A MÖBIUS CHARACTERIZATION OF SUBMANIFOLDS

QING-MING CHENG AND SHICHANG SHU

Abstract

In this paper, we study Möbius characterizations of submanifolds without umbilical points in a unit sphere $S^{n+p}(1)$. First of all, we proved that, for an n-dimensional $(n \geq 2)$ submanifold $\mathbf{x}: M \mapsto S^{n+p}(1)$ without umbilical points and with vanishing Möbius form Φ, if $(n-2)\|\tilde{\mathbf{A}}\| \leq \sqrt{\frac{n-1}{n}}\left\{n R-\frac{1}{n}[(n-\right.$ 1) $\left.\left.\left(2-\frac{1}{p}\right)-1\right]\right\}$ is satisfied, then, \mathbf{x} is Möbius equivalent to an open part of either the Riemannian product $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ in $S^{n+1}(1)$, or the image of the conformal diffeomorphism σ of the standard cylinder $S^{n-1}(1) \times \mathbf{R}$ in \mathbf{R}^{n+1}, or the image of the conformal diffeomorphism τ of the Riemannian product $S^{n-1}(r) \times$ $\mathbf{H}^{1}\left(\sqrt{1+r^{2}}\right)$ in \mathbf{H}^{n+1}, or \mathbf{x} is locally Möbius equivalent to the Veronese surface in $S^{4}(1)$. When $p=1$, our pinching condition is the same as in Main Theorem of Hu and $\mathrm{Li}[6]$, in which they assumed that M is compact and the Möbius scalar curvature $n(n-1) R$ is constant. Secondly, we consider the Möbius sectional curvature of the immersion \mathbf{x}. We obtained that, for an n-dimensional compact submanifold x : $M \mapsto S^{n+p}(1)$ without umbilical points and with vanishing form Φ, if the Möbius scalar curvature $n(n-1) R$ of the immersion \mathbf{x} is constant and the Möbius sectional curvature K of the immersion \mathbf{x} satisfies $K \geq 0$ when $p=1$ and $K>0$ when $p>1$. then, \mathbf{x} is Möbius equivalent to either the Riemannian product $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$, for $k=1,2, \cdots, n-1$, in $S^{n+1}(1)$; or \mathbf{x} is Möbius equivalent to a compact minimal submanifold with constant scalar curvature in $S^{n+p}(1)$.

1. Introduction

Let $\mathbf{x}: M \mapsto S^{n+p}(1)$ be an n-dimensional immersed submanifold in an $(n+p)$ dimensional unit sphere $S^{n+p}(1)$. In [11], Wang introduced a Möbius metric, Möbius form and the Möbius second fundamental form of the immersion \mathbf{x}. By making use of these Möbius invariants, he founded the fundamental formulas on Möbius geometry of submanifolds in $S^{n+p}(1)$. By following these results of Wang, the Möbius geometry on submanifolds in $S^{n+p}(1)$ was researched by many mathematicians (see. [6], [7], [8] and [9]). In particular, Li, Wang and Wu [8] studied the Möbius characterization of

[^0]Veronese surface. They proved that if $\mathbf{x}: S^{2}(1) \mapsto S^{m}(1)$ is an immersion without umbilical points of the 2 -sphere with vanishing Möbius form, then there exists a Möbius transformation $\tau: S^{m}(1) \mapsto S^{m}(1)$ such that $\tau \circ \mathbf{x}: S^{2}(1) \mapsto S^{2 k}(1)$ is the Veronese surface, where $S^{2 k}(1) \subset S^{m}(1)$ with $2 \leq k \leq[m / 2]$. Furthermore, a kind of pinching problems on Möbius geometry of submanifolds in $S^{n+p}(1)$ was studied by Akivis and Goldberg [2], Hu and $\mathrm{Li}[6]$ and so on.

Let $\mathrm{x}: M \mapsto S^{n+p}(1)$ be an n-dimensional immersed submanifold in $S^{n+p}(1)$. We choose a local orthonormal basis $\left\{e_{i}\right\}$ for the induced metric $I=d \mathbf{x} \cdot d \mathbf{x}$ with dual basis $\left\{\theta_{i}\right\}$. Let $I I=\sum_{i, j, \alpha} h_{i j}^{\alpha} \theta_{i} \theta_{j} e_{\alpha}$ be the second fundamental form of the immersion \mathbf{x} and $\vec{H}=\sum_{\alpha} H^{\alpha} e_{\alpha}$ the mean curvature vector of the immersion \mathbf{x}, where $\left\{e_{\alpha}\right\}$ is a local orthonormal basis for the normal bundle of \mathbf{x}. By putting $\rho^{2}=\frac{n}{n-1}\left\{\sum_{\alpha, i, j}\left(h_{i j}^{\alpha}\right)^{2}-n\|\vec{H}\|^{2}\right\}$, the Möbius metric of the immersion \mathbf{x} is defined by $g=\rho^{2} d \mathbf{x} \cdot d \mathbf{x}$, which is a Möbius invariant. $\Phi=\Sigma_{i, \alpha} C_{i}^{\alpha} \theta_{i} e_{\alpha}$ and $\mathbf{A}=\rho^{2} \sum_{i, j} A_{i j} \theta_{i} \theta_{j}$ are Möbius form and Blaschke tensor of the immersion \mathbf{x}, respectively, where C_{i}^{α} and $A_{i j}$ are defined by formulas (2.13) and (2.14) in section 2 . It was proved that Φ and \mathbf{A} are Möbius invariants (cf. [11]).

In particular, Akivis and Goldberg [1], [2] and Wang [11] proved that two hypersurfaces x : $M \mapsto S^{n+1}(1)$ and $\tilde{\mathbf{x}}: \tilde{M} \mapsto S^{n+1}(1)$ are Möbius equivalent if and only if there exists a diffeomorphism $\sigma^{\prime}: M \mapsto \tilde{M}$ which preserves the Möbius metric and the Möbius shape operator such that $\mathbf{x}=\sigma^{\prime} \circ \tilde{\mathbf{x}}$.

Let \mathbf{H}^{n+p} be an $(n+p)$-dimensional hyperbolic space defined by

$$
\mathbf{H}^{n+p}=\left\{\left(y_{0}, y_{1}\right) \in \mathbf{R}^{+} \times \mathbf{R}^{n+p} \mid-y_{0}^{2}+y_{1} \cdot y_{1}=-1\right\} .
$$

We denote the open hemisphere in $S^{n+p}(1)$ whose first coordinate is positive by $S_{+}^{n+p}(1)$. We consider conformal diffeomorphisms $\sigma_{p}: \mathbf{R}^{n+p} \mapsto S^{n+p}(1) \backslash\{(-1,0)\}$ and $\tau_{p}: \mathbf{H}^{n+p} \mapsto S_{+}^{n+p}(1)$ defined by :

$$
\begin{gather*}
\sigma_{p}(u)=\left(\frac{1-|u|^{2}}{1+|u|^{2}}, \frac{2 u}{1+|u|^{2}}\right), \quad u \in \mathbf{R}^{n+p}, \tag{1.1}\\
\tau_{p}\left(y_{0}, y_{1}\right)=\left(\frac{1}{y_{0}}, \frac{y_{1}}{y_{0}}\right), \quad\left(y_{0}, y_{1}\right) \in \mathbf{H}^{n+p},
\end{gather*}
$$

respectively. The conformal diffeomorphisms σ_{p} and τ_{p} assign any submanifold in \mathbf{R}^{n+p} or \mathbf{H}^{n+p} to a submanifold in $S^{n+p}(1)$. If $p=1$, we denote σ_{1} and τ_{1} by σ and τ. In [7], Li, Liu, Wang and Zhao classified Möbius isoparametric hypersurfaces with two distinct principal curvatures. They obtained the following:

Theorem 1.1. Let $\mathbf{x}: M \mapsto S^{n+1}(1)$ be a Möbius isoparametric hypersurface with two distinct principal curvatures. Then \mathbf{x} is Möbius equivalent to an open part of one of the following Möbius isoparametric hypersurfaces in $S^{n+1}(1)$:
(1) the Riemannian product $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$ in $S^{n+1}(1)$,
(2) the image of σ of the standard cylinder $S^{k}(1) \times \mathbf{R}^{n-k}$ in \mathbf{R}^{n+1},
(3) the image of τ of the Riemannian product $S^{k}(r) \times \mathbf{H}^{n-k}\left(\sqrt{1+r^{2}}\right)$ in \mathbf{H}^{n+1}.

A submanifold $\mathbf{x}: M \mapsto S^{n+p}(1)$ is called Möbius isotropic if $\Phi \equiv 0$ and $\mathbf{A}=$ $\lambda d \mathbf{x} \cdot d \mathbf{x}$ for some function λ. In [9], Liu, Wang and Zhao proved the following:

Theorem 1.2. Any Möbius isotropic submanifolds in $S^{n+p}(1)$ is Möbius equivalent to an open part of one of the following Möbius isotropic submanifolds:
(1) a minimal submanifold with constant scalar curvature in $S^{n+p}(1)$,
(2) the image of σ_{p} of a minimal submanifold with constant scalar curvature in \mathbf{R}^{n+p},
(3) the image of τ_{p} of a minimal submanifolds with constant scalar curvature in \mathbf{H}^{n+p}.

On the other hand, Hu and $\mathrm{Li}[6]$ studied a pinching problem on the squared norm of the Blaschke tensor of the immersion \mathbf{x} and obtained the following:
Theorem 1.3. Let $\mathbf{x}: M \rightarrow S^{n+p}(1)$ be an n-dimensional ($n \geq 3$) compact submanifold without umbilical points and with vanishing Möbius form Φ in $S^{n+p}(1)$. If the Möbius scalar curvature $n(n-1) R \geq \frac{(n-1)(n-2)}{n}$ is constant and if

$$
\|\tilde{\mathbf{A}}\| \leq \sqrt{\frac{n-1}{n}}\left(\frac{n}{n-2} R-\frac{1}{n}\right)
$$

then, either \mathbf{x} is Möbius equivalent to a minimal submanifold with constant scalar curvature in $S^{n+p}(1)$ or \mathbf{x} is Möbius equivalent to $S^{1}(r) \times S^{n-1}\left(\sqrt{\frac{1}{1+c^{2}}-r^{2}}\right)$ in $S^{n+1}\left(1 / \sqrt{1+c^{2}}\right)$ for some constant $c \geq 0, r=\sqrt{\frac{n R}{(n-2)\left(1+c^{2}\right)}}$, where $\tilde{\mathbf{A}}=\rho^{2} \sum_{i j} \tilde{A}_{i j} \theta_{i} \theta_{j}$ with $\tilde{A}_{i j}=A_{i j}-\frac{1}{n} \sum_{k} A_{k k} \delta_{i j}$.
Remark 1.4. In the original statement of the theorem 1.3 of Hu and Li [6], they did not write out the condition that M has no umbilical points. But this condition is necessary for their proof. Further, We should note that these assumptions that M is compact and the Möbius scalar curvature $n(n-1) R$ is constant play an important role in the proof of Theorem 1.3 of Hu and Li [6].

