>Z 1= A1) /\V27|2 i /QZ()‘j+1_Al)(l_‘vzj‘Q)u§+l
=1

- Z()‘j+1 - /\1)/ urt. (213)
=1 @
On the other hand, from the Stokes theorem and the Cauchy—-Schwarz inequality,
we obtain
/ Vzo|2uitt = —/ Zoty (U Azg + (1 4+ t)ul ™ V2, - Vuy)
Q
< zawr] - Ui Az + (14 ul V2, - Vuy |, (2.14)
and

/ |Vza|2uf = —/ ZaU1 (U1 AzZy + 2V 2z, - Vug)
Q Q

IN

llzau1]] - [[u1Azq +2Vzq4 - Vus||. (2.15)

1250067-8
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From (2.10), (2.13), (2.14) and (2.15), we derive

n

Z()‘j+1 - )\1)/ uitt
Q

j=1

M=

<

st — A1) / V2 Pul

|v2«'a|2 /|v a|2 t+1

IIZamH2

Q
I
-

Mz

a=1

lu1 Az + 2V 24 - V|| - |ui Azy + (1—|—t) vz, - Vuq||

Mz

Q
Il
-

N N
< Z lu1Azg + 2V 2o - Vuy||? - Z |ut Aze + (1 4+ )ul™ ' Vzy - Vg |2

a=1 a=1

Since Lemma 2.4 also holds for z, from the definition of z,, we have

N
S flurdzg + 292, - Vuy |2 = /(n2|H\2u§ +4Vus?)
Q

a=1

< n?sup |H|* + 4\
Q
and

Z |ul Az + (1 4+ )ui V2, - Vg ||?

l—i—t
= [ (et + B )

141)?
< n2sup\H|2—|—( t+t) A1 /u%t

Putting (2.17) and (2.18) into (2.16), we obtain

n (1+41)?

S (g1 — A1) < B(£)y/ (2 sup |H[2 + 4,) { 2 sup |H|? + M),

2 o Q 2t —1
where

B - /fg u?t

" ot

1250067-9
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Since the spectrum of the Dirichlet eigenvalue problem of the Laplacian is an invari-
ant of isometries, we know that the above inequality holds for any isometric immer-
sion from M into a Euclidean space. Now we define ® by

® = {p; p is an isometric immersion from M into a Euclidean space}.
Defining
H? = inf sup|H|?,
07 Jeo QP| |

we have

n

S (i — M) < B<t>\/ (n2H + 47,) (nH T t’2xl). (2.20)

, 2t —1
j=1

Next, we need to estimate B(t) as a function of ¢ by making use of the same method

as Brands [5]. Let u = u} —uy fﬂ ui*l. We know that wu is a trial function for As.

Hence, we have

According to a direct calculation, we obtain

2
)\2< —B(t)* -1

2t—1

A © B@)?2-1

" 2
si][lceB(zf)2—1:(fjﬂiff,l)2 >0 for t > 1. Letazi—f > 1. We have
[t

(a r ) B(t)?* <a-—1.

21
When 1 <t < a+ va? — a, we can infer

(a—1)(2t — 1)
PO\

Therefore, we obtain

n

> (N —M) < \/(n2H§ +4X1) <n2Hg + (;;’_?2 )\1> (5(2_t1_>(12)t__t12). (2.21)

=1
. 'n,2 H2 . .
Letting b = = and defining a function

b(2t — 1) + (1 +t)?

a(2t —1)—1¢2 (222)

ft) =

we have

(/\j+1 — /\1) < \/)\1(& — 1)(n2H§ + 4/\1)f(t) (223)

n

J

1250067-10
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If we take ¢ = 1, f(1) = 4. Thus, we obtain the result of Chen and Cheng [6].

