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Abstract In this paper, we investigate an eigenvalue problem of Dirichlet
Laplacian on a bounded domain ! in an n-dimensional Euclidean space Rn. If
λk+1 is the (k+1)th eigenvalue of Dirichlet Laplacian on !, then, we prove that,
for n ≥ 41 and k ≥ 41, λk+1 ≤ k

2
n λ1 and, for any n and k, λk+1 ≤ C0(n, k)k

2
n λ1

with C0(n, k) ≤ j2n/2,1/j2n/2−1,1, where jp,k denotes the k-th positive zero of the
standard Bessel function Jp(x) of the first kind of order p. From the asymptotic
formula of Weyl and the partial solution of the conjecture of Pólya, we know
that our estimates are optimal in the sense of order of k.
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1 Introduction

An eigenvalue problem of Dirichlet Laplacian on a bounded domain ! with
smooth boundary ∂! in an n-dimensional Euclidean space Rn is

{$u = −λu, in !,
u = 0, on ∂!, (1.1)

which is also called a fixed membrane problem, where $ is the Laplacian in Rn.
This problem has a real and purely discrete spectrum

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞.

Here each eigenvalue is repeated from its multiplicity.
It is well known that Kac [13] (cf. [18]) posed a question “Can one hear the

shape of a drum?” which is the title of a his famous article in 1966. A mathe-
matical interpretation of the question is that if two domains are isospectral, is it
necessarily true that they are isometric? Hence, it is very important to study the
properties of the spectrum of the eigenvalue problem of Dirichlet Laplacian on
a bounded domain ! in Rn.

In the early part of twentieth century, Hilbert conjectured that the research
of the asymptotic behavior of the eigenvalue λk of the eigenvalue problem (1.1)
would yield results of the utmost importance. In 1911, Weyl proved that

λk ∼ 4π2

(ωnvol!)
2
n

k
2
n , k → ∞, (1.2)

where ωn is the volume of the unit ball in Rn. Further, Pólya conjectured the
eigenvalue λk should satisfy

λk ≥ 4π2

(ωnvol!)
2
n

k
2
n , (1.3)

for k = 1, 2, . . . (see [5]). On the conjecture of Pólya, Li and Yau [15] attacked
it and obtained

λk ≥ n
n + 2

4π2

(ωnvol!)
2
n

k
2
n , for k = 1, 2, . . . . (1.4)

On the other hand, Stewartson and Waechter [19] proposed to study an
inverse problem: let φ be the set of all increasing sequences of positive numbers
which tend to infinity, can one identify those sequences in φ which correspond
to spectra of the eigenvalue problem (1.1) for some domain? The study of the
universal inequalities plays an important role to restrict those sequences which
are spectra. Although the universal inequlities for the eigenvalue λk of the
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eigenvalue problem (1.1) have been studied by many mathematicians, the main
contributions have been obtained by Payne et al. [16, 17] (cf. Thompson [21]),
Hile and Protter [12] and Yang [22]. Namely, Payne et al. [17] (cf. Thompson
[21]) and Hile and Protter [12] proved, respectively,

λk+1 − λk ≤ 4
nk

k∑

i=1

λi (1.5)

and

k∑

i=1

λi

λk+1 − λi
≥ kn

4
. (1.6)

Further, in 1991, Yang [22] has proved a very sharp universal inequality:

k∑

i=1

(λk+1 − λi)
2 ≤ 4

n

k∑

i=1

λi(λk+1 − λi). (1.7)

From this inequality, one has

λk+1 ≤
(

1 + 2
n

)
1
k

k∑

i=1

λi

+







 2
n

1
k

k∑

i=1

λk




2

−
(

1+ 4
n

)
1
k

k∑

j=1



λj−
1
k

k∑

i=1

λi




2




1/2

, (1.8)

which has been called Yang’s inequality by Ashbaugh [1, 2].