In this paper, first of all, we prove the following:
Main Theorem 1. Let $\mathbf{x}: M \rightarrow S^{n+p}(1)$ be an n-dimensional ($n \geq 2$) submanifold without umbilical points and with vanishing Möbius form Φ, if

$$
\begin{equation*}
(n-2)\|\tilde{\mathbf{A}}\| \leq \sqrt{\frac{n-1}{n}}\left\{n R-\frac{1}{n}\left[(n-1)\left(2-\frac{1}{p}\right)-1\right]\right\} \tag{1.3}
\end{equation*}
$$

then \mathbf{x} is locally Möbius equivalent to either the Veronese surface in $S^{4}(1)$, or \mathbf{x} is Möbius equivalent to an open part of one of the following Möbius isoparametric hypersurfaces in $S^{n+1}(1)$:
(1) the Riemannian product $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ in $S^{n+1}(1)$,
(2) the image of σ of the standard cylinder $S^{n-1}(1) \times \mathbf{R}$ in \mathbf{R}^{n+1},
(3) the image of τ of the Riemannian product $S^{n-1}(r) \times \mathbf{H}^{1}\left(\sqrt{1+r^{2}}\right)$ in \mathbf{H}^{n+1}, where $n(n-1) R$ denotes the Möbius scalar curvature of the immersion \mathbf{x} and $\tilde{\mathbf{A}}=$ $\rho^{2} \sum_{i j} \tilde{A}_{i j} \theta_{i} \theta_{j}$ with $\tilde{A}_{i j}=A_{i j}-\frac{1}{n} \sum_{k} A_{k k} \delta_{i j}$.

Remark 1.5. In our Main Theorem 1, we do not assume the global condition that M is compact and we do not need to assume that the Möbius scalar curvature is constant. Further, when $p=1$ and $(n \geq 3)$ our pinching condition is the same as in Hu and $\mathrm{Li}[6]$. Since Hu and $\mathrm{Li}[6]$ assumed that M is compact, the cases of 2 and 3 above in Main Theorem 1 do not appear in their theorem. If $n=2$, since the Möbius metric g is flat, we know that $R \equiv 0$. Main Theorem 1 reduces to the Theorem 5.1 in [11].

Since Riemannian product $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$, for $k=1,2, \cdots, n-1$, have nonnegative Möbius sectional curvature and they do not satisfy the inequality in Theorem 1.3 of Hu and $\mathrm{Li}[6]$ except $k=1$ or $k=n-1$ (see Proposition 3.2 and Remark 3.3 in section 3), we will consider the immersion \mathbf{x} with nonnegative Möbius sectional curvature and prove the following:
Main Theorem 2. Let $\mathbf{x}: M \mapsto S^{n+p}(1)$ be an n-dimensional compact submanifold without umbilical points and with vanishing Möbius form Φ and constant Möbius scalar curvature $n(n-1) R$ in $S^{n+p}(1)$. If the Möbius sectional curvature K of M satisfies

$$
\begin{cases}K \geq 0, & \text { if } p=1 \\ K>0, & \text { if } p>1\end{cases}
$$

then, \mathbf{x} is Möbius equivalent to the Riemannian product $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$, for $k=1,2, \cdots, n-1$, in $S^{n+1}(1)$; or \mathbf{x} is Möbius equivalent to an n-dimensional compact minimal submanifold with constant scalar curvature in $S^{n+p}(1)$.

2. Preliminaries and fundamental formulas on Möbius geometry

In this section, we review the definitions of Möbius invariants and give the fundamental formulas on Möbius geometry of submanifolds in $S^{n+p}(1)$, which can be found in [11].

Let \mathbf{R}_{1}^{n+p+2} be the Lorentzian space with inner product

$$
\begin{equation*}
<x, w>=-x_{0} w_{0}+x_{1} w_{1}+\cdots+x_{n+p+1} w_{n+p+1} \tag{2.1}
\end{equation*}
$$

where $x=\left(x_{0}, x_{1}, \cdots, x_{n+p+1}\right)$ and $w=\left(w_{0}, w_{1}, \cdots, w_{n+p+1}\right)$. Let $\mathbf{x}: M \mapsto S^{n+p}(1)$ be an n-dimensional submanifold of $S^{n+p}(1)$ without umbilical points. Putting

$$
\begin{equation*}
Y=\rho(1, \mathbf{x}), \quad \rho^{2}=\frac{n}{n-1}\left(\|I I\|^{2}-n\|\vec{H}\|^{2}\right)>0 \tag{2.2}
\end{equation*}
$$

then, $Y: M \mapsto \mathbf{R}_{1}^{n+p+2}$ is called Möbius position vector of \mathbf{x}. It is easy to prove that

$$
g=<d Y, d Y>=\rho^{2} d \mathbf{x} \cdot d \mathbf{x}
$$

is a Möbius invariant which is recalled Möbius metric of the immersion x. Let Δ denote the Laplacian on M with respect to the Möbius metric g. Defining

$$
\begin{equation*}
N=-\frac{1}{n} \Delta Y-\frac{1}{2 n^{2}}\left(1+n^{2} R\right) Y, \tag{2.3}
\end{equation*}
$$

we can infer

$$
\begin{gather*}
<\Delta Y, Y>=-n, \quad<\Delta Y, d Y>=0, \quad<\Delta Y, \Delta Y>=1+n^{2} R \tag{2.4}\\
<Y, Y>=0, \quad<N, Y>=1, \quad<N, N>=0 \tag{2.5}
\end{gather*}
$$

where $n(n-1) R$ denotes the Möbius scalar curvature of the immersion \mathbf{x}. Let $\left\{E_{1}, \cdots, E_{n}\right\}$ denote a local orthonormal frame on (M, g) with dual frame $\left\{\omega_{1}, \cdots, \omega_{n}\right\}$. Putting $Y_{i}=E_{i}(Y)$, then we have, from (2.2), (2.4) and (2.5),

$$
\begin{equation*}
<Y_{i}, Y>=<Y_{i}, N>=0, \quad<Y_{i}, Y_{j}>=\delta_{i j}, \quad 1 \leq i, j \leq n \tag{2.6}
\end{equation*}
$$

Let V be the orthogonal complement to the subspace $\operatorname{Span}\left\{Y, N, Y_{1}, \cdots, Y_{n}\right\}$ in \mathbf{R}_{1}^{n+p+2}. Along M, we have the following orthogonal decomposition:

$$
\begin{equation*}
\mathbf{R}_{1}^{n+p+2}=\operatorname{Span}\{Y, N\} \oplus \operatorname{Span}\left\{Y_{1}, \cdots, Y_{n}\right\} \oplus V \tag{2.7}
\end{equation*}
$$

where V is called Möbius normal bundle of the immersion \mathbf{x}. It is not difficult to prove that

$$
\begin{equation*}
E_{\alpha}=\left(H^{\alpha}, H^{\alpha} \mathbf{x}+e_{\alpha}\right), \quad n+1 \leq \alpha \leq n+p \tag{2.8}
\end{equation*}
$$

is a local orthonormal frame of V. Then $\left\{Y, N, Y_{1}, \cdots, Y_{n}, E_{n+1}, \cdots, E_{n+p}\right\}$ forms a moving frame in \mathbf{R}_{1}^{n+p+2} along M. We use the following range of indices throughout this paper:

$$
1 \leq i, j, k, l, m \leq n, \quad n+1 \leq \alpha, \beta \leq n+p .
$$

The structure equations on M with respect to the Möbius metric g can be written as follows:

$$
\begin{equation*}
d Y=\sum_{i} Y_{i} \omega_{i} \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
d N=\sum_{i, j} A_{i j} \omega_{j} Y_{i}+\sum_{i, \alpha} C_{i}^{\alpha} \omega_{i} E_{\alpha} \tag{2.10}\\
d Y_{i}=-\sum_{j} A_{i j} \omega_{j} Y-\omega_{i} N+\sum_{j} \omega_{i j} Y_{j}+\sum_{j, \alpha} B_{i j}^{\alpha} \omega_{j} E_{\alpha} \tag{2.11}\\
d E_{\alpha}=-\sum_{i} C_{i}^{\alpha} \omega_{i} Y-\sum_{i, j} B_{i j}^{\alpha} \omega_{j} Y_{i}+\sum_{\beta} \omega_{\alpha \beta} E_{\beta} \tag{2.12}
\end{gather*}
$$

where $\omega_{i j}$ is the connection form with respect to the Möbius metric $g, \omega_{\alpha \beta}$ is the normal connection form of $\mathbf{x}: M \rightarrow S^{n+p}(1)$, which is a Möbius invariant. $\mathbf{A}=$ $\sum_{i, j} A_{i j} \omega_{i} \otimes \omega_{j}$ and $\Phi=\sum_{i, \alpha} C_{i}^{\alpha} \omega_{i}\left(\rho^{-1} e_{\alpha}\right)$ are called Blaschke tensor and Möbius form of the immersion \mathbf{x}, respectively, where

$$
\begin{align*}
C_{i}^{\alpha} & =-\rho^{-2}\left\{H_{, i}^{\alpha}+\sum_{j}\left(h_{i j}^{\alpha}-H^{\alpha} \delta_{i j}\right) e_{j}(\log \rho)\right\}, \tag{2.13}\\
A_{i j} & =-\rho^{-2}\left\{\operatorname{Hess}_{i j}(\log \rho)-e_{i}(\log \rho) e_{j}(\log \rho)-\sum_{\alpha} H^{\alpha} h_{i j}^{\alpha}\right\} \tag{2.14}\\
& -\frac{1}{2} \rho^{-2}\left(\|\nabla(\log \rho)\|^{2}-1+\|\vec{H}\|^{2}\right) \delta_{i j} .
\end{align*}
$$

