A MOBIUS CHARACTERIZATION OF SUBMANIFOLDS
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ABSTRACT. In this paper, we study Mobius characterizations of submanifolds
without umbilical points in a unit sphere S™*P(1). First of all, we proved that,
for an n-dimensional (n > 2) submanifold x : M — S™*?(1) without umbilical

points and with vanishing Mobius form ®, if (n — 2)||A|| < v/ 2= {nR — L[(n -

n
1)(2- %) — 1]} is satisfied, then, x is Mébius equivalent to an open part of either
the Riemannian product S"~1(r) x S'(v/1 —r2) in S"*1(1), or the image of the
conformal diffeomorphism o of the standard cylinder S”~!(1) x R in R"*!, or the
image of the conformal diffeomorphism 7 of the Riemannian product S™"~!(r) x
H'(v/1+72) in H**! or x is locally Mobius equivalent to the Veronese surface
in $4(1). When p = 1, our pinching condition is the same as in Main Theorem of
Hu and Li [6], in which they assumed that M is compact and the Mdbius scalar
curvature n(n — 1)R is constant. Secondly, we consider the Md&bius sectional
curvature of the immersion x. We obtained that, for an n-dimensional compact
submanifold x : M — S™"*P(1) without umbilical points and with vanishing form
O, if the Mdbius scalar curvature n(n — 1)R of the immersion x is constant and
the Mobius sectional curvature K of the immersion x satisfies K > 0 when p =1
and K > 0 when p > 1. then, x is Md&bius equivalent to either the Riemannian
product S¥(r) x S"~*(v/1 —7r2), for k= 1,2,--- ,n—1, in S"T1(1); or x is M&bius
equivalent to a compact minimal submanifold with constant scalar curvature in

SR (1),

1. INTRODUCTION

Let x : M +— S™P(1) be an n-dimensional immersed submanifold in an (n + p)-
dimensional unit sphere S"*?(1). In [11], Wang introduced a Mébius metric, Mobius
form and the Mobius second fundamental form of the immersion x. By making use of
these Mobius invariants, he founded the fundamental formulas on Mobius geometry
of submanifolds in S"™?(1). By following these results of Wang, the Mobius geometry
on submanifolds in S™*?(1) was researched by many mathematicians (see. [6], [7], [§]
and [9]). In particular, Li, Wang and Wu [8] studied the Mébius characterization of

2001 Mathematics Subject Classification: 53C42, 53C20.

Key words and phrases: submanifold, M&bius metric, Mobius scalar curvature, Mobius sectional
curvature, Blaschke tensor and M&bius form.

* The first author’s research was partially supported by a Grant-in-Aid for Scientific Research
from the Japan Society for the Promotion of Science.

** The second author’s research was partially supported by the Natural Science Foundation of
China and NSF of Shaanxi.

1



2 QING-MING CHENG AND SHICHANG SHU

Veronese surface. They proved that if x : S?(1) — S™(1) is an immersion without
umbilical points of the 2-sphere with vanishing Mobius form, then there exists a
Mébius transformation 7 : S™(1) — S™(1) such that 7o x : S%(1) — S%(1) is the
Veronese surface, where S?*(1) C S™(1) with 2 < k < [m/2]. Furthermore, a kind
of pinching problems on Mdébius geometry of submanifolds in S™*?(1) was studied
by Akivis and Goldberg [2], Hu and Li [6] and so on.

Let x : M + S™P(1) be an n-dimensional immersed submanifold in S™*?(1).
We choose a local orthonormal basis {e;} for the induced metric I = dx - dx with
dual basis {6;}. Let II = > h:6,0,e, be the second fundamental form of the

L i

17J7a
immersion x and H = ) H%e, the mean curvature vector of the immersion x,
where {e,} is a local orthonormal basis for the normal bundle of x. By putting
Pt = — {3 (h5)? =nllH|*}, the Mobius metric of the immersion x is defined

by g = p*dx-dx, which is a Mobius invariant. ® = %, ,C%;e, and A = p? >~ A;;60,0;
]

are Mobius form and Blaschke tensor of the immersion x, respectively, where ce
and A;; are defined by formulas (2.13) and (2.14) in section 2. It was proved that
® and A are Mobius invariants (cf. [11]).

In particular, Akivis and Goldberg [1], [2] and Wang [11] proved that two hyper-
surfaces x : M — S™1(1) and x : M — S™1(1) are Mobius equivalent if and only
if there exists a diffeomorphism ¢’ : M +— M which preserves the Mdbius metric
and the Mobius shape operator such that x = ¢’ o x .

Let H"*? be an (n + p)-dimensional hyperbolic space defined by
H"™ = {(yo,11) € R* x R*™| —yf +y1 -y = —1}.

We denote the open hemisphere in S™*P(1) whose first coordinate is positive by
S%P(1). We consider conformal diffeomorphisms o, : R +— S"(1)\{(~1,0)}
and 7, : H"*? +— S77P(1) defined by :

1—|ul*  2u

Y ) eR”n—i_p7
TP TP ©

(1.1) op(u) = (

(12) o) = (0 22, (o) € H,

Yo Yo
respectively. The conformal diffeomorphisms o, and 7, assign any submanifold in
R"*? or H"*? to a submanifold in S™*?(1). If p = 1, we denote o7 and 73 by o
and 7. In [7], Li, Liu, Wang and Zhao classified M6bius isoparametric hypersurfaces

with two distinct principal curvatures. They obtained the following:
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Theorem 1.1. Let x : M — S™(1) be a Mobius isoparametric hypersurface with
two distinct principal curvatures. Then x is Mobius equivalent to an open part of
one of the following Mébius isoparametric hypersurfaces in S"1(1):

(1) the Riemannian product S*(r) x S™*(v/1 —r2) in S"T1(1),

(2) the image of o of the standard cylinder S*(1) x R"™* in R"1,

(3) the image of T of the Riemannian product S*(r) x H"*(v/1 + r2) in H"™.

