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A GAP THEOREM OF SELF-SHRINKERS

QING-MING CHENG AND GUOXIN WEI

ABSTRACT. In this paper, we study complete self-shrinkers in Euclidean space
and prove that an n-dimensional complete self-shrinker with polynomial vol-
ume growth in Euclidean space R™*1! is isometric to either R?, S™(y/n), or
R"™™ x S™(y/m), 1 < m < n — 1, if the squared norm S of the second
fundamental form is constant and satisfies S < %.

1. INTRODUCTION

Let X : M — R"™*! be a smooth n-dimensional immersed hypersurface in the
(n+1)-dimensional Euclidean space R™*!. The immersed hypersurface M is called
a self-shrinker if it satisfies the quasilinear elliptic system:

H=-Xx",

where H denotes the mean curvature vector of M, and X* denotes the orthogonal
projection of X onto the normal bundle of M.

It it known that self-shrinkers play an important role in the study of the mean
curvature flow because they describe all possible blow up at a given singularity of
a mean curvature flow.

For n = 1, Abresch and Langer [1] classified all smooth closed self-shrinker
curves in R? and showed that the round circle is the only embedded self-shrinkers.
For n > 2, Huisken [9] studied compact self-shrinkers. He proved that if M is
an n-dimensional compact self-shrinker with non-negative mean curvature H in
R+ then X (M) = S™(y/n). We should notice that the condition of non-negative
mean curvature is essential. In fact, let A and V denote the Laplacian and the
gradient operator on the self-shrinker, respectively and (-,-) denotes the standard
inner product of R"*!. Because

AH — (X,VH)+ SH — H =0,

we obtain H > 0 from the maximum principle if the mean curvature is non-negative.
Furthermore, Angenent [2] has constructed compact embedded self-shrinker torus
St x §7=1in R+,

Huisken [10] and Colding and Minicozzi [5] have studied complete and non-
compact self-shrinkers in R®*!. They have proved that if M is an n-dimensional
complete embedded self-shrinker in R"*! with H > 0 and with polynomial volume
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growth, then M is isometric to either the hyperplane R™, the round sphere S™(y/n),
or a cylinder S™(v/m) x R*"™™ 1<m<n-—1.

Without the condition H > 0, Le and Sesum [11] proved that if M is an n-
dimensional complete embedded self-shrinker with polynomial volume growth and
S < 1 in Euclidean space R"*!, then S = 0 and M is isometric to the hyperplane
R™, where S denotes the squared norm of the second fundamental form. Further-
more, Cao and Li [3] have studied the general case. They have proved that if M is
an n-dimensional complete self-shrinker with polynomial volume growth and S <1
in Euclidean space R"*!, then M is isometric to either the hyperplane R"™, the
round sphere S™(y/n), or a cylinder S™(y/m) x R"™™ 1 <m<n-—1.

Recently, Ding and Xin [6] have studied the second gap on the squared norm of
the second fundamental form and they have proved that if M is an n-dimensional
complete self-shrinker with polynomial volume growth in Euclidean space R™t1,
there exists a positive number § = 0.022 such that if 1 < S < 140.022, then S = 1.

Motivated by the above results of Le and Sesum, Cao and Li, Ding and Xin, we
consider the second gap for the squared norm of the second fundamental form and
prove the following classification theorem for self-shrinkers:

Theorem 1.1. Let M be an n-dimensional complete self-shrinker with polynomial
volume growth in R™"1. If the squared norm S of the second fundamental form is

constant and satisfies

3
S<14 -,
< +7

then M is isometric to one of the following:
(1) the hyperplane R™,
(2) a cylinder R"™™ x 8™(y/m), for 1 <m <n-—1,
(3) the round sphere S™(\/n).