Here $\operatorname{Hess}_{i j}$ and ∇ are the Hessian matrix and the gradient with respect to the induced metric $d \mathbf{x} \cdot d \mathbf{x}$. It was proved that $\Phi=\Sigma_{i, \alpha} C_{i}^{\alpha} \theta_{i} e_{\alpha}$ and $\mathbf{A}=\rho^{2} \sum_{i, j} A_{i j} \theta_{i} \theta_{j}$ are Möbius invariants. $\mathbf{B}=\sum_{i, j, \alpha} B_{i j}^{\alpha} \omega_{i} \omega_{j}\left(\rho^{-1} e_{\alpha}\right)$ is called Möbius second fundamental form of the immersion \mathbf{x}, where

$$
\begin{equation*}
B_{i j}^{\alpha}=\rho^{-1}\left(h_{i j}^{\alpha}-H^{\alpha} \delta_{i j}\right) \tag{2.15}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\sum_{i} B_{i i}^{\alpha}=0, \quad \sum_{i, j, \alpha}\left(B_{i j}^{\alpha}\right)^{2}=\frac{n-1}{n} \tag{2.16}
\end{equation*}
$$

We define the covariant derivative of $C_{i}^{\alpha}, A_{i j}, B_{i j}^{\alpha}$ by

$$
\begin{gather*}
\sum_{j} C_{i, j}^{\alpha} \omega_{j}=d C_{i}^{\alpha}+\sum_{j} C_{j}^{\alpha} \omega_{j i}+\sum_{\beta} C_{i}^{\beta} \omega_{\beta \alpha} \\
\sum_{k} A_{i j, k} \omega_{k}=d A_{i j}+\sum_{k} A_{i k} \omega_{k j}+\sum_{k} A_{k j} \omega_{k i} \tag{2.17}\\
\sum_{k} B_{i j, k}^{\alpha} \omega_{k}=d B_{i j}^{\alpha}+\sum_{k} B_{i k}^{\alpha} \omega_{k j}+\sum_{k} B_{k j}^{\alpha} \omega_{k i}+\sum_{\beta} B_{i j}^{\beta} \omega_{\beta \alpha} . \tag{2.18}
\end{gather*}
$$

From the structure equations (2.9), (2.10), (2.11) and (2.12), we can infer

$$
\begin{equation*}
A_{i j, k}-A_{i k, j}=\sum_{\alpha}\left(B_{i k}^{\alpha} C_{j}^{\alpha}-B_{i j}^{\alpha} C_{k}^{\alpha}\right) \tag{2.19}
\end{equation*}
$$

$$
\begin{gather*}
B_{i j, k}^{\alpha}-B_{i k, j}^{\alpha}=\delta_{i j} C_{k}^{\alpha}-\delta_{i k} C_{j}^{\alpha} \tag{2.21}\\
R_{i j k l}=\sum_{\alpha}\left(B_{i k}^{\alpha} B_{j l}^{\alpha}-B_{i l}^{\alpha} B_{j k}^{\alpha}\right)+\left(\delta_{i k} A_{j l}+\delta_{j l} A_{i k}-\delta_{i l} A_{j k}-\delta_{j k} A_{i l}\right) \tag{2.22}\\
R_{\alpha \beta i j}=\sum_{k}\left(B_{i k}^{\alpha} B_{k j}^{\beta}-B_{i k}^{\beta} B_{k j}^{\alpha}\right) \tag{2.23}
\end{gather*}
$$

where $R_{i j k l}$ and $R_{\alpha \beta i j}$ denote the curvature tensor with respect to the Möbius metric g on M and the normal curvature tensor of the normal connection. $n(n-1) R=$ $\sum_{i, j} R_{i j i j}$ is the Möbius scalar curvature of the immersion $\mathbf{x}: M \rightarrow S^{n+p}(1)$. From (2.3) and the structure equation (2.11), we have, (cf. [11]),

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\frac{1}{2 n}\left(1+n^{2} R\right) \tag{2.24}
\end{equation*}
$$

By taking exterior differentiation of (2.17) and (2.18), and defining

$$
\begin{gathered}
\sum_{l} A_{i j, k l} \omega_{l}=d A_{i j, k}+\sum_{l} A_{l j, k} \omega_{l i}+\sum_{l} A_{i l, k} \omega_{l j}+\sum_{l} A_{i j, l} \omega_{l k}, \\
\sum_{l} B_{i j, k l}^{\alpha} \omega_{l}=d B_{i j, k}^{\alpha}+\sum_{l} B_{l j, k}^{\alpha} \omega_{l i}+\sum_{l} B_{i l, k}^{\alpha} \omega_{l j}+\sum_{l} B_{i j, l}^{\alpha} \omega_{l k}+\sum_{\beta} B_{i j, k}^{\beta} \omega_{\beta \alpha},
\end{gathered}
$$

we have the following Ricci identities

$$
\begin{align*}
& \quad A_{i j, k l}-A_{i j, l k}=\sum_{m} A_{m j} R_{m i k l}+\sum_{m} A_{i m} R_{m j k l}, \tag{2.25}\\
& B_{i j, k l}^{\alpha}-B_{i j, l k}^{\alpha}=\sum_{m} B_{m j}^{\alpha} R_{m i k l}+\sum_{m} B_{i m}^{\alpha} R_{m j k l}+\sum_{\beta} B_{i j}^{\beta} R_{\beta \alpha k l} . \tag{2.26}
\end{align*}
$$

For a matrix $A=\left(a_{i j}\right)$ we denote by $N(A)$ the square of the norm of A, i.e.,

$$
N(A)=\operatorname{tr}\left(A A^{t}\right)=\sum_{i, j}\left(a_{i j}\right)^{2},
$$

where A^{t} denotes the transposed matrix of A. It is obvious that $N(A)=N\left(T^{t} A T\right)$ holds for any orthogonal matrix T.

The following algebraic lemmas will be used in order to prove our Main Theorems.
Lemma 2.1. ([5]). Let A and B be symmetric $(n \times n)$-matrices. Then

$$
\begin{equation*}
N(A B-B A) \leq 2 N(A) \cdot N(B) \tag{2.27}
\end{equation*}
$$

and the equality holds for nonzero matrices A and B if and only if A and B can be transformed simultaneously by an orthogonal matrix into multiples of \tilde{A} and \tilde{B}, respectively, where

$$
\tilde{A}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \quad \tilde{B}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & -1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Moreover, if A_{1}, A_{2} and A_{3} are $(n \times n)$-symmetric matrices and satisfy

$$
N\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)=2 N\left(A_{\alpha}\right) \cdot N\left(A_{\beta}\right), \quad 1 \leq \alpha, \beta \leq 3,
$$

then at least one of the matrices A_{α} must be zero.
Lemma 2.2. (Cheng [4] and Santos [10]). Let A and B be $n \times n$-symmetric matrices satisfying $\operatorname{tr} A=0, \operatorname{tr} B=0$ and $A B-B A=0$. Then,

$$
\begin{equation*}
\operatorname{tr}\left(B^{2} A\right) \geq-\frac{n-2}{\sqrt{n(n-1)}}\left(\operatorname{tr} B^{2}\right)\left(\operatorname{tr} A^{2}\right)^{1 / 2} \tag{2.28}
\end{equation*}
$$

and the equality holds if and only if $(n-1)$ of the eigenvalues x_{i} of B and the corresponding eigenvalues y_{i} of A satisfy $\left|x_{i}\right|=\frac{\left(\operatorname{tr} B^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}}, x_{i} x_{j} \geq 0, y_{i}=\frac{\left(\operatorname{tr} A^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}}$.

3. MÖbius invariants on typical examples

In this section, we shall study Möbius invariants on typical examples. These results in this section will be used in the proof of Main Theorem 1 and the results in the following proposition 3.2 will support our assumption in Main Theorem 2. Throughout this section, we shall make the following convention on the ranges of indices:

$$
1 \leq i, j \leq n, \quad 1 \leq a, b \leq k, \quad k+1 \leq s, t \leq n
$$

The following Lemma 3.1 due to Li, Liu, Wang and Zhao [7] will be used
Lemma 3.1. Let $\mathbf{x}: M \mapsto S^{n+1}(1)$ be an n-dimensional hypersurface with two distinct principal curvatures with multiplicities k and $n-k$, respectively. Then the principal curvatures of the Möbius second fundamental form \mathbf{B} of \mathbf{x} are constant, which are given by

$$
\mu_{1}=\frac{1}{n} \sqrt{\frac{(n-1)(n-k)}{k}}, \quad \mu_{2}=-\frac{1}{n} \sqrt{\frac{(n-1) k}{(n-k)}}
$$

Proposition 3.2. Let $\mathbf{x}_{1}: S^{k}(1) \mapsto \mathbf{R}^{k+1}$ and $\mathbf{x}_{2}: S^{n-k}(1) \mapsto \mathbf{R}^{n-k+1}$ be the standard embeddings of the unit spheres. Then, for Riemannian product $\mathbf{x}: S^{k}(r) \times$ $S^{n-k}\left(\sqrt{1-r^{2}}\right) \mapsto S^{n+1}(1)$ defined by $\mathbf{x}=\left(r \mathbf{x}_{1}, \sqrt{1-r^{2}} \mathbf{x}_{2}\right)$, for any $1 \leq k \leq n-1$ and any $0<r<1$, we have

$$
\begin{align*}
& \Phi=0, \tag{3.1}\\
& R=\frac{k-1}{n(n-k)}+\frac{(n-1)(n-2 k)}{n k(n-k)} r^{2}, \tag{3.2}\\
& (n-2 k)^{2}\|\tilde{\mathbf{A}}\|^{2}=\frac{k(n-k)}{n}\left(n R-\frac{n-2}{n}\right)^{2}, \tag{3.3}\\
& R_{a b a b}=\frac{n-1}{k(n-k)}\left(1-r^{2}\right), \quad R_{\text {asas }}=0, \quad R_{s t s t}=\frac{n-1}{k(n-k)} r^{2}, \tag{3.4}
\end{align*}
$$

where $R_{i j i j}$ denotes the Möbius sectional curvature of the plane section spanned by $\left\{E_{i}, E_{j}\right\}$.