A submanifold x : M +— S™P(1) is called Mobius isotropic if ® = 0 and A =
Adx - dx for some function A. In [9], Liu, Wang and Zhao proved the following:

Theorem 1.2. Any Mdébius isotropic submanifolds in S"P(1) is Mébius equivalent
to an open part of one of the following Mobius isotropic submanifolds:

(1) a minimal submanifold with constant scalar curvature in S™P(1),

(2) the image of o, of a minimal submanifold with constant scalar curvature in
R"P,

(3) the image of T, of a minimal submanifolds with constant scalar curvature in

H"*P.

On the other hand, Hu and Li [6] studied a pinching problem on the squared norm

of the Blaschke tensor of the immersion x and obtained the following:

Theorem 1.3. Let x : M — S™P(1) be an n-dimensional (n > 3) compact sub-

manifold without umbilical points and with vanishing Mébius form ® in S"*P(1). If

n—1)(n—2)

the Mébius scalar curvature n(n — 1)R > ( - is constant and if

n—1 n 1
( R__)7

n n—2 n

1Al <

then, either x is Mobius equivalent to a minimal submanifold with constant scalar

_1
1+c2

ST 1/V/1 + ¢2) for some constantc > 0,7 = /%, where A = p? > Ay;0,0;
2

curvature in S"P(1) or x is Mobius equivalent to S'(r) x S"7( —72) in

Remark 1.4. In the original statement of the theorem 1.3 of Hu and Li [6], they did
not write out the condition that M has no umbilical points. But this condition is
necessary for their proof. Further, We should note that these assumptions that M is
compact and the M&bius scalar curvature n(n — 1) R is constant play an important
role in the proof of Theorem 1.3 of Hu and Li [6].

In this paper, first of all, we prove the following:

Main Theorem 1. Let x : M — S™P(1) be an n-dimensional (n > 2) submanifold
without umbilical points and with vanishing Mobius form @, iof

(13)  -2Al < R~ - DE- ) -1}
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then x is locally Mobius equivalent to either the Veronese surface in S*(1), or x
1s Mébius equivalent to an open part of one of the following Mdbius isoparametric
hypersurfaces in S"T(1):

(1) the Riemannian product S"~'(r) x S*(v/1 —r2) in S™1(1),

(2) the image of o of the standard cylinder S"*(1) x R in R"*,

(3) the image of T of the Riemannian product S™1(r) x H'(v/1 + r2) in H"™,
where n(n — 1)R denotes the Mdbius scalar curvature of the immersion x and A=
p2 Zij Alﬂﬂj with Aij = Aij — %Z Akkgz]

%

Remark 1.5. In our Main Theorem 1, we do not assume the global condition that
M is compact and we do not need to assume that the Mobius scalar curvature is
constant. Further, when p = 1 and (n > 3) our pinching condition is the same as
in Hu and Li [6]. Since Hu and Li [6] assumed that M is compact, the cases of 2
and 3 above in Main Theorem 1 do not appear in their theorem. If n = 2, since
the Mobius metric g is flat, we know that R = 0. Main Theorem 1 reduces to the
Theorem 5.1 in [11].

Since Riemannian product S*(r) x S"*(y/1 —r2), for k = 1,2,--- ,n — 1, have
nonnegative Mobius sectional curvature and they do not satisfy the inequality in
Theorem 1.3 of Hu and Li [6] except k =1 or k = n — 1 (see Proposition 3.2 and
Remark 3.3 in section 3), we will consider the immersion x with nonnegative Mobius
sectional curvature and prove the following:

Main Theorem 2. Let x : M +— S™P(1) be an n-dimensional compact submanifold
without umbilical points and with vanishing Mobius form ® and constant Mobius

scalar curvature n(n — 1)R in S™P(1). If the Mobius sectional curvature K of M
satisfies

K>0, ifp=1
K>0, ifp>1,

then, x is Mobius equivalent to the Riemanmnian product S*(r) x S" (/1 —r2),
fork=1,2--- n—1,in S"(1); or x is Mobius equivalent to an n-dimensional
compact minimal submanifold with constant scalar curvature in S™P(1).

2. PRELIMINARIES AND FUNDAMENTAL FORMULAS ON MOBIUS GEOMETRY

In this section, we review the definitions of Mobius invariants and give the fun-
damental formulas on M&bius geometry of submanifolds in S™"?(1), which can be
found in [11].