2. PRELIMINARIES

In this section, we give some notation and formulas. Let X : M — R™*! be an
n-dimensional self-shrinker in R"*1. Let {e1,--- ,e,,e,11} be a local orthonormal
basis along M with dual coframe {w1,- - ,wp,wnt1}, such that {e1, - ,e,} is a
local orthonormal basis of M and e, is normal to M. Then we have

n
Wnt1 =0, wpp1s = — g hijwja hij = hjia
j=1

where h;; denotes the component of the second fundamental form of M. H =

Z?:l hjjent1 is the mean curvature vector field, H = [H| = Z;;l h;j is the mean

curvature and 1] = Zl j hijw; ®wjepny1 is the second fundamental form of M. The
Gauss equations and Codazzi equations are given by

(2.1) Rijri = highji — hithyy,

(2.2) hije = hikj,
where R;jp; is the component of curvature tensor, and the covariant derivative of

hij is defined by

n n n
Z hijkwr = dhi; + Z hijwri + Z hikwr;.-
k=1 k=1 k=1
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Let
Fy =V,F, Fij = V;VF, hijjp = Vihy, and hijig = ViVihgg,
where V; is the covariant differentiation operator. We have
(2.3) hijkt = hijik = Y him Rkt + Y T Rkl
m=1 m=1
The following elliptic operator £ was introduced by Colding and Minicozzi in [5]:
(2.4) Lf=Af—(X,V[),

where A and V denote the Laplacian and the gradient operator on the self-shrinker,
respectively and (-,-) denotes the standard inner product of R"*!. By a direct
calculation, we have

(2.5) Lhiyj=(1—- 8y, LH=H(1-29), LX;=-X;, LIX|]"=2(n—|X]),

(2.6) —£S > B+ S1-9).

.5,k

If S is constant, then we obtain from (2.6)

(27) Z hzjk - )

N

Hence one has either
(2.8) S=0, or S=1, or §>1.
We can choose a local field of orthonormal frames on M™ such that, at the point
that we consider,

Ai, if =,

P

0, if i#j.

Then

S=) hy=> X,
i i

where ); is called the principal curvature of M. From (2.1) and (2.3), we get

(2.9) hijiz = hjizi = (X = Aj)Aid;.

By a direct calculation, we obtain

(2.10) > hi=S(S—1)(S—2)+3(A-2B),
1,5,k,1

where A =3, , AZhiy, B= Dok NN i

We define two functions f3 and f; as follows:

f3 = Z hijhjihi; = ZA?, fa= Z hijhjkhiihi; = Z)\?~
=1

.5,k Jj=1 ,5,k,1

Then we have the following lemma.
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Lemma 2.1. Let M be an n-dimensional complete self-shrinker without boundary
and with polynomial volume growth in R**1. Then

(2.11) Lfs =3(1—=8)fs+6> N\hiy,
.5,k
(2.12) Lfi=4(1—8)fs+4(24 + B).

Proof. By the definition of f3, f4, Lfs and Lfy, we have the following calculations:

fam =3 Z hijmbijih,

.5,k

f3mm =3 Z hjkhrihijmm + 3 Z hijmPjemhi: + 3 Z RigmPikPiim,

i,k 7,k 1,5,k
Af?) - Zmem — 3Zh khszth +6 Z A\ hl]m’
1,5,k i,5,m

(X,Vfs) =3 hjxhei(X, Vhij),
N

Lfs=Af3—(X,Vf3)
=3 hjkhrilhi; +6 > N\ih,

i,k ij,m
=3(1—8)fs+6 > Nihi,
.5,k
and

fim =4 Bigmhjrhiihui,
ikl

famm =4 Z hijmmhjrphiihy + 4 Z hijmPjemPiihi

i,5,k,1 1,5,k,1
+4 g hijmPjkhiimhi + 4 E RigmbPikhiiPiim,
i,5,k,1 1,5,k,1

Afy = mem =4 > hjghgh Dby +4 > 0 NFRL L 4> NAhI +4 > AR,

i,7,k,1 ©,7,m 3,5,k ©,J,m

(X,Vfy) =4 Z hjihiihi (X, Vhig),
NN
Lfs=Afs—(X,Vf4)
=4 > hjrhihilhi; +8 Y APh;,, +4 Z XiXNjBZ

NN %,J,m i,5,m

=4(1 - 9)f1+4(2A + B). O
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3. SOME ESTIMATES

In this section, we will give some estimates which are needed to prove our theo-
rem. From now on, we denote

S—1=1tS5,

where t is a positive constant if we assume that S is constant and S > 1. Then

(1-1)S=1, > hj =t

3,5,k

By a direct calculation, one obtains

Z hz]kl 2 Zh’zzu +7 4 Z ijij + hmz 4 Z ijij — Mjiji)

1,5,k i#] i#£j

(3.1) = Z Wi + 3 Z(hijij + hyiji)?