Remark 1.1 Since the importance of Yang’s inequalities (1.7) and (1.8) has
been emphasized by Ashbaugh in [1, 2], it is certainly important for readers to
know the original proof of Yang’s inequalities. Although, Ashbaugh [1, 2] has
published a proof of Yang’s inequalities in his survey papers, Yang has never
published his original proof. Hence, we shall give a proof of Yang’s inequality
(1.7) by following his original method in Appendix.

Recently, for eigenvalue problems of Dirichlet Laplacian on either a bounded
domain in an n-dimensional unit sphere, or an n-dimensional compact mini-
mal submanifold in a unit sphere, or a bounded domain in an n-dimensional
complex projective space, or an n-dimensional compact homogeneous Rie-
mannian manifold, or a compact complex submanifold in an m-dimensional
complex projective space, we also obtained the universal inequalities on higher
eigenvalues in [6] and [8], which are sharper than the old results in correspond-
ing cases (cf. 6–12, 14, 17, 20, 23).
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In this paper, we want to study the bound of λk+1/λ1 for a bounded domain
! in Rn. We shall prove that, for n ≥ 41 and k ≥ 41,

λk+1 ≤ k2/nλ1

holds. For any n and k, we obtain

λk+1 ≤ C0(n, k)k2/nλ1,

where

C0(n, k) =






j2n/2,1

j2n/2−1,1
, for k = 1

1 + a(min{n, k − 1})
n

, for k ≥ 2

and a(1) ≤ 2.64, a(2) ≤ 2.27 and a(p) ≤ 2.2 − 4 log(1 + p−3
50 ) for p ≥ 3 is a

constant depending only on p, and jp,k denotes the k-th positive zero of the
standard Bessel function Jp(x) of the first kind of order p.

Remark 1.2 From Weyl’s asymptotic formula (1.2) and the partial solution (1.4)
of the conjecture of Pólya, we know that our estimates of λk+1/λ1 are best pos-
sible in the sense of order of k.

This paper is organized as follows. In Sect. 2, we give a general recursion for-
mula for any positive real numbers λ1 ≤ λ2 ≤ · · · ≤ λk+1 satisfying a condition.
In Sect. 3, we study an eigenvalue problem of Dirichlet Laplacian on a bounded
domain in Rn. We shall prove our main estimates of the λk+1. In Appendix, we
shall give an outline of proof of Yang’s inequality (1.7). The idea of the proof
comes from the original preprint of Yang [22].

2 A general recursion formula

In this section, we shall prove a general recursion formula on any positive real
numbers satisfying some conditions, which plays an important role in proofs of
our results.

Theorem 2.1 Let λ1 ≤ λ2 ≤ · · · ≤ λk+1 be any positive real numbers satisfying

k∑

i=1

(λk+1 − λi)
2 ≤ 4

n

k∑

i=1

λi(λk+1 − λi). (2.1)

Define

(k = 1
k

k∑

i=1

λi, Tk = 1
k

k∑

i=1

λ2
i , Fk =

(
1 + 2

n

)
(2

k − Tk. (2.2)
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Then, we have

Fk+1 ≤ C(n, k)

(
k + 1

k

) 4
n

Fk, (2.3)

where

C(n, k) = 1 − 1
3n

(
k

k + 1

) 4
n

(
1 + 2

n

) (
1 + 4

n

)

(k + 1)3 < 1.

Proof Putting

pk+1 = (k+1 −
(

1 + 2
n

1
1 + k

)
(k,

since

λk+1 = (k + 1)(k+1 − k(k = (k + 1)

[
pk+1 +

(
1 + 2

n

)
1

k + 1
(k

]
, (2.4)

we have

Fk+1 =
(

1 + 2
n

)
(2

k+1 − k
k + 1

(
1 + 2

n

)
(2

k − 1
k + 1

λ2
k+1 + k

k + 1
Fk

=
(

1 + 2
n

)[
pk+1 +

(
1 + 2

n
1

1 + k

)
(k

]2
− k

k + 1

(
1 + 2

n

)
(2

k

−(k + 1)

[
pk+1 +

(
1 + 2

n

)
1

k + 1
(k

]2
+ k

k + 1
Fk.