Let R}*? be the Lorentzian space with inner product

(2.1) < T, W >= —TgWo + L1W1 + -+ + Tpgpr1Wntpt1,
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where © = (2, 1, , Tpypy1) and w = (Wo, w1, -+, Wyipt1). Let x 1 M +— S"P(1)

be an n-dimensional submanifold of S™*7(1) without umbilical points. Putting

n —
(2.2) Y =p(l,x), p* = —= (1| = nlH|?) >0,

then, Y : M — R is called Mabius position vector of x. It is easy to prove that
g=<dY,dY >= p’dx - dx

is a Mobius invariant which is recalled Mdbius metric of the immersion x. Let A

denote the Laplacian on M with respect to the Mébius metric g. Defining

1 1
2. N=—=-AY — —(1+n?R)Y.
(2.3) - 2n2< +n°R)Y,

we can infer

(2.4) <AY)Y >=—n, <AY,dY >=0, <AY,AY >=1+n’R,

(2.5) <Y,)Y >=0, <N, Y>=1, <N,N>=0,

where n(n — 1)R denotes the Mdébius scalar curvature of the immersion x. Let
{E1,- -, E,} denote alocal orthonormal frame on (M, g) with dual frame {wy, -+ ,w, }.
Putting Y; = E;(Y'), then we have, from (2.2), (2.4) and (2.5),

(2.6) <Y,Y >=<Y;,, N>=0, <Y,Y;>=¢;;, 1<ij<n.

Let V' be the orthogonal complement to the subspace Span{Y,N,Y;,--- Y.} in

R]™P 2 Along M, we have the following orthogonal decomposition:

(2.7) Ry = Span{Y, N} @ Span{Y3,--- , Y, } @V,

where V is called Mébius normal bundle of the immersion x. It is not difficult to
prove that

(2.8) E,=(HY H*x+e,), n+1<a< n+p,

is a local orthonormal frame of V. Then {Y, N, Yy,--- Y., Enq1, -+, Eygp )} forms a
moving frame in R{™2 along M. We use the following range of indices throughout
this paper:

1<ikim<n n+l1<aqF<n+p.
The structure equations on M with respect to the Mobius metric g can be written

as follows:

(2.9) dy =) Y,
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(210) dN = Z Aijij; + Z C’f‘wiEa,
1,j 0
J J Jex

(2.12) Z CowY — Z Biw;Yi+ Y wasEj,
B

where w;; is the connection form with respect to the Mobius metric g, wyg is the
normal connection form of x : M — S™?(1), which is a Mdbius invariant. A =
Yo Ajjw; @w; and ¢ = Zme‘wi(p_lea) are called Blaschke tensor and Mdbius

form of the immersion x, respectively, where

(2.13) Cf = —p *{H + ) (hf; — H0yy)e;(log p)},
J
(2.14) Aij = —p~*{Hessy;(log p) — e;i(log p)e;(log p) — Z Hh}

L
— 5o (19008 ) 1+ [H])5,
Here Hess;; and V are the Hessian matrix and the gradient with respect to the

induced metric dx-dx. It was proved that ® = ¥, ,C70,e, and A = Iy A;;0,0; are
.J

Mobius invariants. B = )", . | Biww;(p~"eq) is called Mébius second fundamental

form of the immersion x, where

(2.15) Bfy = p~ ' (hi; — H3ij).

Z?J7a

Hence, we have

(2.16) SBi=0, Y (B: —”_1.

,J,00

We define the covariant derivative of Cf*, A;, By} by

> Cow; =dCe+Y  Clwii+ Y Clwga,
J J B
(217) Z Aij’kwk = dAl] + Z Aikwkj + Z Akjwki,
k k k
(2.18) > B w = dBS + Z Biwii+ Y Biwii + Y Blwga.
k k B

From the structure equations (2.9), (2.10), (2.11) and (2.12), we can infer
(2.19) Aijk — Ay = Y _(BRCS = BiCy),

(e}
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(2.20) Co = Cf =Y (BgAry — B Aw),
k
(221) ng zkj — 5”0]6 - 5”“0]@’

(2.22) Rijw =Y (B4.BS — ByBS) + (0iAju + 05 A — 60 Az — 6. Au),

«

(2.23) Rogij = Z(B%Blfj - Bch?j)a
k

where R;j, and R,p;; denote the curvature tensor with respect to the Mobius metric
g on M and the normal curvature tensor of the normal connection. n(n — 1)R =

> R;ji; is the Mobius scalar curvature of the immersion x : M — S™*?(1). From
(¥

(2.3) and the structure equation (2.11), we have, (cf. [11]),

(2.24) trA — 21 (14 n°R).

n
By taking exterior differentiation of (2.17) and (2.18), and defining

Z Ajjwp = dAgj + Z A pwii + Z Aipwiy + Z Ajjiwik,
! ! ! !
> Bg i =dB3+> B+ Y Biwy+ > B wik+ Y Bl wsa,
l ! l l 8

we have the following Ricci identities

(2.25) Aijrt — Aijur = Z A Rt + Z Aim Rk,

For a matrix A = (a;;) we denote by N(A) the square of the norm of A, i.e.,
N(A) = tr(AA) =) “(a),
1]
where A' denotes the transposed matrix of A. It is obvious that N(A) = N(T*AT)

holds for any orthogonal matrix 7.

The following algebraic lemmas will be used in order to prove our Main Theorems.

Lemma 2.1. ([5]). Let A and B be symmetric (n x n)-matrices. Then

(2.27) N(AB — BA) < 2N(A) - N(B)
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and the equality holds for nonzero matrices A and B if and only if A and B can
be transformed simultaneously by an orthogonal matriz into multiples of A and B,
respectively, where

010 0 1 0 0 0

0 0 0 0 -1 0 0
A=10100 0 B=|0 0 0 0
000 0 o 0 0 --- 0

Moreover, if Ay, Ay and Az are (n X n)-symmetric matrices and satisfy
N(AaAp — AgAa) = 2N(Aa) - N(4g), 1<, 8<3,
then at least one of the matrices A, must be zero.