Proof. Since Riemannian product x : $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right) \mapsto S^{n+1}(1)$ is the standard embedding, we know that the second fundamental form of \mathbf{x} has two distinct principal curvatures $\frac{\sqrt{1-r^{2}}}{r}$ and $-\frac{r}{\sqrt{1-r^{2}}}$ with multiplicities k and $n-k$, respectively. Putting $c=\frac{\sqrt{1-r^{2}}}{r}$, we have

$$
\begin{align*}
& h_{a b}=c \delta_{a b}, \quad h_{a s}=0, \quad h_{s t}=-\frac{1}{c} \delta_{s t}, \tag{3.5}\\
& H=\frac{1}{n} \sum_{i=1}^{n} h_{i i}=\frac{1}{n}\left\{k c-(n-k) \frac{1}{c}\right\} \tag{3.6}\\
& \|I I\|^{2}=k c^{2}+(n-k) \frac{1}{c^{2}} \tag{3.7}\\
& \rho^{2}=\frac{n}{n-1}\left(\|I I\|^{2}-n H^{2}\right)=\frac{k(n-k)}{n-1} \frac{\left(c^{2}+1\right)^{2}}{c^{2}} . \tag{3.8}
\end{align*}
$$

Hence, the Möbius metric g of the \mathbf{x} is given by

$$
g=\rho^{2} d \mathbf{x} \cdot d \mathbf{x}
$$

Since ρ^{2} is constant, from (2.13) and (2.14), we have $C_{i}=0$ and $A_{i j}=-\frac{1}{2} \rho^{-2}\left\{\left(H^{2}-\right.\right.$ 1) $\left.\delta_{i j}-2 H h_{i j}\right\}$, where C_{i} and $A_{i j}$ denote components of Möbius form Φ and components of the Blaschke tensor A. Hence, we infer $\Phi=0$ and

$$
\begin{align*}
& A_{a b}=\frac{n-1}{2 k(n-k) n^{2}}\left\{k(2 n-k)-n^{2} r^{2}\right\} \delta_{a b}, \tag{3.9}\\
& A_{a s}=0, \tag{3.10}\\
& A_{s t}=\frac{n-1}{2 k(n-k) n^{2}}\left\{n^{2} r^{2}-k^{2}\right\} \delta_{s t} . \tag{3.11}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\frac{n-1}{2 k(n-k) n}\left\{k^{2}+n(n-2 k) r^{2}\right\} . \tag{3.12}
\end{equation*}
$$

From (2.24), we obtain

$$
\begin{equation*}
R=\frac{k-1}{n(n-k)}+\frac{(n-1)(n-2 k)}{k(n-k) n} r^{2} . \tag{3.13}
\end{equation*}
$$

According to

$$
\tilde{A}_{i j}=A_{i j}-\frac{1}{n}(\operatorname{tr} \mathbf{A}) \delta_{i j},
$$

we have

$$
\begin{align*}
& \tilde{A}_{a b}=\frac{n-1}{k n^{2}}\left\{k-n r^{2}\right\} \delta_{a b}, \tag{3.14}\\
& \tilde{A}_{a s}=0, \tag{3.15}\\
& \tilde{A}_{s t}=\frac{n-1}{(n-k) n^{2}}\left\{n r^{2}-k\right\} \delta_{s t} . \tag{3.16}
\end{align*}
$$

Therefore, we infer

$$
\begin{equation*}
\|\tilde{\mathbf{A}}\|^{2}=\frac{(n-1)^{2}}{k(n-k) n}\left(r^{2}-\frac{k}{n}\right)^{2} . \tag{3.17}
\end{equation*}
$$

From (3.13) and (3.17), we obtain

$$
\begin{equation*}
(n-2 k)^{2}\|\tilde{\mathbf{A}}\|^{2}=\frac{k(n-k)}{n}\left(n R-\frac{n-2}{n}\right)^{2} . \tag{3.18}
\end{equation*}
$$

From Lemma 3.1, (2.22), (3.9), (3.10) and (3.11), we have

$$
\begin{align*}
& R_{a b a b}=B_{a a} B_{b b}+A_{a a}+A_{b b}=\frac{n-1}{k(n-k)}\left(1-r^{2}\right), \tag{3.19}\\
& R_{a s a s}=B_{a a} B_{s s}+A_{a a}+A_{s s}=0, \tag{3.20}\\
& R_{s t s t}=B_{s s} B_{t t}+A_{s s}+A_{t t}=\frac{n-1}{k(n-k)} r^{2} . \tag{3.21}
\end{align*}
$$

This completes the proof of Proposition 3.2.
Remark 3.3. From (3.3), we know that $(n-2)\|\tilde{\mathbf{A}}\|=\sqrt{\frac{n-1}{n}}\left(n R-\frac{n-2}{n}\right)$ if and only if $k=1$ or $k=n-1$.

Proposition 3.4. Let $\hat{\mathbf{x}}: S^{k}(1) \times \mathbf{R}^{n-k} \mapsto \mathbf{R}^{n+1}$ be the standard cylinder. Then, the hypersurface $\mathbf{x}=\sigma \circ \hat{\mathbf{x}}: S^{k}(1) \times \mathbf{R}^{n-k} \mapsto S^{n+1}(1)$ satisfies

$$
\begin{align*}
& \Phi=0 \tag{3.22}\\
& R=\frac{k-1}{n(n-k)} \tag{3.23}\\
& \|\tilde{A}\|^{2}=\frac{k(n-1)^{2}}{n^{3}(n-k)} \tag{3.24}\\
& R_{a b a b}=\frac{n-1}{k(n-k)}, \quad R_{\text {asas }}=0, \quad R_{\text {stst }}=0 \tag{3.25}
\end{align*}
$$

where σ is the conformal diffeomorphism defined by (1.1) with $p=1$.
Proof. Since $\hat{\mathbf{x}}: S^{k}(1) \times \mathbf{R}^{n-k} \mapsto \mathbf{R}^{n+1}$ is the standard cylinder, we know that the second fundamental form of $\hat{\mathbf{x}}$ has two distinct principal curvatures 1 and 0 with multiplicities k and $n-k$, respectively. Let $\hat{h}_{i j}$ and \hat{H} denote components of the second fundamental form $\hat{I I}$ and the mean curvature of $\hat{\mathbf{x}}$, respectively. Then, we have

$$
\begin{align*}
& \hat{h}_{a b}=\delta_{a b}, \quad \hat{h}_{a s}=0, \quad \hat{h}_{s t}=0, \tag{3.26}\\
& \hat{H}=\frac{k}{n}, \quad\|\hat{I} I\|^{2}=k . \tag{3.27}
\end{align*}
$$

By defining

$$
\hat{\rho}^{2}=\frac{n}{n-1}\left(\|\hat{I} I\|^{2}-n \hat{H}^{2}\right)=\frac{k(n-k)}{n-1},
$$

then, the Möbius metric \hat{g} of the $\hat{\mathbf{x}}$ is given by

$$
\hat{g}=\hat{\rho}^{2} d \hat{\mathbf{x}} \cdot d \hat{\mathbf{x}} .
$$

Let $\left\{\hat{e}_{i}\right\}$ be an orthonormal basis for the first fundamental form $\hat{I}=d \hat{\mathbf{x}} \cdot d \hat{\mathbf{x}}$ with the dual basis $\left\{\hat{\theta}_{i}\right\}$. Define

$$
\begin{align*}
\hat{C}_{i} & =-\hat{\rho}^{-2}\left\{\hat{H}_{, i}+\sum_{j}\left(\hat{h}_{i j}-\hat{H} \delta_{i j}\right) \hat{e}_{j}(\log \hat{\rho})\right\}, \tag{3.28}\\
\hat{A}_{i j} & =-\hat{\rho}^{-2}\left\{\operatorname{Hess}_{i j}(\log \hat{\rho})-\hat{e}_{i}(\log \hat{\rho}) \hat{e}_{j}(\log \hat{\rho})-\hat{H} \hat{h}_{i j}\right\} \tag{3.29}\\
& -\frac{1}{2} \hat{\rho}^{-2}\left(\|\nabla(\log \hat{\rho})\|^{2}+\hat{H}^{2}\right) \delta_{i j}, \\
\hat{B}_{i j} & =\hat{\rho}^{-1}\left(\hat{h}_{i j}-\hat{H} \delta_{i j}\right) . \tag{3.30}
\end{align*}
$$

Here $\operatorname{Hess}_{i j}$ and ∇ are the Hessian matrix and the gradient with respect to the induced metric $\hat{I}=d \hat{\mathbf{x}} \cdot d \hat{\mathbf{x}} . \hat{\Phi}=\sum_{i} \hat{C}_{i} \hat{\theta}_{i} \hat{e}_{n+1}, \hat{\mathbf{A}}=\hat{\rho}^{2} \sum_{i, j} \hat{A}_{i j} \hat{\theta}_{i} \hat{\theta}_{j}$ and $\hat{\mathbf{B}}=$ $\sum_{i, j} \hat{B}_{i j} \hat{\theta}_{i} \hat{\theta}_{j}\left(\hat{\rho}^{-1} \hat{e}_{n+1}\right)$ is called Möbius form, Blaschke tensor and Möbius second fundamental form of the immersion $\hat{\mathbf{x}}$, respectively (cf. [9]).

Since $\hat{\rho}^{2}$ is constant, from (3.28) and (3.29), we have $\hat{C}_{i}=0$ and $\hat{A}_{i j}=-\frac{1}{2} \hat{\rho}^{-2}\left\{\hat{H}^{2} \delta_{i j}-\right.$ $\left.2 \hat{H} \hat{h}_{i j}\right\}$. Hence, we infer $\hat{\Phi}=0$ and

$$
\begin{aligned}
& \hat{A}_{a b}=-\frac{(n-1)(k-2 n)}{2(n-k) n^{2}} \delta_{a b}, \\
& \hat{A}_{a s}=0, \\
& \hat{A}_{s t}=-\frac{(n-1) k}{2(n-k) n^{2}} \delta_{s t} .
\end{aligned}
$$

Thus, from Theorem 4.1 of Liu, Wang and Zhao [9], we know $\Phi=\hat{\Phi}=0$ and

$$
\begin{align*}
& A_{a b}=\hat{A}_{a b}=-\frac{(n-1)(k-2 n)}{2(n-k) n^{2}} \delta_{a b}, \tag{3.31}\\
& A_{a s}=\hat{A}_{a s}=0, \tag{3.32}\\
& A_{s t}=\hat{A}_{s t}=-\frac{(n-1) k}{2(n-k) n^{2}} \delta_{s t} . \tag{3.33}
\end{align*}
$$

Thus, we infer

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\frac{(n-1) k}{2(n-k) n} . \tag{3.34}
\end{equation*}
$$

From (2.24), we obtain

$$
\begin{equation*}
R=\frac{k-1}{n(n-k)} . \tag{3.35}
\end{equation*}
$$

From

$$
\tilde{A}_{i j}=A_{i j}-\frac{1}{n} \operatorname{tr} \mathbf{A} \delta_{i j},
$$

we have

$$
\begin{aligned}
& \tilde{A}_{a b}=\frac{n-1}{n^{2}} \delta_{a b}, \\
& \tilde{A}_{a s}=0, \\
& \tilde{A}_{s t}=-\frac{(n-1) k}{(n-k) n^{2}} \delta_{s t} .
\end{aligned}
$$

Therefore, we infer

$$
\begin{equation*}
\|\tilde{\mathbf{A}}\|^{2}=\frac{(n-1)^{2} k}{(n-k) n^{3}} . \tag{3.36}
\end{equation*}
$$

From (3.35) and (3.36), we obtain

$$
\begin{equation*}
(n-2 k)^{2}\|\tilde{\mathbf{A}}\|^{2}=\frac{k(n-k)}{n}\left(n R-\frac{n-2}{n}\right)^{2} . \tag{3.37}
\end{equation*}
$$

From Lemma 3.1, (2.22), (3.31), (3.32) and (3.33), we have

$$
\begin{aligned}
& R_{a b a b}=B_{a a} B_{b b}+A_{a a}+A_{b b}=\frac{n-1}{k(n-k)}, \\
& R_{a s a s}=B_{a a} B_{s s}+A_{a a}+A_{s s}=0, \\
& R_{s t s t}=B_{s s} B_{t t}+A_{s s}+A_{t t}=0 .
\end{aligned}
$$

This completes the proof of Proposition 3.4.
Remark 3.5. From (3.23) and (3.24), we know that $(n-2)\|\tilde{\mathbf{A}}\|=\sqrt{\frac{n-1}{n}}\left(n R-\frac{n-2}{n}\right)$ if and only if $k=n-1$.