+2[SZA§ #ZZ)\?F}

We next have to estimate S Zl )\? - (Zl )\?)2 since we want to give the estimate of
2k h’?jkl- Define

2
1 1 2
Firstly, we have

Lemma 3.1. There is one point © € M such that the following identity holds at
the point:

§<2»?> R
(3.2)

2
e Y 2nhi | Y N - (24+B)S+3c¢> <Z A?hm> ,
% 7 i

i,5,k

where ¢ is a real number.

Proof. Define a function

2
1 1 1 1 2
F = ZSE;A;* —5C (Zﬁ) = 5fi- 6c(fg) :
We have from Lemma 2.1 that
1 1
LF = L£(;Sf1 - —c(f3)2)

:S(].—S)f4_c<(l_ f3 +2Z>‘hz]k

(N

+32 ZAQ iij ) (24 + B)S.

(3.3)
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i i 2 2
Since S is constant, we know, from (2.7) and (2.10), that ka h3;y and Zi,j,kyl R

are bounded. Thus, it is not difficult to check that F', LF and |VF| are bounded.
Since M is an n-dimensional complete self-shrinker with polynomial volume growth,

we have
1x|2
/ LFe” 2 dv=0
M

(see the corollary 3.10 in [5]). Hence there is a point x € M such that

S(l—S)f4—c< f3+2Z)\h”kf3+3ZZ)\2 m) (2A+B)S =0

i,5,k

at the point because of the continuity of the function. O

Secondly, we have

Lemma 3.2.

f3 - M A2)?

f f = W(/\l/\2)2a

where A\; = max{\;}, A2 = min{\;}.
Proof. Since
1
Shh-fi=5 ;(A?S — fs\)?,

we have that

Sfi—fi> (AQS fah)” + 3 L 025~ 3h)?

A+ A3
BRI o4 sy

A2 A2 (A3 4+ A3)282
S (A2 +)3)2

= SAT+S\5 +

> S(AT+A3) —
S

BRYESY] e MO = A0 O
Thirdly, one has
Lemma 3.3.
1
(3.4) A-B< g()\l A2)?tS?%(1 — a),

Zz i1 _ Zz 197

where o = =
2 2
Zi,j,k hijk tS
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Proof. By means of symmetry, we have

A—B= Z(A? — Xidj)hi,

7,k
1
=3 S TOFH XA = Nid = Nk — Adi)hl,
=
=3 23 ug
1
+3 DT OZHA AL = Ndy — Ak — AAi)h.
i#j#kAi

Without loss of generality, we can assume that A; < \; < A, and consider
2=A X AL XA — A — Ak

as a function of Aj;, which takes its maximum at one of the boundary points A; or
Ak. On the other hand,

Zama = 2=a = (i = Ap)? < (A1 — Ag)2

Hence we get

A— B<f 23/\7A Wi+ Y (A —X2)*hdy,

i#i kA
1
< Z h’zyk Z h’zm
.3,k
Combining (2.7) and the definition of a, we get 0 < a < 1 and (3.4). O

From Lemma 3.1, one knows that the estimates of >, (Y, A?h;)? and
(Z” & hfjk)\i)2 are needed.

Lemma 3.4.

2
142
(3.5) Z(Z)\?huk> < - atSZf»
k i
E’L 17/74

where o =

Proof. Since S = Zij hfj is constant, we have ), A;hiir, = 0. Then

; (Z A?hn—ky = [Z(v — aX)hiik

2

k
<Z /\270)‘ Zhnka
for any constant a. Let a = £ f3 = £ >, A?. We have

1
(3.6) ;(thk> < ;A?—§<;A?) Zh“k—thuk

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Since

Z hzgk - Z hzu + 3Zhllj + Z hzgk’

1,5,k i#] i#jFEkFE
we have that
Z hi < (Z i +2 Z h) Z(1+20) > b2y = 1 + 20)tS2.