Lemma 2.2. (Cheng [4] and Santos [10]). Let A and B be n x n-symmetric matrices
satisfying trA = 0,trB =0 and AB — BA =0. Then,

n —

(2.28) tr(B2A) > — (trB?)(trA2)Y/2,
n(n —1)
and the equality holds if and only if (n—1) of the eigenvalues z; of B and the corre-
. . ) (trBZ)l/Q (trA2)1/2
sponding eigenvalues y; of A satisfy |x;| = ———=, wx; >0, y; = —V——.
n(n —1) n(n —1)

3. MOBIUS INVARIANTS ON TYPICAL EXAMPLES

In this section, we shall study Mobius invariants on typical examples. These
results in this section will be used in the proof of Main Theorem 1 and the results
in the following proposition 3.2 will support our assumption in Main Theorem 2.
Throughout this section, we shall make the following convention on the ranges of
indices:

1<i,j<n, 1<ab<k k+1<st<n.
The following Lemma 3.1 due to Li, Liu, Wang and Zhao [7] will be used

Lemma 3.1. Let x : M — S""(1) be an n-dimensional hypersurface with two
distinct principal curvatures with multiplicities k and n — k, respectively. Then the
principal curvatures of the Mobius second fundamental form B of x are constant,
which are given by

H1

:l\/(n—l)(n—k) 1 [(n—1)k

n k ey (n—k)
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Proposition 3.2. Let x; : S*(1) — R and x; : S"7F(1) — R"* be the
standard embeddings of the unit spheres. Then, for Riemannian product x : S¥(r) x
Sk (V1 = 12) = SPTY(1) defined by x = (rxy, V1 —1r2xy), for any 1 < k <n—1

and any 0 <r < 1, we have

k-1 (n—1)(n—2k) ,
B2 BT T k-
(3.3) (n—2k)*|A|* = MW— nf)?’
(3.4) Ropar = /f(nn—_—lk:)(l —7%), Rasas =0, Rggr = —kgl_—lk) r

where R;ji; denotes the Mobius sectional curvature of the plane section spanned by
{E;, E;}.

Proof. Since Riemannian product x : S¥(r) x S"7#(y/1 — r2)  S™F1(1) is the stan-
dard embedding, we know that the second fundamental form of x has two distinct

— r
rincipal curvatures and — with multiplicities £ and n — k, respec-
princip . N p p
— 2
tively. Putting ¢ = T , we have
r
1
(35) hab - C(saba has - 07 hst - __6st7
c
1< 1 1
3.6 H=—- hyi = —{kc—(n—k)-},
(36) 2Dt = lbe— (0= b))
1
(3.7) |11]]* = k02+(n—k)c—2,
. = 11||* —nH?*) = :
(33) g = (P -y = SR

Hence, the M6bius metric g of the x is given by
g = pldx - dx.

Since p? is constant, from (2.13) and (2.14) , we have C; = 0 and A;; = —5p 2{(H*—
1)d;j —2Hh;;}, where C; and A;; denote components of Mobius form ¢ and compo-
nents of the Blaschke tensor A. Hence, we infer & = 0 and

n—1
—{k
2k(n — k;)nQ{ (
(3.10) Ags =0,

(3.9) Ay = 2n — k) — n*r?}a,

n—1
A1 Ay = ——————{n*r? — k*Y04.
(3 ) st 2k<n— k)n2 {n T k }5575
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Thus, we have

(3.12) trA = —— —{k 4+ n(n - 2k)r°}.

1
2k(n — k)
From (2.24), we obtain

k-1 (n—l)(n—Qk)r2
(3.13) = n(n — k) * k(n — k)n '

According to

Ay = Ay — %(th)fsip
we have
(3.14) Ag = nk;; {k —nr’}0a,
(3.15) Ay =0,
(3.16) Ay = (nn——_k;n?{WQ e
Therefore, we infer
(n—1)? k

(3.17) A = s

From (3.13) and (3.17), we obtain

(3.18) (n —2k)?||A|? = (nR — ).

k(n — k) n—2
n

n
From Lemma 3.1, (2.22), (3.9), (3.10) and (3.11), we have

n—1

1 Rapab = Baa By + Aga + Apy = ———(1 — 12),
(3.19) bab b+ Aaa + App k;(n—k:)( )
(320) Rasas = BaaBss + Aaa + Ass = 07
n—1
(3.21) Rstst = Bss By + Ags + Ay = mTQ-
This completes the proof of Proposition 3.2. U

Remark 3.3. From (3.3), we know that (n — 2)||A|| = \/ = (nR — 2=2) if and only
iftk=1lork=n-—1.
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Proposition 3.4. Let x : S¥(1) x R"% s R""! be the standard cylinder. Then,
the hypersurface x = g o x : S*(1) x R"% - S"T1(1) satisfies

(3.22) o =0,
k—1
(3.23) R= i
~ k(n —1)2
.29 AP = 2=
(3.25) Rapab = k(nn—__lk) Rasas =0, Rast =0,

where o is the conformal diffeomorphism defined by (1.1) with p = 1.

Proof. Since x : S*(1) x R"™* — R is the standard cylinder, we know that the
second fundamental form of x has two distinct principal curvatures 1 and 0 with
multiplicities £ and n — k, respectively. Let flij and H denote components of the
second fundamental form I7T and the mean curvature of X, respectively. Then, we
have

(326) iLab - 5aba iLas = 07 ;Lst = 07
A k N
(3.27) H = e ||IIH2 = k.
By defining
9 n Srn2 Fr2 k(n —k)
= 17| —nH") = ——=
P = (1) = ) = S,

then, the Mobius metric g of the X is given by
§ = pidx - dx.