Proposition 3.6. Let $\overline{\mathbf{x}}: S^{k}(r) \times \mathbf{H}^{n-k}\left(\sqrt{1+r^{2}}\right) \mapsto \mathbf{H}^{n+1}$ be the standard embedding. Then, the hypersurface $\mathbf{x}=\tau \circ \overline{\mathbf{x}}: S^{k}(r) \times \mathbf{H}^{n-k}\left(\sqrt{1+r^{2}}\right) \mapsto S^{n+1}(1)$ satisfies

$$
\begin{align*}
& \Phi=0 \tag{3.38}\\
& R=\frac{k-1}{n(n-k)}-\frac{(n-1)(n-2 k)}{n k(n-k)} r^{2}, \tag{3.39}\\
& (2 k-n)\|\tilde{\mathbf{A}}\|=\sqrt{\frac{k(n-k)}{n}}\left(n R-\frac{n-2}{n}\right), \tag{3.40}\\
& R_{a b a b}=\frac{n-1}{k(n-k)}\left(1+r^{2}\right), \quad R_{a s a s}=0, \quad R_{s t s t}=-\frac{n-1}{k(n-k)} r^{2}, \tag{3.41}
\end{align*}
$$

where τ is the conformal diffeomorphism defined by (1.2) with $p=1$.
Proof. Since $\overline{\mathbf{x}}: S^{k}(1) \times \mathbf{H}^{n-k}\left(\sqrt{1+r^{2}}\right) \mapsto \mathbf{H}^{n+1}$ is the standard embedding, we know that the second fundamental form of $\overline{\mathbf{x}}$ has two distinct principal curvatures $\frac{\sqrt{1+r^{2}}}{r}=d$ and $\frac{r}{\sqrt{1+r^{2}}}$ with multiplicities k and $n-k$, respectively. Let $\bar{h}_{i j}$ and \bar{H} denote the components of the second fundamental form $\overline{I I}$ and the mean curvature of $\overline{\mathbf{x}}$, respectively. Then, we have

$$
\begin{aligned}
& \bar{h}_{a b}=d \delta_{a b}, \quad \bar{h}_{a s}=0, \quad \bar{h}_{s t}=\frac{1}{d} \delta_{s t}, \\
& \bar{H}=\frac{1}{n}\{k d+(n-k) d\}, \quad\|\bar{I}\|^{2}=k d^{2}+(n-k) \frac{1}{d^{2}} .
\end{aligned}
$$

By defining

$$
\bar{\rho}^{2}=\frac{n}{n-1}\left(\|\bar{I} I\|^{2}-n \bar{H}^{2}\right)=\frac{k(n-k)}{n-1} \frac{\left(d^{2}-1\right)^{2}}{d^{2}}
$$

then, the Möbius metric \bar{g} of the $\overline{\mathbf{x}}$ is given by

$$
\bar{g}=\bar{\rho}^{2} d \overline{\mathbf{x}} \cdot d \overline{\mathbf{x}} .
$$

Let $\left\{\bar{e}_{i}\right\}$ be an orthonormal basis for the first fundamental form $\bar{I}=d \overline{\mathbf{x}} \cdot d \overline{\mathbf{x}}$ with the dual basis $\left\{\bar{\theta}_{i}\right\}$. Define

$$
\begin{align*}
\bar{C}_{i} & =-(\bar{\rho})^{-2}\left\{\bar{H}_{, i}+\sum_{j}\left(\bar{h}_{i j}-\bar{H} \delta_{i j}\right) \bar{e}_{j}(\log \bar{\rho})\right\}, \tag{3.42}\\
\bar{A}_{i j} & =-(\bar{\rho})^{-2}\left\{\operatorname{Hess}_{i j}(\log \bar{\rho})-\bar{e}_{i}(\log \bar{\rho}) \bar{e}_{j}(\log \bar{\rho})-\bar{H} \bar{h}_{i j}\right\} \tag{3.43}\\
& -\frac{1}{2}(\bar{\rho})^{-2}\left(\|\nabla(\log \bar{\rho})\|^{2}+1+\bar{H}^{2}\right) \delta_{i j}, \\
\bar{B}_{i j} & =(\bar{\rho})^{-1}\left(\bar{h}_{i j}-\bar{H} \delta_{i j}\right) . \tag{3.44}
\end{align*}
$$

Here $\operatorname{Hess}_{i j}$ and ∇ are the Hessian matrix and the gradient with respect to the induced metric $\bar{I}=d \overline{\mathbf{x}} \cdot d \overline{\mathbf{x}} . \bar{\Phi}=\sum_{i} \bar{C}_{i} \bar{\theta}_{i} \bar{e}_{n+1}, \overline{\mathbf{A}}=\bar{\rho}^{2} \sum_{i j} \bar{A}_{i j} \bar{\theta}_{i} \bar{\theta}_{j}$ and $\overline{\mathbf{B}}=$ $\sum_{i, j} \bar{B}_{i j} \bar{\theta}_{i} \bar{\theta}_{j}\left((\bar{\rho})^{-1} \bar{e}_{n+1}\right)$ is called Möbius form, Blaschke tensor and Möbius second fundamental form of the immersion $\overline{\mathbf{x}}$, respectively (cf. [9]).

Since $\bar{\rho}^{2}$ is constant, from (3.42) and (3.43), we have $\bar{C}_{i}=0$ and $\bar{A}_{i j}=-\frac{1}{2}(\bar{\rho})^{-2}\{(1+$ $\left.\left.\bar{H}^{2}\right) \delta_{i j}-2 \bar{H} \bar{h}_{i j}\right\}$. Hence, we infer $\bar{\Phi}=0$ and

$$
\begin{aligned}
& \bar{A}_{a b}=\frac{n-1}{2 k(n-k) n^{2}}\left\{k(2 n-k)+n^{2} r^{2}\right\} \delta_{a b}, \\
& \bar{A}_{a s}=0, \\
& \bar{A}_{s t}=-\frac{n-1}{2 k(n-k) n^{2}}\left\{k^{2}+n^{2} r^{2}\right\} \delta_{s t} .
\end{aligned}
$$

Thus, from Theorem 4.4 of Liu, Wang and Zhao [9], we know $\Phi=\bar{\Phi}=0$ and

$$
\begin{align*}
& A_{a b}=\bar{A}_{a b}=\frac{n-1}{2 k(n-k) n^{2}}\left\{k(2 n-k)+n^{2} r^{2}\right\} \delta_{a b}, \tag{3.45}\\
& A_{a s}=\bar{A}_{a s}=0, \tag{3.46}\\
& A_{s t}=\bar{A}_{s t}=-\frac{n-1}{2 k(n-k) n^{2}}\left\{k^{2}+n^{2} r^{2}\right\} \delta_{s t} . \tag{3.47}
\end{align*}
$$

Thus, we infer

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}=\frac{n-1}{2 k(n-k) n}\left\{k^{2}-n(n-2 k) r^{2}\right\} . \tag{3.48}
\end{equation*}
$$

From (2.24), we obtain

$$
\begin{equation*}
R=\frac{k-1}{n(n-k)}-\frac{(n-1)(n-2 k)}{n k(n-k)} r^{2} . \tag{3.49}
\end{equation*}
$$

From

$$
\tilde{A}_{i j}=A_{i j}-\frac{1}{n} \operatorname{tr} \mathbf{A} \delta_{i j},
$$

we have

$$
\begin{aligned}
& \tilde{A}_{a b}=\frac{n-1}{k n^{2}}\left(k+n r^{2}\right) \delta_{a b}, \\
& \tilde{A}_{a s}=0 \\
& \tilde{A}_{s t}=-\frac{n-1}{(n-k) n^{2}}\left(k+n r^{2}\right) \delta_{s t} .
\end{aligned}
$$

Therefore, we infer

$$
\|\tilde{\mathbf{A}}\|^{2}=\frac{(n-1)^{2}}{k(n-k) n}\left(r^{2}+\frac{k}{n}\right)^{2} .
$$

From (3.49) and (3.50), we obtain

$$
(2 k-n)\|\tilde{\mathbf{A}}\|=\sqrt{\frac{k(n-k)}{n}}\left(n R-\frac{n-2}{n}\right) .
$$

From Lemma 3.1, (2.22), (3.45), (3.46) and (3.47), we have

$$
\begin{aligned}
& R_{a b a b}=B_{a a} B_{b b}+A_{a a}+A_{b b}=\frac{n-1}{k(n-k)}\left(1+r^{2}\right) \\
& R_{a s a s}=B_{a a} B_{s s}+A_{a a}+A_{s s}=0 \\
& R_{s t s t}=B_{s s} B_{t t}+A_{s s}+A_{t t}=-\frac{n-1}{k(n-k)} r^{2} .
\end{aligned}
$$

This completes the proof of Proposition 3.6.
Remark 3.7. From (3.40), we know that $(n-2)\|\tilde{\mathbf{A}}\|=\sqrt{\frac{n-1}{n}}\left(n R-\frac{n-2}{n}\right)$ if and only if $k=n-1$.