Furthermore, we try to get the minimum of f(¢) under 1 <¢ < a+ va? —a. It is
not difficult to prove that the minimum of f(t) is attained at

Ca+b—14+/(a+b—1)2+8ala+b+1)
2(a+b+1)

0=

Since g(s) = to as a function of s = a+b, is a decreasing function of s in the interval
[a, 00), we have

1 = g(00) < to < g(a) < a+va® —a.
By a direct computation, we have
a2t —1) — 13

~2/(a+b—1)2+8a(a+b+1)
B 4(a+b+1)2

><(2a(a—|—b+1)—(a—|—b—1)—\/(a+b—1)2—|—8a(a+b—|—1)).

From {3(a+b) +1}2 —8b(a+b+1) = (a+b—1)>+8a(a+ b+ 1), we get
b(2to — 1) + (1 +t)?

~2/(a+b—1)2+8a(a+b+1)
B 4(a+b+1)2

x(2b(a+b+1)+3(a+b)+1++/(a+b—1)2+8a(a+b+1)).

Thus, we have

2b(a+b+1)+3(a+b)+1++/(a+b—1)2+8ala+b+1)
2a(a+b+1)—(a+b—1)—+/(a+b—1)2+8ala+b+1)

2@+b+1)*{(2a—1)b+3a+1++/(a+b—1)2+8a(a+b+1)}
da(a+b+1)%(a—1)

f(to) =

(2a —1)b+3a+1++/(a+b—1)2+8ala+b+1)
2a(a — 1)

. (2.24)

From (2.23) and (2.24), we obtain

n

D> (A=)

j=1

20— 1)b+3a+1 b—1)2+8 b+ 1
<\/)\1(n2H02+4)\1)(a )b+ 3a + +\/(;+ )2+ 8a(a+b+1)
a

1250067-11
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2772
- )\1\/@0 <n Ho +4>
A1

because a = i—f and b = %Ijg This finishes the proof of Theorem 2.1.

For any positive integer k, we have from (2.9)

A1 — M1 - 1
E?:a—o—l()‘kJrl = A)AZ; + [ [Vzal?ul lzaua ]

From (2.14) and (2.15), we obtain
(Akt1 — A1) fQ |Vza\2uﬁ+1 fg |Vza|*ui
%
Zj:a+1()‘k+1 - )‘j)Aij + fQ V2o |?ui
()‘k+1 — /\1) fQ |Vza|2u§+1
k A2
T3 (A — Aj)m

|udAzg + (1 + Ui Vo - Vg || - [u1Aza + 2V24 - V||

IN

For any positive integer k, we can find some «g such that

(M1 = M) AZ

i Ak — Aj) A2
Jo Vzaol?uf — 1ga<n

aj

Jo |V 2o |2u2

Jj=ao+1 =a+1

Hence, from Lemma 2.4, we obtain
n(Ag+1 — A1) fQ uﬁ—H
T30 gt — Az
T 2maont Ment = A e

N
< Z ulAzy + (1 + )l V2o - V|| - |urAza + 2V 24 - Vg ||
a=1

(1+1)2 o
</ (n?sup|H|? +4\1) [ n?sup |H|> + —2\ ut,
Q Q 2t—1 Q

that is, we have

n()\k_H — /\1)
k Ai@j
T4+ a1 (A1 — )\j)m

(L+ 1)
< B(t)y[(n?sup |[H|? +4X\) | n?sup |H]2 + ——— X1 ).
Q Q 2t — 1

1250067-12
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On the other hand, we have

- (t—1)° a1 _ (E—1)? o
|Vl 2u? = Vuy -Vui™ = —2X\ [ ui'. (2.28)
2t —1 2t —1
Q Q Q
Letting
D, = / tu
= [ Uity
Q
we know
at =3 Dju, /Q wd =3 D2 (2.29)
j=1 j=1
Taking f = u!~! in (2.6), we get
/ |Vl 2u? = —2/ u! Vul™ . Vu, — / u At
Q Q Q
= _ZDj (2/ u;Vul™ - Vuy —|—/ ujulAui_1>
j=1 @ Q
= —ZD]- (/ uj Aul — / ujuilAm)
= Q Q
= —ZDj (/ uiAuj — / ujui 1Au1>
= Q Q
= ZD]' </\j/ u'iuj — )\1/ u]u§>
j=1 @
= Z()‘J - Al)Dj
j=2
Thus, we infer
= t—1)2
S0y -z = E [ (2.30)
=2 @
Defining
D.
8 = f (2.31)