Let {&} be an orthonormal basis for the first fundamental form [ = dx - dx with
the dual basis {6;}. Define

(3.28) Ci=—p*{H;+ Y (hij — H;j)é;(log p)},
J
(3.29) Ajj = —p~*{Hessy;(log p) — é;(log p)é;(log p) — Hhy; }
1 . ~
= 5f 2(IV(log p)II* + H?) b5,
(3.30) Bij = p~ ' (hij — Héyy).

Here Hess;; and V are the Hessian matrix and the gradient with respect to the

induced metric I = dx-dx . ©® = > Cibiény1, A = p*> A;;0,0; and B =
2%

S Bi;0:0;(p " nya) is called Mabius form, Blaschke tensor and Mobius second fun-

4,3
damental form of the immersion X, respectively (cf. [9]).
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Since p? is constant, from (3.28) and (3.29), we have C; = 0 and A;; = —1p~2{H25;;—
2Hh;;}. Hence, we infer & = 0 and

(n—1)(k —2n)

Aa = - 5(1 )
’ 2(n — k)n? ’
Aas = 07
5 (n—1)k
PP i L
st 2(n _ k)nZ 58t

Thus, from Theorem 4.1 of Liu, Wang and Zhao [9], we know & = d =0 and
(n—1)(k —2n)

31 A =Agy = — 5
(3 3 ) ab ab 2(’[’L o k‘)n2 aby
(332) Aas = Aas = 07

. (n—1)k

. Ag=Ag = — s
(3.33) t t 2(n — k) t
Thus, we infer

(n—1)k
3.34 trA =
(3:34) ' 2(n —k)n
From (2.24), we obtain
k—1
3.35 R=——
(3:35) n(n —k)
From
~ 1
Aij = Aij — EtrAéij,
we have
~ n—1
Aab = B §ab7
Aas = 07
~ (n—1k
Ay st
! (n—kn2™
Therefore, we infer
~ —1)%

. Ap= oz U
(3.36) AR = F s
From (3.35) and (3.36), we obtain

- k(n —k -2
(3.37) (n — 2k)2| A% = %(n}z T2y
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From Lemma 3.1, (2.22), (3.31), (3.32) and (3.33), we have

n—1
k(n—k)’
Rusas = BaaBss + Aaa + Ass = 0,

Rgtst = Bss By + Ags + Ay = 0.

Rabab = BaaBbb + Aaa + Abb =

This completes the proof of Proposition 3.4. 0

Remark 3.5. From (3.23) and (3.24), we know that (n — 2)||A|| = \/ = (nR - =2)
if and only if k =n — 1.

Proposition 3.6. Let x : S*(r) x H" *(y/1+1r2) — H"™! be the standard em-
bedding. Then, the hypersurface x = 7 ox : S*(r) x H* *(/1 +12) — S"t1(1)
satisfies

(3.38) ¢ =0,
k-1 (n—1)(n—2k) ,
(3.39) R = nn—k)  nk(n—k)
(3.40) (2k —n)| Al = @(”R_ nT_2>’
(3.41) Raopap = h(l + 7’2)7 Risas =0, Ry = —_kgl__lk).r%

where T is the conformal diffeomorphism defined by (1.2) with p = 1.

Proof. Since x @ S*(1) x H" *(y/1 +72) — H"*! is the standard embedding, we
know that the second fundamental form of X has two distinct principal curvatures

V1472 r
= d and
r V1+ 72

and H denote the components of the second fundamental form /7 and the mean
curvature of X, respectively. Then, we have

with multiplicities £ and n — k, respectively. Let l_zij

1

Bab = déab; }_Las = 07 ;—lst == C_i(ssta
_ 1 _ 1
H= E{k;cz+ (n—k)d}, ||[I1))?=kd*+ (n— k)ﬁ
By defining
2 N T2 —Q_k(”_k)(dz_l)Q
pr= 7 (M7 =nH") = —— IR

then, the Mobius metric g of the x is given by

g = p’dx - dx.
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Let {&;} be an orthonormal basis for the first fundamental form I = dx - dx with
the dual basis {6;}. Define

(3‘42) 0i = 2{H +Z ij z] 6] logp)}
(3.43) Ajj=— {Hessl-j log p) — €i(log p)e;(log p) — Hﬁij}
1 N B _
- 5(%?) 2(IV(log p)||* + 1+ H?)dy5,
(3.44) Bij = (p)"'(hij — Héy;).

Here Hess;; and V are the Hessian matrix and the gradient with respect to the
induced metric I = dx-dx . ¢ = EiC’iQiénH, A = ﬁ2ZAZ]0ZQJ and B =
(]

ZBijéiéj((ﬁ)_lénH) is called Mébius form, Blaschke tensor and Mébius second

fundamental form of the immersion X, respectively (cf. [9]).
Since p? is constant, from (3.42) and (3.43), we have C; = 0 and 4;; = —1(p) >{(1+
H?)8;; — 2Hh;;}. Hence, we infer ® = 0 and

Aab - W{k(Qn - k) + n2r2}5ab7
A, =
Ay = —n——l{k2 + 212},

2k(n — k)n? °

Thus, from Theorem 4.4 of Liu, Wang and Zhao [9], we know ® = ® = 0 and

n—1

4 Ap =Ap = ——{k(2n — k 21216,
(3 5) ab b Qk(n—k)nQ{ (n )+7’L’f‘} by
(346) Aas == Aas - Oa

- n—1

. = S 2
(3 4:7) Ast Ast 2k(n _ k)nZ{ —|— TL T }6515
Thus, we infer

n—

4 A= ——{k*— — 2k

(3.48) tr 2h(n = ) {k* —n(n 2}

From (2.24), we obtain

k—1 (n—1)(n—2k) ,

(349) h= nn—*k)  nk(n—k)