4. Proofs of Main Theorems

In this section, we will prove our Main Theorems.
Proof of Main Theorem 1. Since the Möbius form $\Phi=\sum_{i, \alpha} C_{i}^{\alpha} e_{\alpha} \equiv 0$, we have, by (2.19), (2.20) and (2.21), that

$$
\begin{equation*}
A_{i j, k}=A_{i k, j}, \quad B_{i j, k}^{\alpha}=B_{i k, j}^{\alpha}, \quad \sum_{k} B_{i k}^{\alpha} A_{k j}=\sum_{k} B_{k j}^{\alpha} A_{k i}, \text { for any } \alpha . \tag{4.1}
\end{equation*}
$$

From the definition $\Delta B_{i j}^{\alpha}=\sum_{k} B_{i j, k k}^{\alpha}$ of the Laplacian of the Möbius second fundamental form of the immersion \mathbf{x}, we have

$$
\begin{equation*}
\frac{1}{2} \Delta \sum_{i, j, \alpha}\left(B_{i j}^{\alpha}\right)^{2}=\sum_{i, j, k, \alpha}\left(B_{i j, k}^{\alpha}\right)^{2}+\sum_{i, j, \alpha} B_{i j}^{\alpha} \Delta B_{i j}^{\alpha} \tag{4.2}
\end{equation*}
$$

From (2.16), we have

$$
\begin{equation*}
\sum_{i, j, k, \alpha}\left(B_{i j, k}^{\alpha}\right)^{2}+\sum_{i, j, \alpha} B_{i j}^{\alpha} \Delta B_{i j}^{\alpha}=0 . \tag{4.3}
\end{equation*}
$$

From (2.16), (2.22), (2.23), (2.26) and (4.1), we have, by a direct calculation, that

$$
\begin{align*}
\sum_{i, j, \alpha} B_{i j}^{\alpha} \Delta B_{i j}^{\alpha} & =-2 \sum_{\alpha, \beta}\left[\operatorname{tr}\left(B_{\alpha}^{2} B_{\beta}^{2}\right)-\operatorname{tr}\left\{\left(B_{\alpha} B_{\beta}\right)^{2}\right\}\right] \tag{4.4}\\
& -\sum_{\alpha, \beta}\left\{\operatorname{tr}\left(B_{\alpha} B_{\beta}\right)\right\}^{2}+n \sum_{\alpha} \operatorname{tr}\left(A B_{\alpha}^{2}\right)+\frac{n-1}{n} \operatorname{tr} A,
\end{align*}
$$

where B_{α} and A denote the $n \times n$-symmetric matrices $\left(B_{i j}^{\alpha}\right)$ and $\left(A_{i j}\right)$ respectively. Putting $\tilde{A}=\left(\tilde{A}_{i j}\right)$ with

$$
\begin{equation*}
\tilde{A}_{i j}=A_{i j}-\frac{1}{n}(\operatorname{tr} A) \delta_{i j}, \tag{4.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\|A\|^{2}=\sum_{i, j}\left(A_{i j}\right)^{2}=\sum_{i, j}\left(\tilde{A}_{i j}\right)^{2}+\frac{1}{n}(\operatorname{tr} A)^{2}=\|\tilde{A}\|^{2}+\frac{1}{n}(\operatorname{tr} A)^{2}, \tag{4.6}
\end{equation*}
$$

From (4.5), we have

$$
\begin{equation*}
\operatorname{tr} \tilde{A}=0, \quad \operatorname{tr}\left(\tilde{A} B_{\alpha}^{2}\right)=\operatorname{tr}\left(A B_{\alpha}^{2}\right)-\frac{1}{n}(\operatorname{tr} A)\left(\operatorname{tr} B_{\alpha}^{2}\right) . \tag{4.7}
\end{equation*}
$$

From (4.1), we know that $B_{\alpha} A=A B_{\alpha}$. Therefore $B_{\alpha} \tilde{A}=\tilde{A} B_{\alpha}$ holds. From Lemma 2.2, we have

$$
\begin{equation*}
\operatorname{tr}\left(A B_{\alpha}^{2}\right) \geq-\frac{n-2}{\sqrt{n(n-1)}} \operatorname{tr} B_{\alpha}^{2}\|\tilde{A}\|+\frac{1}{n}(\operatorname{tr} A)\left(\operatorname{tr} B_{\alpha}^{2}\right) . \tag{4.8}
\end{equation*}
$$

Case (i) where $p=1$. Put $B_{i j}^{n+1}=B_{i j}$ and $B_{n+1}=B$. Since $B A=A B$ holds from (4.1), we can choose a local orthonormal basis $\left\{E_{1}, E_{2}, \cdots, E_{n}\right\}$ such that $B_{i j}=\mu_{i} \delta_{i j}$ and $A_{i j}=\lambda_{i} \delta_{i j}$. Thus, we have from (4.4), (2.16) and (4.8)

$$
\begin{align*}
\sum_{i, j} B_{i j} \Delta B_{i j} & =-\left(\operatorname{tr} B^{2}\right)^{2}+n \operatorname{tr}\left(A B^{2}\right)+\frac{n-1}{n} \operatorname{tr} A \\
& \geq-\left(\frac{n-1}{n}\right)^{2}-\sqrt{\frac{n-1}{n}}(n-2)\|\tilde{A}\|+2 \frac{n-1}{n} \operatorname{tr} A \tag{4.9}\\
& =\sqrt{\frac{n-1}{n}}\left[\sqrt{\frac{n-1}{n}}\left(n R-\frac{n-2}{n}\right)-(n-2)\|\tilde{\mathbf{A}}\|\right],
\end{align*}
$$

where $\|\tilde{\mathbf{A}}\|^{2}=\|\tilde{A}\|^{2}$ and $\operatorname{tr} \mathbf{A}=\operatorname{tr} A$ are used. From the assumption (1.3) in Main Theorem 1, we know that the right hand side of formula (4.9) is nonnegative. Therefore, from (4.3) and (4.9), we obtain

$$
\begin{equation*}
B_{i j, k}=0, \text { for all } i, j, k \text { and } \sum_{i, j} B_{i j} \Delta B_{i j}=0 . \tag{4.10}
\end{equation*}
$$

Hence the equality in (4.9) holds. We have

$$
\begin{equation*}
\sqrt{\frac{n-1}{n}}\left(n R-\frac{n-2}{n}\right)-(n-2)\|\tilde{\mathbf{A}}\|=0 . \tag{4.11}
\end{equation*}
$$

Further, the inequality (4.8) becomes equality. From Lemma 2.2, we know that $(n-1)$ of the eigenvalues μ_{i} of B satisfy $\left|\mu_{i}\right|=\frac{\left(\operatorname{tr} B^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}}=\frac{1}{n}$ and $\mu_{i} \mu_{j} \geq 0$, which yields that the $(n-1)$ of μ_{i} 's are equal and constant. Since $\operatorname{tr} B=0$ and $\sum_{i, j} B_{i j}^{2}=\frac{n-1}{n}$ hold, we know that B has two distinct principal curvatures, which are all constant. Therefore, we obtain x : $M \mapsto S^{n+1}(1)$ is a Möbius isoparametric hypersurface with two distinct principal curvatures. By the result of Li, Liu, Wang and Zhao [7], we have that \mathbf{x} is Möbius equivalent to an open part of the Riemannian product $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$ in $S^{n+1}(1)$, or an open part of the image of σ of the standard cylinder $S^{k}(1) \times \mathbf{R}^{n-k}$ in \mathbf{R}^{n+1} or an open part of the image of τ of $S^{k}(r) \times \mathbf{H}^{n-k}\left(\sqrt{1+r^{2}}\right)$ in \mathbf{H}^{n+1}, for $k=1,2, \cdots, n-1$. From Remark 3.3, Remark 3.5 and Remark 3.7, we know that formula (4.11) holds if and only if $k=n-1$. Hence, Main Theorem 1 is true in this case.

Case (ii) where $p \geq 2$. Define $\sigma_{\alpha \beta}=\sum_{i, j} B_{i j}^{\alpha} B_{i j}^{\beta}$. Since the $(p \times p)$-matrix $\left(\sigma_{\alpha \beta}\right)$ is symmetric, we can choose E_{n+1}, \cdots, E_{n+p} such that $\left(\sigma_{\alpha \beta}\right)$ is diagonal, that is,

$$
\begin{equation*}
\sigma_{\alpha \beta}=\sigma_{\alpha} \delta_{\alpha \beta} \tag{4.12}
\end{equation*}
$$

From Lemma 2.1, we have

$$
\begin{align*}
& -\sum_{\alpha, \beta} N\left(B_{\alpha} B_{\beta}-B_{\beta} B_{\alpha}\right)-\sum_{\alpha, \beta}\left\{\operatorname{tr}\left(B_{\alpha} B_{\beta}\right)\right\}^{2} \tag{4.13}\\
& \geq-2 \sum_{\alpha \neq \beta} \sigma_{\alpha} \sigma_{\beta}-\sum_{\alpha} \sigma_{\alpha}^{2} \\
& =-2\left(\sum_{\alpha} \sigma_{\alpha}\right)^{2}+\sum_{\alpha} \sigma_{\alpha}^{2} \\
& \geq-2\left(\frac{n-1}{n}\right)^{2}+\frac{1}{p}\left(\sum_{\alpha} \sigma_{\alpha}\right)^{2} \\
& =-\left(2-\frac{1}{p}\right)\left(\frac{n-1}{n}\right)^{2} .
\end{align*}
$$