1,5,k 3,5,k

Combining (3.6) and (3.7), we get (3.5). O

Lemma 3.5.

2

2
(3.8) > by | < A+2B ZSHAQ (ZA h“k> £52.

1,5,k
Proof. A straightforward computation gives

2

> ik

N
2
1
=13 Z (i + X5 + Me)hijre — (aihji + ajhii + aghig)] hije
ik
1
<3 Z [(Ni + A+ Ae)hijr — (aihjk + ajhii + aghig)] Z i
1,5,k 1,5,k

1
5 [3(A+2B) =123 JaAih “k+3z S+2X7)a | 5%,
i,k

for any constant a; € R. Let

Then (3.8) follows. U

4. PROOF OF THEOREM 1.1

In this section, we will prove Theorem 1.1. The proof has three parts. In the
first part of the proof, we will show that S > 1+ % = 1.2 if S > 1. In the second
part, we will prove that S > 5303 802 > 1.24688 if S > g = 1.2. In the third part, we
will show that S > 1+ 2 3if S > 0802
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Proof of Theorem 1.1.

Part I (Claim: S > 1+ 1 =8 if §>1). Letting ¢ = 2 and applying Lemma 3.1,
we get

0:(5—1)[ Sfa— f1+ (23 Nk fs

1,5,k

= g(QA +B)+3 XJ:(Z N hiig)®

< (S - DI5Sh— B+ g T M)

1,5,k
S—1., S 2; N2
+ Tf3 - 5(2A+B) +SZ(Z>‘ihiij)

< T s+ 5| fasom) ——Z > At ?

— 524+ B)+3 Z(Z A2hii;)?
J [

CD[\')

< 28— 1)~ D2A—5B) + 0(1 4 20)i8°]
—%(2/1 —5B) + [g—i + ﬁoz}ts“'f

at the point z. Then it follows that

65 65(24 — 5B)
4.2 —— < —— 2
(42) 9 t5f < 65 + 76«
On the other hand, we have
(4.3) gng S(S—1)(S —2)+3(A—2B).
Combining (4.2) and (4.3), we obtain
3 130
on - =2
2[ 27 tsf
65(24 — 5B)
<SS -1)(S—-2)+3(A—-2B) 65 1 T6a
65(3A—3B)  76a(A+2B)
= S(S—1)(S—2)+4(A—B) — _
S(S-DS -2+ 4 ) 65 + 76 65 + 76«
195
< - - N iy i >
<SS -1)(S-2)+4 65+76a](A 2B) (Since A+ 2B > 0)
195 1-«a
<SS —1)(S—2)+[4— —2 17— %A — Ap)2tS2
SSE-DE =)+ 4~ e l—g— (= M)t

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Letting y = 65 4 76, we get

195 1. 195

a- 2P ey = a2y -

(1 g (1—a) = 754 = )11 - )

1 195 x 141 1
:?66&L+w5—4—:i—7—4w55ﬁ$%9—2 1% 195 x 141) = 31,

where 7; = 0.4198 - - - < 0.42.
Since we assume ¢ < %, that is, 1 < S <1+ % = g, we have that

(4.4) sw_axs—m+i§ul—&fwazgu—%?ogéi%?ugg%n
We next consider two cases:
Case 1 (M (z)X2(x) > 0). We see from (4.4) that
S(S—1)(S—2) > —y1 (A1 — X2)?tS? > —S~t5?,
that is,
S—2>-—m8.
Then
S > 15% > 1+20.42 >1.4>1.2:g.
Case 2 (A (z)A2(x) < 0). From (4.4), we obtain
(S —1)(S —2) +715tS > (S —1)(S — 2) + 11 (N2 + \2)tS
> 291\ Mot S + g(l - 12—37015)(A1A2)2
> 271 A1 AatS + g(l - %%)(Al)ﬂf
4'7%1?252

oA x(1- 2173><06)]’

that is,

16 + 2772

6
= 848y 2792 5

>1.286 > 1.2 = 5

Hence we have proved

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Part IT (Claim: S > ﬁ > 1.24688 if S > g) Letting ¢ = % and applying
Lemma 3.1, we have