From

1
Aij = Aij — EtI‘A(SZ’j,



A MOBIUS CHARACTERIZATION OF SUBMANIFOLDS 15

we have
~ 1
Ay = "k = (k + 1r%) 8,
A pu—
~ n—1 9
Ast = —ma{? —|— nr )5575.
Therefore, we infer
~ —1)? k
All2 = (n 2, Py
AL = o )

From (3.49) and (3.50), we obtain

k(n—k)(nR_n—Q

n n
From Lemma 3.1, (2.22), (3.45), (3.46) and (3.47), we have

(2k —n)||All =

).

n—1

Ra ab — BaaB Aaa Ap = —~(1 2 s
bab bb + Aaa + App k(n—k‘)< +77)
Rasas = BaaBss + Aaa + Ass = 07
Ryt = BouBy + Ayy + A n-l
stst — Dss ss = —37 T
tst tt tt k‘(n — k)
This completes the proof of Proposition 3.6. 0

Remark 3.7. From (3.40), we know that (n — 2)||A|| = \/ =1 (nR — 2=2) if and only
ithk=n-1

4. PROOFS OF MAIN THEOREMS

In this section, we will prove our Main Theorems.
Proof of Main Theorem 1. Since the Mébius form & = > Cfe, = 0, we have, by

(2.19), (2.20) and (2.21), that ’

(4.1) Aijk = Airjy Bix = Bi ZB Ak = ZB,?]-A;“-, for any a.
k

From the definition ABf; = »_ Bf ;. of the Laplacian of the Mdbius second funda-
k

mental form of the immersion x, we have

(4.2) %AZ(B%Y: > (B’ + Y BSAB.

ijor ik ijsor
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From (2.16), we have

(4.3) > (B3 + ) BIABS =0.
1,5,k,0 1,J,0
From (2.16), (2.22), (2.23), (2.26) and (4.1), we have, by a direct calculation, that
(4.4) > BRABY = -2 [tr(B2Bj) — tr{(BaBs)’}]
1,5, o,
— Z{tr(BaBﬁ)} +n2tr(ABa) + - trA,
a,f3 «

where B, and A denote the n x n-symmetric matrices (Bg}) and (A;;) respectively.
Putting A = (A;;) with

~ 1
(4.5) Aij = Ay — E(trA)&j,
we have
- 1 ~ 1
(4.6) JAIP =) (Ai)* =D (Ai)* + E(trz‘l)2 = | A|I* + E(UA)Q,
4,J 4,J

From (4.5), we have
(4.7) trA =0, tr(AB2) = tr(AB%) — - (trA)(trB2).
n

From (4.1), we know that B,A = AB,. Therefore B,A = AB, holds. From Lemma

2.2, we have

-2 ~ 1
n trB2|| Al + —(trA)(trB2).

Vvn(n—1) n

Case (i) where p = 1. Put B"' = B;; and B, y; = B. Since BA = AB holds

ij

(4.8) tr(AB2) > —

from (4.1), we can choose a local orthonormal basis {E}, Fa,--- , E,} such that
Bij = widij and Aij = Aiij. Thus, we have from (4.4), (2.16) and (4.8)
>i; BijABy; = —(trB?)? + ntr(AB?) + nli A
(4.9) > —(") - \/%(n—Q)HAH onlig
= YR =) - (- A

where ||A||> = ||A||*> and trA = trA are used. From the assumption (1.3) in Main
Theorem 1, we know that the right hand side of formula (4.9) is nonnegative. There-
fore, from (4.3) and (4.9), we obtain

(4.10) Bijs =0, forall i,j,k and Y Bj;AB; =0.

1,
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Hence the equality in (4.9) holds. We have

(4.11)

Further, the inequality (4.8) becomes equality. From Lemma 2.2, we know that
t B2 1/2 1

(n — 1) of the eigenvalues u; of B satisfy |u;| = (B = — and pp; > 0,
nn—1) n

which yields that the (n — 1) of w;’s are equal and constant. Since trB = 0 and

Zi,j B} = 2=

are all constant. Therefore, we obtain x : M — S"(1) is a Mobius isoparametric

hold, we know that B has two distinct principal curvatures, which

hypersurface with two distinct principal curvatures. By the result of Li, Liu, Wang
and Zhao [7], we have that x is Mbius equivalent to an open part of the Riemannian
product S*(r) x S" (/1 —r2) in S"*!(1), or an open part of the image of o of
the standard cylinder S*(1) x R** in R"*! or an open part of the image of 7 of
SE(r) x H* *(v/1 +r2) in H**' for k = 1,2,--- ,n— 1. From Remark 3.3, Remark
3.5 and Remark 3.7, we know that formula (4.11) holds if and only if £ = n — 1.
Hence, Main Theorem 1 is true in this case.

Case (ii) where p > 2. Define 0,3 = Z B"‘Bﬁ Since the (p x p)-matrix (o,4) is

symmetric, we can choose E,, 1, - En+p such that (o,p) is diagonal, that is,

(4.12) Oap = UQCSaﬁ.