From (4.4),(4.8), (4.13), we have

$$
\begin{align*}
& \sum_{i, j, \alpha} B_{i j}^{\alpha} \Delta B_{i j}^{\alpha} \tag{4.14}\\
\geq & -\left(2-\frac{1}{p}\right)\left(\frac{n-1}{n}\right)^{2}+n \sum_{\alpha} \operatorname{tr}\left(A B_{\alpha}^{2}\right)+\frac{n-1}{n} \operatorname{tr} A \\
= & -\left(2-\frac{1}{p}\right)\left(\frac{n-1}{n}\right)^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}} \sum_{\alpha} \operatorname{tr} B_{\alpha}^{2}\|\tilde{A}\| \\
& +\operatorname{tr} A \sum_{\alpha} \operatorname{tr} B_{\alpha}^{2}+\frac{n-1}{n} \operatorname{tr} A \\
= & -\left(2-\frac{1}{p}\right)\left(\frac{n-1}{n}\right)^{2}-\sqrt{\frac{n-1}{n}}(n-2)\|\tilde{A}\|+2 \frac{n-1}{n} \operatorname{tr} A \\
= & \sqrt{\frac{n-1}{n}}\left\{\sqrt{\frac{n-1}{n}}\left(n R-\frac{1}{n}\left[(n-1)\left(2-\frac{1}{p}\right)-1\right]\right)-(n-2)\|\tilde{\mathbf{A}}\|\right\},
\end{align*}
$$

where $\|\tilde{\mathbf{A}}\|^{2}=\|\tilde{A}\|^{2}$ and $\operatorname{tr} \mathbf{A}=\operatorname{tr} A$ are used. From the assumption (1.3) in Main Theorem 1, we know that the right hand side of (4.14) is nonnegative. Therefore, from (4.3) and (4.14), we obtain $B_{i j, k}^{\alpha}=0$, for all i, j, k, α, and $\sum_{i, j, \alpha} B_{i j}^{\alpha} \Delta B_{i j}^{\alpha}=0$. Hence, the above inequalities become equalities. Thus, we have

$$
\begin{equation*}
(n-2)\|\tilde{\mathbf{A}}\|=\sqrt{\frac{n-1}{n}}\left\{n R-\frac{1}{n}\left[(n-1)\left(2-\frac{1}{p}\right)-1\right]\right\}, \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n+1}=\sigma_{n+2}=\cdots=\sigma_{n+p} \tag{4.16}
\end{equation*}
$$

because of $\frac{1}{p}\left(\sum_{\alpha} \sigma_{\alpha}\right)^{2}=\sum_{\alpha} \sigma_{\alpha}^{2}$. From Lemma 2.1, we know that at most two of the matrices $B_{\alpha}=\left(B_{i j}^{\alpha}\right)$ are nonzero. From (2.16), we have $\sum_{\alpha} \sigma_{\alpha}=\frac{n-1}{n}$. Hence, (4.16) yields $p=2$ and we may assume that

$$
\begin{equation*}
B_{n+1}=\lambda \widetilde{A}, \quad B_{n+2}=\mu \widetilde{B}, \quad \lambda, \mu \neq 0 \tag{4.17}
\end{equation*}
$$

where \widetilde{A} and \widetilde{B} are defined in Lemma 2.1. Therefore, we have

$$
\begin{align*}
& B_{12}^{n+1}=B_{21}^{n+1}=\lambda, \quad B_{i j}^{n+1}=0, \quad(i, j) \notin\{(1,2),(2,1)\}, \tag{4.18}\\
& B_{11}^{n+2}=\mu, \quad B_{22}^{n+2}=-\mu, \quad B_{i j}^{n+2}=0, \quad(i, j) \notin\{(1,1),(2,2)\} . \tag{4.19}
\end{align*}
$$

Since the inequality (4.8) becomes equality, from Lemma 2.2, we know that, for each $\alpha,(n-1)$ of the eigenvalues μ_{i}^{α} of $B_{\alpha}=\left(B_{i j}^{\alpha}\right)$ satisfy $\left|\mu_{i}^{\alpha}\right|=\frac{\left(\operatorname{tr} B_{\alpha}^{2}\right)^{1 / 2}}{\sqrt{n(n-1)}}$ and $\mu_{i}^{\alpha} \mu_{j}^{\alpha} \geq 0$, which infer that the $(n-1)$ of μ_{i}^{α} are equal. From (4.19), we have the eigenvalues of $B_{n+2}=\left(B_{i j}^{n+2}\right)$ are $\mu,-\mu, 0,0, \cdots 0$. Since $\mu \neq 0$, we infer $n=2$.

From (4.18), we can infer, by an algebraic method, that the eigenvalues of B_{n+1} are $\lambda,-\lambda$. Since $n=p=2$ holds, from (4.1), (4.18) and (4.19), we have

$$
\begin{equation*}
A_{11}=A_{22}, \quad A_{12}=A_{21}=0 \tag{4.20}
\end{equation*}
$$

Therefore, $\mathbf{x}: M^{2} \mapsto S^{4}(1)$ is a Möbius isotropic submanifold in S^{4}. Thus, we have $\|\tilde{\mathbf{A}}\|=0$. Since $n=2$ and $p=2$ hold, from (4.15), we have $R=\frac{1}{8}$. We obtain $\operatorname{tr} A=\frac{3}{8}$. Hence $A_{11}=A_{22}=\frac{3}{16}$. From Liu, Wang and Zhao [9], we obtain that x : $M^{2} \mapsto S^{4}(1)$ is Möbius equivalent to an open part of either a minimal surface $\tilde{\mathbf{x}}: M^{2} \mapsto S^{4}(1)$ with constant scalar curvature in $S^{4}(1)$, or the image of σ_{2} of a minimal surface with constant scalar curvature in \mathbf{R}^{4} or the image of τ_{2} of a minimal surface with constant scalar curvature in \mathbf{H}^{4}. For a surface, Gaussian curvature is constant if and only if the scalar curvature is constant. From the Proposition 4.1 and Theorem 4.2 of Bryant [3], we know that a minimal surface with constant scalar curvature in \mathbf{R}^{4} is totally geodesic and a minimal surface with constant scalar curvature in \mathbf{H}^{4} is also totally geodesic. Since $\mathbf{x}: M^{2} \mapsto S^{4}(1)$ has no umbilical ponits, we infer that x : $M^{2} \mapsto S^{4}(1)$ is Möbius equivalent to an open part of a minimal surface $\tilde{\mathbf{x}}: M^{2} \mapsto S^{4}(1)$ with constant scalar curvature in $S^{4}(1)$. From the Gauss equation of the minimal surface $\tilde{\mathbf{x}}: M^{2} \mapsto S^{4}(1)$ with constant scalar curvature in $S^{4}(1)$, we know that the squared norm of the second fundamental form of this minimal surface is constant. According to the definition (2.2) of ρ, ρ^{2} is constant. From (2.14), we have $\rho^{2}=\frac{8}{3}$. Thus, the squared norm of the second fundamental form of $\tilde{\mathbf{x}}$ must be $\frac{4}{3}$, i.e. $\|I I\|^{2}=\frac{4}{3}$. Therefore, from the result of Chern, do Carmo and Kobayashi [5], we obtain that $\tilde{\mathbf{x}}: M^{2} \mapsto S^{4}(1)$ is locally a Veronese surface in $S^{4}(1)$. This finishes the proof of Main Theorem 1.

Proof of Main Theorem 2. Since the Möbius form $\Phi=\sum_{i, \alpha} C_{i}^{\alpha} e_{\alpha} \equiv 0$ holds, we have

$$
\begin{equation*}
A_{i j, k}=A_{i k, j}, \quad B_{i j, k}^{\alpha}=B_{i k, j}^{\alpha}, \quad \sum_{k} B_{i k}^{\alpha} A_{k j}=\sum_{k} B_{k j}^{\alpha} A_{k i} . \tag{4.21}
\end{equation*}
$$

Hence, for any $\alpha, B_{\alpha} A=A B_{\alpha}$, where $A=\left(A_{i j}\right)$ and $B_{\alpha}=\left(B_{i k}^{\alpha}\right)$. For any fixed α, we can choose the basis $\left\{E_{i}\right\}$ such that $A=\left(A_{i j}\right)$ and $B_{\alpha}=\left(B_{i k}^{\alpha}\right)$ are diagonal, that is,

$$
\begin{equation*}
A_{i j}=\lambda_{i} \delta_{i j}, \quad B_{i j}^{\alpha}=\mu_{i}^{\alpha} \delta_{i j} \tag{4.22}
\end{equation*}
$$

Since $n(n-1) R$ is constant, from (2.24), we have that $\operatorname{tr} \mathbf{A}=\operatorname{tr} A=\sum_{i} A_{i i}$ is constant. From (2.25), (4.21), (4.22), we infer

$$
\begin{align*}
& \frac{1}{2} \Delta\|\mathbf{A}\|^{2}=\sum_{i, j, k}\left(A_{i j, k}\right)^{2}+\sum_{i, j, k} A_{i j} A_{i j, k k} \tag{4.23}\\
& =\sum_{i, j, k}\left(A_{i j, k}\right)^{2}+\sum_{i, j, k} A_{i j} A_{k k, i j}+\sum_{i, j, k, l} A_{i j} A_{l i} R_{l k j k}+\sum_{i, j, k, l} A_{i j} A_{k l} R_{l i j k} \\
& =\sum_{i, j, k}\left(A_{i j, k}\right)^{2}+\frac{1}{2} \sum_{i, k} R_{i k i k}\left(\lambda_{i}-\lambda_{k}\right)^{2} .
\end{align*}
$$

When $p>1$, from the assumption $K>0$ in Main Theorem 2, by integrating (4.23), we have

$$
R_{i k i k}\left(\lambda_{i}-\lambda_{k}\right)^{2}=0 .
$$

Therefore, we know that $\lambda_{i}=\lambda_{k}$, that is, $\mathbf{x}: M \mapsto S^{n+p}(1)$ is a Möbius isotropic submanifold in $S^{n+p}(1)$ with positive Möbius sectional curvature. From the result in [9], we know that \mathbf{x} is Möbius equivalent to the compact minimal submanifolds with constant scalar curvature in $S^{n+p}(1)$.