0_( )[ Sf4_f3 Z)‘hwk

.5,k

—§ (24 + B) +3Z Z)? i)

S(S_l)[§Sf4 fS} Z)‘hwk
.5,k
45-1) , 5S 2y
+Tf3 -5 24+ B) +3Z ZA iij)
< 55 g (25" M%) - 2524+ B) +3ZZ>\2
-9 16tS = i) i)
(45) <2 -
< gtS I+ 55763 16t5 th”k (2A+B)

gt A 14411758 ; i) 27<A+23)S
2244 B)S 4 oo (14 20)187]
**SQJ“FM > i)’ 721427753)5
i,5,k
g (L4 20)087 .

at the point x, that is,

(4.6) 0<3tSf+ 80;9’52 %)\ h2)? — (24— 5B) + 81165’3 257( +20)tS .
Then
(4.7) —%ﬁf < 80;2 (23" M) - (24 55).
g,k
Since .
(2 " Aihij)? <487 thz % > (hijij + hyiji)?]
0,5,k i#j
<487 Z hZ. + % > (hijij + hyiji)?]
(4.8) z‘#j
<457 Z hii —
©,7,k,l

=45%[S(S —1)(S —2) + 3(A - 2B) — gSf],

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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one obtains
(2 Zi,j,k /\ih?jk)Z
452

We now assume % <t <0.198, that is, S < ﬁ. Then we will get a contradiction.
From (4.7), we have

298 9 298
4.1 _2PSF< (2 h2 )2 - —— (24 —5B).
(4.10) 2255 U 4052( ;Azh“’f) 298+326a( 5B)

(4.9) gs]wr < S(S—1)(S—2) +3(A—2B).

Noting A+ 2B > 0, we see from (4.9) and (4.10) that

- 3 x 298
<SS —1)(S—2) + [42981%}( -

450
(4.11) ,
3 x 298 } (A1 — As)

< 2 .
S(S—-1)(S—-2)+ [4 298 £ 326 3 tS*(1 — )
On the other hand,

1 3 x 298

(4 22" (1 —

3< 298+326a>< @)

1 3 x 298

_3><326< - Z >(624_Z)

(4.12) 1 3 % 298 x 624
= o gpg (2496 + 894 — 47 - S )

< 24 4—2v/1 2 24
< 5 g (2496 + 894 — 2V/1 X 3 298 x 624)
=y = 0.41146 - - - < 0.4115,

where Z = 298 + 326a..
From (4.11), we have

0< S(S = 1)(S = 2) + 72\ — Ag)2S% — %Sf
(4.13) <SS = 1)(S = 2) + 72 (M — A9)?5%
_ 79 (= Me)?
4507 A2+ A3
Then it follows that

(4.14) S(S — 1)(5 — 2) > ()\1 — /\2)2 (—’}/27552 + %()\1/\2)2> .

(A1 o).

We next consider two cases:
Case 1 (A1(z)A2(z) > 0). From (4.14), we have
S(S —1)(S —2) > (A1 — Xo)?(—2tS?) > —StS?,
that is,
S—22>—,S.
Then

2 2 1
S > > > .
T 147~ 1+042 7 0.802
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Case 2 (M (z)A2(x) <0). From (4.13), we obtain
S(S —1)(S —2) + 725t > S(S — 1)(S — 2) + 72(\ + A3) St

79 (A1 — A2)?

= 4507 N+ A2 (A1h2)? + 72(2M A2) 852
1 2

v

79
——S(A1A2)% + 292 A Aot S?

450
. (2’72t52)2 _ 4507275253
79 - 2 )
4 x mS 79

that is,

2+ 2243 1
> ST 1947456 > 1.2469 > ——.
1+ Y2 + W’YQ 0.802

It is a contradiction, hence we have proved

1
5> 0=

Part III (Claim: S > 22 if S > 545;). Before we prove the above claim, we will
prove the following lemma.