From Lemma 2.1, we have

(4.13) —~ ZN (BaBs — BsBa) — Y _{tr(BaBs)}"
a,B
> —QZUaUg — ZO’
af

= —2( ZU"‘) —i—Zaa
_2n—1 ZUa

v
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From (4.4),(4.8), (4.13), we have

(4.14) ZB;;AB;;
>m,o(62%)(n1)2+n;tr(AB§)+nnltrA
——2- (- j%;wzuﬁu
+trAZtrBi+n;1trA
—— - ) - P - DA+ 2
:\/ngl{\/ngl(nfi—%[(n—l)@—%)—l])—(n—2)IIAH},

where ||A]|> = ||A|?> and trA = trA are used. From the assumption (1.3) in Main
Theorem 1, we know that the right hand side of (4.14) is nonnegative. Therefore,
from (4.3) and (4.14), we obtain B, = 0, for all 4, j,k,a, and ) BJABf = 0.

ij L ij
27.]7a

Hence, the above inequalities become equalities. Thus, we have

~ n—1 1 1
4.15 —2)[|A|| = R—— -1)2--)-1
419 -2Al =" er - e - by,
and
(416) On+1 = Op42 =+ ° = On4yp
because of +(3°,0a)> = 3, 0% From Lemma 2.1, we know that at most two of

the matrices B, = (B%) are nonzero. From (2.16), we have > 0o = "=*. Hence,

(4.16) yields p = 2 and we may assume that

(4.17) Bui1 =M, Bpio=pB, \u#0,

where A and B are defined in Lemma 2.1. Therefore, we have

(418> B?;l = B;Lfrl = )‘7 Bz‘nj+1 = 07 (Zaj) € {(17 2)7 (27 1)}7
(419) B{L;_Q = K B;L;z =4 Bz‘nj+2 = 07 (7'7]) ¢ {(17 1)7 (27 2)}

Since the inequality (4.8) becomes equality, from Lemma 2.2, we know that, for
(trB2)'/?

vn(n—1)
pitps > 0, which infer that the (n — 1) of uf are equal. From (4.19), we have the

eigenvalues of B, o = (Bi”j”) are ft,—p,0,0,--- 0. Since pu # 0, we infer n = 2.

each a, (n — 1) of the eigenvalues i of B, = (Bf}) satisfy |uf| = and
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From (4.18), we can infer, by an algebraic method, that the eigenvalues of B, are
A, —A. Since n = p = 2 holds, from (4.1), (4.18) and (4.19), we have

(420) AH == AQQ, A12 == A21 - O

Therefore, x : M? — S%(1) is a Mobius isotropic submanifold in S*. Thus, we have
|A| = 0. Since n = 2 and p = 2 hold, from (4.15), we have R = +. We obtain
trA = 2. Hence A;; = Ay = . From Liu, Wang and Zhao [9], we obtain that
x : M? — S§%(1) is Mobius equivalent to an open part of either a minimal surface
X : M? — S%(1) with constant scalar curvature in S*(1), or the image of oy of a
minimal surface with constant scalar curvature in R* or the image of 7 of a minimal
surface with constant scalar curvature in H*. For a surface, Gaussian curvature is
constant if and only if the scalar curvature is constant. From the Proposition 4.1
and Theorem 4.2 of Bryant [3], we know that a minimal surface with constant
scalar curvature in R* is totally geodesic and a minimal surface with constant scalar
curvature in H* is also totally geodesic. Since x : M? ~— S%(1) has no umbilical
ponits, we infer that x : M? — S%(1) is M&bius equivalent to an open part of a
minimal surface x : M? — S%(1) with constant scalar curvature in S*(1). From
the Gauss equation of the minimal surface x : M? — S%(1) with constant scalar
curvature in S*(1), we know that the squared norm of the second fundamental form
of this minimal surface is constant. According to the definition (2.2) of p, p?* is

constant. From (2.14), we have p?> = 8. Thus, the squared norm of the second

3
fundamental form of X must be 3, i.e. [|[[T||*> = 3. Therefore, from the result of
Chern, do Carmo and Kobayashi [5], we obtain that x : M? — S%(1) is locally a

Veronese surface in S*(1). This finishes the proof of Main Theorem 1.

Proof of Main Theorem 2. Since the Mobius form & = >~ Cfe, = 0 holds, we have

(4.21) Aij = Ainj, Bly =B, Y BiAy =Y BiAu.
k k

Hence, for any o, B,A = AB,, where A = (4;;) and B, = (B,). For any fixed
a, we can choose the basis {E;} such that A = (A;;) and B, = (BY},) are diagonal,
that is,

(4.22) Aij = Nibig, By = by
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Since n(n — 1)R is constant, from (2.24), we have that trA = trA = ) . A; is
constant. From (2.25), (4.21), (4.22), we infer

1
(4.23) §AHA||2 = (A + > Aij Ak

1,5,k 1,5,k
= Z(Az’j,k)2 + Z AijAkk,ij + Z Az‘jAlilejk + Z AijAklRlijk
1,5,k 1,5,k 1,5,k,1 1,5,k,1
1
— 2 o o 2
- Z;(Az],k) + 5 zk: Rzkzk<)\z )\k) .
.7, i,

When p > 1, from the assumption K > 0 in Main Theorem 2, by integrating (4.23),
we have
Rigie(Xi — Ak)* = 0.

Therefore, we know that \; = A, that is, x : M — S""P(1) is a Mobius isotropic
submanifold in S™"P(1) with positive M6bius sectional curvature. From the result
in [9], we know that x is Mdbius equivalent to the compact minimal submanifolds
with constant scalar curvature in S™7(1).