Next, we consider the case where $p=1$. In this case, we know that the Möbius sectional curvature of the immersion \mathbf{x} is nonnegative. By integrating (4.23), we infer

$$
\begin{equation*}
A_{i j, k}=0, \text { for any } i, j, k, \quad R_{i k i k}\left(\lambda_{i}-\lambda_{k}\right)^{2}=0 \tag{4.24}
\end{equation*}
$$

From (2.22) and (4.22), we have $R_{i k i k}=\mu_{i} \mu_{k}+\lambda_{i}+\lambda_{k}$ for $i \neq k$. Hence, we infer

$$
\begin{equation*}
\left(\mu_{i} \mu_{k}+\lambda_{i}+\lambda_{k}\right)\left(\lambda_{i}-\lambda_{k}\right)^{2}=0 \tag{4.25}
\end{equation*}
$$

Form (4.24) and (2.17), we have

$$
\begin{equation*}
0=d \lambda_{i} \delta_{i j}+\left(\lambda_{i}-\lambda_{j}\right) \omega_{i j}, \quad 1 \leq i, j \leq n \tag{4.26}
\end{equation*}
$$

Setting $i=j$ in (4.26), we obtain $d \lambda_{i}=0$, that is, eigenvalues of $\left(A_{i j}\right)$ are all constant. From (4.26), we infer that for $\lambda_{i} \neq \lambda_{j}$,

$$
\begin{equation*}
\omega_{i j}=0 . \tag{4.27}
\end{equation*}
$$

Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}$ are these distinct eigenvalues of $A=\left(A_{i j}\right)$. We can assume $\lambda_{1}<$ $\lambda_{2}<\cdots<\lambda_{l}$. From (4.25), we have

$$
\begin{equation*}
\lambda_{i}=\lambda_{k}, \quad \text { or } \quad \mu_{i} \mu_{k}+\lambda_{i}+\lambda_{k}=0 . \tag{4.28}
\end{equation*}
$$

In the second case, we will prove that $A=\left(A_{i j}\right)$ has at most three distinct eigenvalues. In fact, if we assume $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}<\cdots<\lambda_{l}$ are these distinct eigenvalues
of $A=\left(A_{i j}\right)$ Let $\lambda_{1}, \lambda_{2}, \lambda_{i}$ are the three distinct eigenvalues of $A=\left(A_{i j}\right)$, we have

$$
\begin{aligned}
& \mu_{i} \mu_{1}+\lambda_{i}+\lambda_{1}=0 . \\
& \mu_{i} \mu_{2}+\lambda_{i}+\lambda_{2}=0 .
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\mu_{i}=-\frac{\lambda_{1}-\lambda_{2}}{\mu_{1}-\mu_{2}}, \tag{4.29}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{i}=-\lambda_{1}+\mu_{1} \frac{\lambda_{1}-\lambda_{2}}{\mu_{1}-\mu_{2}} . \tag{4.30}
\end{equation*}
$$

Hence, for $r=3,4, \cdots, l$, we have $\lambda_{r}=\lambda_{i}$. This is a contradiction. Therefore, $A=\left(A_{i j}\right)$ has at most three distinct eigenvalues.
(1). In the first case, we consider the case that $\left(A_{i j}\right)$ only has one distinct eigenvalues. Since the Möbius form $\Phi=\sum_{i, \alpha} C_{i}^{\alpha} e_{\alpha} \equiv 0$, we know x : $M \mapsto S^{n+1}(1)$ is a Möbius isotropic hypersurface in $S^{n+1}(1)$ with nonnegative Möbius sectional curvature. By the result in [9], we know that \mathbf{x} is Möbius equivalent to a minimal hypersurface with constant scalar curvature in $S^{n+1}(1)$.
(2). We consider the second case that $\left(A_{i j}\right)$ has two or three distinct eigenvalues. From (4.29), we know that at most three of the principal curvatures of $\left(B_{i j}\right)$ are distinct. Since \mathbf{x} has no umbilical points, we know that the distinct principal curvatures of $\left(B_{i j}\right)$ is two or three.
(i) If two of the principal curvatures of $\left(B_{i j}\right)$ are distinct, without lost of generality, we may assume $\mu_{1}<\mu_{2}$. From (2.16), we know that μ_{1} and μ_{2} are constant, that is, $\mathrm{x}: M \mapsto S^{n+1}(1)$ is a Möbius isoparametric hypersurface with two distinct principal curvatures in $S^{n+1}(1)$. Since \mathbf{x} is compact, from Theorem 1.1 in the introduction, we infer that \mathbf{x} is Möbius equivalent to the Riemannian product $S^{k}(r) \times S^{n-k}\left(\sqrt{1-r^{2}}\right)$, for $k=1,2, \cdots, n-1$.
(ii) If three of the principal curvatures of $\left(B_{i j}\right)$ are distinct, without lose of generality, we may assume $\mu_{1}<\mu_{2}<\mu_{3}$. From (2.16) and (4.29), we know that $\mu_{1}, \mu_{2}, \mu_{3}$
are constant. From the proof of Main Theorem 1, we infer

$$
\begin{aligned}
& \frac{1}{2} \Delta \sum_{i, j} B_{i j}^{2}=\sum_{i, j, k} B_{i j, k}^{2}+\sum_{i, j} B_{i j} \Delta B_{i j} \\
& =\sum_{i, j, k} B_{i j, k}^{2}-\left(\operatorname{tr} B^{2}\right)^{2}+n \operatorname{tr}\left(A B^{2}\right)+\frac{n-1}{n} \operatorname{tr} A \\
& =\sum_{i, j, k} B_{i j, k}^{2}+\frac{1}{2} \sum_{i, j}\left(\mu_{i}-\mu_{j}\right)^{2} R_{i j i j} \geq 0 .
\end{aligned}
$$

Since $\sum_{i, j} B_{i j}^{2}$ is constant, we obtain $B_{i j, k}=0$ for any i, j, k. From (2.18), we have, for each $\mu_{i} \neq \mu_{j}$,

$$
\begin{equation*}
\omega_{i j}=0 \tag{4.31}
\end{equation*}
$$

Hence, we know that the distributions of the eigenspaces with respect to μ_{i} are integrable. Since the distinct principal curvatures of M is three, we can write $M=$ $M_{1} \times M_{2} \times M_{3}$, where $M_{i}(1 \leq i \leq 3)$ is the integrable manifold corresponding to the principal curvature μ_{i}. Since μ_{i} 's are constant, we know that $M_{i}, i=1,2,3$, are closed. Thus, they are compact because M is compact. From (2.22), we have, for $j, k, l \in[i]$,

$$
\begin{equation*}
R_{i j k l}=\left(\mu_{i}^{2}+2 \lambda_{i}\right)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \tag{4.32}
\end{equation*}
$$

that is, M_{i} are constant curvature space with respect to the Möbius metric g. Putting $k_{i}=\mu_{i}^{2}+2 \lambda_{i}, \quad 1 \leq i \leq 3$, then, we have

$$
\begin{align*}
& k_{1}=\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{3}\right)>0, \\
& k_{2}=\left(\mu_{2}-\mu_{1}\right)\left(\mu_{2}-\mu_{3}\right)<0, \tag{4.33}\\
& k_{3}=\left(\mu_{3}-\mu_{1}\right)\left(\mu_{3}-\mu_{2}\right)>0 .
\end{align*}
$$

Therefore, we may infer $\operatorname{dim} M_{2}=1$. In fact, if $\operatorname{dim} M_{2} \geq 2$ holds, by the assumption that the Möbius sectional curvature of M is nonnegative, we have $k_{2} \geq 0$. This is a contradiction.

Let (u, v, w) be a coordinate system for M such that $u \in M_{1}, v \in M_{2}, w \in M_{3}$ and $E_{l}=\frac{\partial}{\partial v}$, where $l=\operatorname{dim} M_{1}+1$. Then, from structure equations (2.9), (2.10), (2.11) and (2.12) and (4.31), by a direct and simple calculation, we obtain

$$
\begin{gather*}
N_{v}=\lambda_{2} Y_{v} \tag{4.34}\\
Y_{v v}=-\lambda_{2} Y-N+\mu_{2} E, \quad Y_{v j}=0, \text { for } j \neq l, \tag{4.35}\\
E_{v}=-\mu_{2} Y_{v} \tag{4.36}
\end{gather*}
$$

where we denote E_{n+1} by E. From (4.35), we can write $Y=f(v)+F(u, w)$. Then, by (4.34), (4.35) and (4.36), we have

$$
\begin{equation*}
f^{\prime \prime \prime}(v)+k_{2} f^{\prime}(v)=0 \tag{4.37}
\end{equation*}
$$

where $k_{2}=\mu_{2}^{2}+2 \lambda_{2}<0$. The solution of (4.37) can be easily written as

$$
\begin{equation*}
f(v)=C_{1} \frac{1}{\sqrt{-k_{2}}} \cosh \left(\sqrt{-k_{2}} v\right)+C_{2} \frac{1}{\sqrt{-k_{2}}} \sinh \left(\sqrt{-k_{2}} v\right) \tag{4.38}
\end{equation*}
$$

where $C_{1}, C_{2} \in \mathbf{R}_{1}^{n+3}$ are constant vectors. From (4.38), we know that M_{2} must be a hyperbola. This is a contradiction because M_{2} is compact. Hence, the case (ii) does not occur, that is, M is a Möbius isoparametric hypersurface with two distinct principal curvatures. This completes the proof of Main Theorem 2.

References

[1] Akivis, M. A., Goldberg, V. V., Conformal differential geometry and its generalizations, Wiley, New York, 1996.
[2] Akivis, M. A., Goldberg, V. V., A conformal differential invariant and the conformal rigidity of hypersurfaces, Proc. Amer. Math. Soc. 125(1997), 2415-2424.
[3] Bryant, R. L., Minimal surfaces of constant curvature in S^{n}, Trans. Amer. Math. Soc., 290(1985), 259-271.
[4] Cheng, Q.-M., Submanifolds with constant scalar curvature, Proc. Royal Soc. Edinburgh, 132A(2002), 1163-1183.
[5] Chern, S. S., do Carmo, M. and Kobayashi, S., Minimal submanifols of a sphere with second fundamental form of constant length, Berlin, New York: Shing-Shen Chern Selected Papers, 1978, 393-409.
[6] Hu, Z. J., Li, H., Submanifolds with constant Möbius scalar curvature in S^{n}, Manuscripta Math. 111(2003), 287-302.
[7] Li, H., Liu, H. L., Wang, C. P. and Zhao, G. S., Möbius isoparametric hypersurface in S^{n+1} with two distinct principal curvatures, Acta Math. Sinica, English Series 18(2002), 437-446.
[8] Li, H., Wang, C. P. and Wu, F., Möbius characterization of Veronese surfaces in S^{n}, Math. Ann., 319(2001), 707-714.
[9] Liu, H. L., Wang, C. P., Zhao, G. S., Möbius isotropic submanifolds in S^{n}, Tôhoku Math. J. 53(2001),553-569.
[10] Santos, W., Submanifolds with parallel mean curvature vector in spheres, Tôhoku Math. J. 46(1994), 403-415.
[11] Wang, C. P., Möbius geometry of submanifolds in S^{n}, Manuscripta Math. 96(1998), 517-534.
Qing-Ming Cheng
Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
E-mail:cheng @ ms. saga-u.ac. jp
Shichang Shu
Department of Mathematics, Xianyang Teachers College, Xianyang, 712000, Shaanxi, P.R.China.

Present address:
Department of Mathematics, Faculty of Science and Engineering, Saga University,
Saga, 840-8502, Japan.
E-mail:xysxssc@yahoo.com.cn

[^0]: 2001 Mathematics Subject Classification: 53C42, 53C20.
 Key words and phrases: submanifold, Möbius metric, Möbius scalar curvature, Möbius sectional curvature, Blaschke tensor and Möbius form.

 * The first author's research was partially supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.
 ** The second author's research was partially supported by the Natural Science Foundation of China and NSF of Shaanxi.