Lemma 4.1. Let M be an n-dimensional complete self-shrinker without boundary
and with polynomial volume growth in R"*1. If the squared norm S of the second
fundamental form is constant, then for any constant 6 > 0, cg > 0 and ¢y satisfying

(4.15) (B+1t)cod = (6 — 1+ 6co)?,
and 8 > 0, there exists a point pg € M such that, at pg,
tS?(S —2)

2
Z(2—(5t+015)5f—(5—2(5+616+§)A+(6+(5+201(5—56)3

+ [4\/?;? - % ~3(1+ co)é} % Xk:(z N hiix)?.

Proof. From [6], we have

(4.16)

2
417 A—2B— Sf)e " dv =0.
(4.17) (
M
Then for any constant c¢;, we have

(4.18) / cls(A—QB)e_lx2I dv:/ clSQfe_%dv
M M

since S is constant. From (3.3), we have

1x|2

/M<1 —8)(ef2 - SfeF av

(4.19)

B / 24+ B)S = 2¢fs ) Nihfje =3¢} (3 Mhigj)e” = dv.
" i

.3,k J

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Then

X2
2 dv

/ (c18%f —tS%fy + ctSf2)e”
M

i,5,k J i
12

2 dv.

+eS(A- 23)}6—

Thus we have that there exists a point pg € M such that, at pg,
c1S*f —tS%fy 4+ ctSf2

(421)  _ o, > NihZ— 24+ B)S+3¢Y (O Nhiij)? + c1S(A-2B).
1,5,k J 2

Then
c1S%f —tS(Sfy — f3)

1—o)tSf5+2 A\ih? 2A+ B)S
w2 = (1-c)tSf3 cfs%% e — ( )

+ 3¢ Z(Z )\%h”j)2 + Cls(A - QB)
i
Putting ¢ = 1 4 ¢¢ with ¢y > 0, we get

(18% —tS?)f = —cotSf3 +2(co+ 1) fs D _ \ihZj — (2A+ B)S
1,5,k

(4.23) ) ,
+3(1+ co) Z(Z A; huj) +c1S(A-2B).

For any positive constant 6 > 0, we have from (4.22),

tSf =168 + codt f2 —2(1 + co) fSéZ)\ 2,
.3,k

—3(1+co)d Z ZA2 i)

Putting

1
Z(hijkz + hjkii + hitig + hiij),

by a direct computation, we have

2
E hii > E uz]kl+4§ iijj — Pjjii)

(4.25) Uijkl =

Wikl ivjk.l
(4.26) =D uhut 42 (N = A)2AENS
i,7,k,l
= Z uzgkl+ Sf4 f??)
i,7,k,l
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From (2.10) and (4.26), we obtain

3
(4.27) S(S—1)(S—2)+3(A-2B) > ,,Zkl“?w + §5f_
2,7,K,

By a direct calculation, we can get

> ud > 2Sf+t52 ZV Zv i)

1,5,k,1
L2 ZA W2+ =5 52 (O AihZ;)?

3,5,k 1,5,k

(4.28)

Combining (4.27) and (4.28), we have
S(S—1)(S—2)+3(A—-2B)

4 2 2 2
>2Sf —2A + @ZAi(ZAjhjji)

L2 Z AhZ + <5 52 O Nibi)?

1,5,k 3,5,k

(4.29)

From (4.24), one has

5tSf+tSQZAQZ>\2 hyi)? + 2f3ZAhUk+ (O Xihj)?

N 1,5,k
1
= c10Sf + codt f3 — 2l +C° 1fs >N
.4,k
Z AihZip)? + (20 — c10) A+ (8 + 2¢10) B

.5,k
2

4)\
(430) + Z(F — 3 + CO Z )\2 ZZj

J

[(1 + Co)d — 1]
> f =~ v . E
0155 + |:t C()S t52 = k)\ hl]k

(25 — 015)14 + (5 + 2815)3

S Z —_— — 3 + Co)é)(Z /\Zzhuj)2

Taking ¢ and ¢, such that,

(4.31) (B4 t)cod = [(co +1)8 — 1]?,
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with 5 > 0, we have from Lemma 3.5

5tSf+%Z)\§(Z>\§hjji 2, 2s Z/\ W+ =5 52 O AihZy)?