(=12 f u2t7
2t—1 "1 Jo Y1

1250067-13
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we have
>y = M) =1 (2.32)
Jj=2
For any positive integer [,
L= (- M6
j=2
l 00
=Y =M+ D (N = M)B
Jj=2 j=l+1
l 00
> (= A)B A+ M= M) Y B
J=2 j=l+1
l o0 l
= = A8 A M = M) DY B = e — M) DB
Jj=2 j=2 j=2
1
=D (N = A1) + (s — A1) Zﬂw
j=2
namely,
[e%S) l
Mt = A1) DB <14+ (A1 = A5 (2.33)
j=2 j=2
From (2.29) and (2.30), we infer
2t—1" =™ ‘
Since
2
t—1)?2
ut+1> —p2— ( A1ﬂ2/ u2t,
(/Q 1 1 o _1 oy
according to the definition of B(t), we have
Jo u3t 1 1
B(t)? = —2 — —. (2.35)
o™~ CF0®  1- NS,

From (2.27), (2.33) and (2.35), we have

1250067-14
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Proposition 2.5. Let M be an n-dimensional complete submanifold in RN,
QC M be a bounded domain with a piecewise smooth boundary 0. Then, for any
positive integer k, there exists an integer ag with 1 < ag < N such that eigenvalues
of the Dirichlet eigenvalue problem of the Laplacian satisfy, for any positive integer
l and t > %,

n(Ap+1 — A1)
& Ai()j
1+ Zj:ao+1()\k+1 - )‘j)m

(n2 supg [H[2 + A1) (n? supq [H|? + G A)

< o :
-GN (Y (g — M)

3. Estimates for Eigenvalues on Minimal Submanifolds

In this section, we will deal with eigenvalues of the Laplacian on bounded domains
in complete minimal submanifolds of Euclidean spaces. Thus, let 2 C M be a
bounded domain with a piecewise smooth boundary 02 in an n-dimensional com-
plete minimal submanifold M of the Euclidean space RY. We consider the following
Dirichlet eigenvalue problem of the Laplacian:

Au = —Xu in §,
u =0 on 0f.

Since M is an n-dimensional complete minimal submanifold in RY, we have from
Lemma 2.4 and the definition of Cy;,

Cuoj =0

for any a and j. Hence, we have from (2.2),

2B, = (M — A\j)Aq;. (3.1)
For any «, we have
2
0= —— uﬁHAza
t+1 Jq

= 2/ ut V2o - Vuy
Q

=2 DiBai = » (A — A)DiAi.
i=1 i=1
Thus, from (2.31) we obtain
D (i = A1)BiAai = 0. (3.2)
i=2
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For any positive integer j > 2, since

(N =M)B A <[ D i=28 [ DD (v =A%),
1=2,i#j 1=2,i#£]

according to (2.8) and (2.32), we derive

O =22 < (1= Oy =28 ([ 192l - 0 - 24,

Hence, we have

A2
A= M)B+ (N — M)t < L 3.3
g = )67+ 1)fg |Vza|2u2 — (8:3)
From (2.9) and Lemma 2.4, we can get