Next, we consider the case where p = 1. In this case, we know that the Mobius
sectional curvature of the immersion x is nonnegative. By integrating (4.23), we

infer

(4.24) Aijx =0, for any i, j, k,  Ruax(Ni — Ap)* = 0.

From (2.22) and (4.22), we have Ry = pipix + \i + A for ¢ # k. Hence, we infer
(4.25) (piptr + Xi + X)) (N — Ap)? = 0.

Form (4.24) and (2.17), we have

(4.26) 0= dN\bi; + (N — \wyy, 1<i,j<n.

Setting ¢ = j in (4.26), we obtain d)\; = 0, that is, eigenvalues of (A4;;) are all
constant. From (4.26), we infer that for A\; # A;,

Let A1, Ag,- -+, A are these distinct eigenvalues of A = (A;;). We can assume A\ <

Ay < -+ < A\ From (4.25), we have

In the second case, we will prove that A = (A4;;) has at most three distinct eigenval-

ues. In fact, if we assume A\; < Ay < A3 < A\g < --- < \; are these distinct eigenvalues
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of A= (A;;). Let A1, Ag, \; are the three distinct eigenvalues of A = (A4;;), we have

wips + i + A = 0.

Mg 2 +/\z—|—)\2 =0.

Hence, we have

AL — A
(4.29) = ——4—22
M1 — M2
AL — A
(430) /\z = —)\1 + 125} ! 2 .
My — H2
Hence, for r = 3,4,--- .1, we have \, = \;. This is a contradiction. Therefore,

A = (A;;) has at most three distinct eigenvalues.

(1). In the first case, we consider the case that (A;;) only has one distinct eigen-
values. Since the Mobius form @ = Y Cfe, = 0, we know x : M +— S"1(1) is
a Mobius isotropic hypersurface in S”ﬁ(l) with nonnegative Mobius sectional cur-
vature. By the result in [9], we know that x is Mobius equivalent to a minimal
hypersurface with constant scalar curvature in S™*!(1).

(2). We consider the second case that (A;;) has two or three distinct eigenval-
ues. From (4.29), we know that at most three of the principal curvatures of (B;;)
are distinct. Since x has no umbilical points, we know that the distinct principal
curvatures of (B;;) is two or three.

(i) If two of the principal curvatures of (B;;) are distinct, without lost of generality,
we may assume pi; < . From (2.16), we know that pq and ps are constant, that is,
x : M +— S™1(1) is a Mobius isoparametric hypersurface with two distinct principal
curvatures in S"1(1). Since x is compact, from Theorem 1.1 in the introduction, we
infer that x is Mdbius equivalent to the Riemannian product S*(r) x S (/1 — r2),
fork=1,2,--- ., n—1.

(ii) If three of the principal curvatures of (B;;) are distinct, without lose of gener-

ality, we may assume gy < fg < pz. From (2.16) and (4.29), we know that pq, p2, i3
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are constant. From the proof of Main Theorem 1, we infer

%A Z B} =) B+ B;AB;
2y

1,5,k %,J

-1
= Z B}, — (trB*)? + ntr(AB?) + trA

1,5,k

1
=) B+t 5 > (i = 115)* Rijij > 0.
i

’]7

Since > ij is constant, we obtain B;;; = 0 for any ¢, 7, k. From (2.18), we have, O
i?j
for each p; # p;,

Hence, we know that the distributions of the eigenspaces with respect to u; are
integrable. Since the distinct principal curvatures of M is three, we can write M =
M; x My x Ms, where M; (1 < i < 3) is the integrable manifold corresponding to
the principal curvature p;. Since u;’s are constant, we know that M;, ¢« = 1,2, 3, are

closed. Thus, they are compact because M is compact. From (2.22), we have, for

j7 kvl E [1]7
(4.32) Rijie = (13 + 2X:) (0051 — Gadjn.),

that is, M; are constant curvature space with respect to the Mobius metric g. Putting
ki = p? +2);, 1<i <3, then, we have
kv = (p1 — p2)(pn — pg) >0,
(4.33) ko = (2 — pn)(p2 — p3) <0,
ks = (us — p) (s — p2) > 0.
Therefore, we may infer dim M, = 1. In fact, if dim My > 2 holds, by the assumption

that the Mobius sectional curvature of M is nonnegative, we have ks > 0. This is a

contradiction.

Let (u,v w) be a coordinate system for M such that u € My, v € My, w € M,
and E; = 5-, where | = dimM; + 1. Then, from structure equations (2.9), (2.10),
(2.11) and (2.12) and (4.31), by a direct and simple calculation, we obtain
(4.34) N, = Y.,

(435) Y;w = _)\QY —N + IMQE, Y;,j = O,fOI' ] 7£ l,

(4.36) E, = —mY,,
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where we denote E,,,1 by E. From (4.35), we can write Y = f(v) + F(u,w). Then,
by (4.34), (4.35) and (4.36), we have

(4.37) f"(0) + ko f'(v) =0,
where ky = p3 42X\ < 0. The solution of (4.37) can be easily written as

1 1
———=cosh(v/—k Cy——=sinh(/—k
\/__kzcos (v —kav) + 2\/__1{:25111 (v —kav),

where Cy, Cy € RI™ are constant vectors. From (4.38), we know that A, must be

(4.38) flv) = Cy

a hyperbola. This is a contradiction because M, is compact. Hence, the case (ii)
does not occur, that is, M is a Mobius isoparametric hypersurface with two distinct

principal curvatures. This completes the proof of Main Theorem 2.
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