1,5,k 1,5,k

>c155f—5[ (A+2B) — 3ZS+2A2 Z)\ hiik) }
(2(5 — 615)14 + (5 + 2015)
SZ(——3 1+co) >(ZA§hm)2

= 188+ (25— a9~ DA+ (04200~ 2B

4 1 407 1—1—00 2
o T oo )\ i1
+;[3BS+2/\§+t52 }Z «)

> c165f + (20 — 16 — E)A + (6 +2¢16 — ?B)B

+[4\/2if———3(1+c0 ] ZZA hiik)?

From (4.29), we have

(4.32)

tS%(S —2) + 3(A - 2B)

2
>25f — 2A — 5tSf + c16Sf + (26 — 16 — §)A+ (6 + 2c16 — ?ﬂ)B

(4.33)
+ [4\/%———3(1+ co) } Z ZAQ k)’
that is,
tS?(S —2)
> (2= 0t +c10)Sf — (5— 20+ c16 + §)A
(4.34)

2
+(6+5+2cla—§)3

2 2
+|:4\/;?3(1+60 :| Zz/\z nk . ]

Taking 6 + 6 +2c16 — 22 =5 — 20 + 16 + 2, we have from (4.15) that 8 =
10 +30+1, (B+1t)ced = ((Co +1)5 — 1)2. Taklng § =1, ¢g = < and applying

Lemma 4.1, we obtain 3 =3 — ¢, ¢; = -2 — 24,
tsz(sz)
8 22t T4t
S Ehsr— L _ya-nB
(4.35) 2G-3)8-GF-3)A-8
1[ (251 2 69 o
+S[4 3(5t1)t5:|2(z>‘ihuk) :
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Putting g1 (t) = 4,/3(3 — 1) — 2 — €, we can obtain that

g1 (t) < 0,
when ¢ > 0.1978. Since

(436) () =2 -—20__

54
5\/—1+ 12

when 1>t > 0.14, we have g (t) < g1(0.1978) < 0 when 0.1978 < t < 2.
From Lemma 3.3 and Lemma 3.4, we have

tS%(S —2)
> (- 2087 - (£ - P4-B)
+ % [4 ;(2—11 —1) - % - i—g]zk:(zi: Alhiik)?
> (5 - Zsr - (- DI - aws?
4.37
= _(% —~ %)(1 —a)(Ar — Ag)?tS?

8 /2,54 4 46
3

3
Ift>— 10°

15> the result is obviously true. If ¢ <
In this case, we have 0.198 < t < 13—0. Putting

8 4 [2.54 2
4 A Y e |
(4.38) o) =g +3\3lg D59

we will obtain a contradiction.

8 /2 54 4 46
4. bt)=—\/s(=—1)+ =+ —
(4.39) ) =—3\3(5 Dtz ++
we have
tS?(S — 2)
(4.40) 7 At
> —(1—5 - 5)(1 —a)(A1 — X2)*tS? + [a(t) — b(t)a]tSf
Since a (t) = — 41z 5\/?17% < 0, we have
3 52 4 /70
4.41 t)y>a(—)=——+ -1/ — = 0.662834 > 0.
(1.41) alt) 2 a() =~ 24 54/ >
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Since b (t) = —a + 5\/341—% > 0 if ¢ > 0.14, we have that b(t) is an increasing

function of ¢ € [0.198, %]. Then

3. 614 8 [70

. <b(—=)=—— -4/ ==0. .

(4.42) b(t) <b({5) =5 — 5\ 5 ~ 0763221 >0

Therefore we get
tS?(S —2)

(4.43) 7 4t 3 3
> —(—— =)(1— — \o)%tS? =) —b(— )
> —(1= = (1= @)\ = 22)*t8? + [a(+5) — bl=o)altS

We next consider two cases:

3
Case 1 (a(3) — b(3)a < 0). In this case ZELO)) < a < 1. Since A1, Ay are the
10
maximum and minimum of the principal curvatures at any point of M, we obtain,
for any j,

Aj AL 2> Ao+ A,
(A1 =21+ A7) > (A= A) (A + A2).