/\k+1 )\1 ZHZaulH <n—|—z Z )\k—i-l (3.4)

a=1j=a+1

On the other hand, from the Stokes theorem, we have

1
/ quJr1|Vzo‘|2 = 5/ uﬁ“Azz =—(t+ 1)/ 20Ut V2o - Vuy.
Q Q Q

From Lemma 2.4 and the Cauchy—Schwarz inequality, we get

n/ Wt = —(t+ 1) Z/ 20U Vg - Vuy
Q

] =

&

g
e

a=1

N 2
_ AL 2t)
~wen( S eml) (5 )

namely,
N t1)2 2
n?(Jo ui n

S > > - (3.5)
a=1 2t)1)‘fQ (2t)1)‘B()
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From (3.3)-(3.5), (2.35) and (2.33), we have

n2()\k+1 — /\1)
mA Y S er — ) A2,

<UD, ey
(t+1)? At
R W SN
(t+1)2 A1
2611 17 sy (1+ X (et — A9)82)
(t+1)? M
S 2t—1 %Azﬁih ( 4 E, , AzAH—A/\ 1—(\ — ’\1)15\32%})
Defining
Oal = M1 + N A=A A2
T ST E G VY .
and taking
B 2001
ol + A1

we obtain the following theorem.

Theorem 3.1. Let M be an n-dimensional complete minimal submanifold in
RN, Q C M be a bounded domain with a piecewise smooth boundary 0. Then,
for positive integers k, I, eigenvalues of the Dirichlet eigenvalue problem of the
Laplacian satisfy, for 1 < a < N,

72Nyt = M) <4 AL (3.6)

LR DI E§:a+1()‘k+l —NAZ; Tal

Corollary 3.2. Let M be an n-dimensional complete minimal submanifold in
RN, Q € M be a bounded domain with a piecewise smooth boundary 0. Then,
for the Dirichlet eigenvalue problem of the Laplacian, we have

X2 _n+3+vn24+10n+9

— < . .
AT 2n (3 7)

Proof. Taking k =1=1in (3.6), we have
)\2

n()\g — /\1) < 3)\1 + —.
A2
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The above inequality can be written by the following quadratic inequality:
A2\ A2
— - 3Ih)—-—-1<0.
n < )\1> (n+3) N <

Therefore, we can obtain (3.7). m|

Remark 3.3. When n = 2, the inequality (3.7) becomes the following form:

5+ VEs
)\1 R

Thus, the result of Brands [5] for a bounded domain in the Euclidean space is also
included here.

For any positive integer k, we can find some «q such that

>

Jj=aop+1

(Met1 — Aj)A2 (Mer1 — Aj) A2

agj Z aj
fQ|Vza0|2 2 1<a<N ~ fQ|Vza|2u1

Then, from Lemma 2.4, we get

N k
Tl-l-z Z ()\k—i-l—

a=1j=a+1
k
<n+ Z (Akt1 — f |V§OJPU Z/ Vza|*u}
Jj=ao+1 @o 1
k 2
A
=n|1+ i1 = Aj) —etd
j:§+1 fQ |vz0t0‘ ul

Therefore, we have the following corollary.

Corollary 3.4. Let M be an n-dimensional complete minimal submanifold in
RN, Q C M be a bounded domain with a piecewise smooth boundary 0. Then,
for any positive integer k, there exists an integer cg with 1 < ag < N such that
eigenvalues of the Dirichlet eigenvalue problem of the Laplacian satisfy, for any
positive integer [,

A1 — A A2
TL( kil 1) yE <3\ + L

- (3.8)
agg Oq
1+ Zj:ao+1()‘k+1 - )‘j)fn \vng\zug of

Since (3.3) holds for any j and any «, from Corollary 3.4, we have the following
corollary.

Corollary 3.5. Let M be an n-dimensional complete minimal submanifold in
RY,Q C M be a bounded domain with a piecewise smooth boundary 0. Then,
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for positive integers k, I, eigenvalues of the Dirichlet eigenvalue problem of the
Laplacian satisfy, for 1 < a < N,

A - A A1 — A\ )\2

iash) L shath) g, 4

1 +Z] 27N A L+ (Akr = A )()\ B Tal
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