So we get
AT — (AL +A2)A; < =),
and
fo— (A +A2)fz < —A1A2S.
Then
(444) Sf = Sf4 — fg < —fg + ()\1 + /\Q)ng — )\1)\252,
EWY:
(4.45) Sf < MS?
From (4.43) and (4.45), we have
tS?(S —2)
(4.46) 7T 4t 3 3. (A —Ag)?
S (L F e \L\24 Q2 2 p g LT A2 g2
> —(5z — )1 = @) — )?5% + [a(s) — b5 )al s

Since a(+%) — b(3)a < 0, using —2X\ A2 < A7 + A3 < S, we see from (4.46)
(4.47)

Since

(4.48) 15 5) B §b(1_0

2 1
>9(- ) S x 07T =2~ = x0.
> 25 — 5 % 1) =5 X 07T = 2 = 2 X 0.77 > 0,
we have from (4.47) that
74t a(:)
4.49 S—2>-2(——)|1- 23
i > o= - 5]
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On the other hand,

3
a(16) - 086847 > 0.86.
b(:%)
10
Then from (4.49), we see
7 4t
S—2>-2( —-21-086)8
> =23 — ) )
(4.50) Lol A 0.108) x 0.145
> (15 g X0 ) x 0.
> 0.10618,
hence
10
451 18> —.
(4.51) 5> 1501061~ 187 7

This is impossible.

)
)

Bl

Case 2 (a(75) — b($5)a > 0). In this case Z((
(4.43), we obtain

> « > 0. From Lemma 3.2 and

Sles

t5%(S —2)
T4t o 3 5
> N 15 9 - - —_ — JR—
> —(1 — )1 - a)(h — Xa)*t8% + [“(10) b(lo)a}tSf
(4.52) S -
> (75— )= ) = X)*tS
3 3 (A1 — Ag)? ,
fwme v = _>\15>\27 we have _% Sy= _)\1:;\2 < %A?;Ag < % Then we infer from
(4.52) that
S —2
7T 4t 3 3 2
> *(1*5 - 5)(1 —a)(1+2y)S + {a(w) _ b(ﬁ) }(1 +2)(—y)2S

(4.53) { [_( T4t

Defining two functions p(y) and o(y) by

(154) o) = ~(35 — )1+ 2) +al(5)(1 + 27,
(1.59) oy) = (1=~ I+ 29) —b(2)(1 + 2
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Since n > 2, we have 1+ 2y > 0. Then

T4t

ofy) = (1=~ I+ 29) () (1 +2)y?

(4.56)

7T 4 3 1

= (1+2y) x 0.142508 > 0,

p(y) = ~(5 — )1+ 29) + al55) (1 +2)07
= (142 1= + g +ale)y

7 4 3 1

= (14 2y) x (—0.1676) < 0.

(4.57)

By a direct calculation, we obtain

/ T 4t 3 9
p(y) =23 — 5) +alyy)2y + 657
74t 3 3
=-2z-3 +a(1—0)y+3a(ﬁ)y2]
(4.58)
Lyl A3 18
15 9 10 12 ‘10
1 1
—2[= — — . .
< [3 12><O663]<O
It follows that
1 7T 4t 1 .3
. >p(2) = —2(— — —) + —a(—).
(459) o) 2 pl3) = —25z — 5) + a(50)
From the above arguments, we have
S—=22(p(y) + o(y))S
T 4t 1,3
>(-2(=—=— =)+ za(—
(w0 = (2235~ )+ galgp)s
. 14 8 1
2 8 8
=—— . - = 285 — —.
455+0335 9 > 0.285 9
Then
10
o 1
(4.61) S>—9 _sisas 2

1-0.28 7

It is a contradiction.

Hence, we have ¢ > 13_07 that is, S > % if S > 1. This completes the proof of

Theorem 1.1. O
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