Hence, we obtain

Fk+1 = −
(

k − 2
n

)
p2

k+1 + 2
2
n

(
1 + 2

n

)

k + 1
pk+1(k

+ 2
n

(
1 + 2

n

)

k + 1
(2

k + 4
n2

(
1 + 2

n

)

(k + 1)2 (2
k + k

k + 1
Fk. (2.5)

From (2.1), we have

(
λk+1 −

(
1 + 2

n

)
(k

)2
≤

(
1 + 2

n

)2
(2

k −
(

1 + 4
n

)
Tk. (2.6)
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Hence, (2.4) and (2.6) yield

(k + 1)2
(

(k+1 −
(

1 + 2
n

1
k + 1

)
(k

)2
≤

(
1 + 2

n

)2
(2

k −
(

1 + 4
n

)
Tk.

From the definition of pk+1, the above inequality and (2.2), we infer

0 ≤ −(k + 1)2p2
k+1 − 2

n

(
1 + 2

n

)
(2

k +
(

1 + 4
n

)
Fk. (2.7)

Multiplying (2.7) by



 1
k + 1

+ 2
n



 1
(k + 1)2 +

β
(

1 + 2
n

)

(k + 1)3







 and then adding

it to (2.5), we infer

Fk+1 ≤



1 + 4
n

1
k + 1

+ 2
n

(
1 + 4

n

)

(k + 1)2 + 2β

n

(
1 + 2

n

) (
1 + 4

n

)

(k + 1)3



 Fk

−



2k + 1+ 2
n

(
1+ 2

n

)
β

k + 1



 p2
k+1 + 2

2
n

(
1 + 2

n

)

k + 1
pk+1(k− 4β

n2

(
1+ 2

n

)2

(k + 1)3 (2
k

≤



1 + 4
n

1
k + 1

+ 2
n

(
1 + 4

n

)

(k + 1)2 + 2β

n

(
1 + 2

n

) (
1 + 4

n

)

(k + 1)3



 Fk

−4β

n2

(
1 + 2

n

)2

(k + 1)3 (2
k + 4

n2

(
1 + 2

n

)2

(k + 1)2(2k + 1)
(2

k

−(2k + 1)



pk+1 − 2
n

(
1 + 2

n

)

(k + 1)(2k + 1)
(k





2

.

Letting β = k + 1/2k + 1, we have

Fk+1 ≤



1 + 4
n

1
k + 1

+ 2
n

(
1 + 4

n

)

(k + 1)2 + 2
n

(
1 + 2

n

) (
1 + 4

n

)

(k + 1)2(2k + 1)



 Fk. (2.8)
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Since

(
k + 1

k

) 4
n

=
(

1 − 1
k + 1

)− 4
n

= 1 + 4
n

1
k + 1

+ 1
2

4
n

(
1 + 4

n

)

(k + 1)2 + 1
6

4
n

(
1 + 4

n

) (
2 + 4

n

)

(k + 1)3

+ 1
24

4
n

(
1 + 4

n

) (
2 + 4

n

) (
3 + 4

n

)

(k + 1)4 + · · ·

≥ 1 + 4
n

1
k + 1

+ 1
2

4
n

(
1 + 4

n

)

(k + 1)2 + 1
3

4
n

(
1 + 4

n

) (
1 + 2

n

)

(k + 1)3

+1
4

4
n

(
1 + 4

n

) (
1 + 2

n

)

(k + 1)4 , (2.9)

we have

Fk+1 ≤




(

k + 1
k

) 4
n

− k − 1
3(2k + 1)

2
n

(
1 + 2

n

) (
1 + 4

n

)

(k + 1)3 − 1
n

(
1 + 4

n

) (
1 + 2

n

)

(k + 1)4



 Fk

≤ C(n, k)

(
k + 1

k

) 4
n

Fk,

where

C(n, k) =



1 − 1
3n

(
k

k + 1

) 4
n

(
1 + 2

n

) (
1 + 4

n

)

(k + 1)3



 < 1.

()
Corollary 2.1 Under the assumptions in Theorem 2.1, we have

λk+1 ≤
(

1 + 4
n

)
k2/nλ1. (2.10)

Proof By making use of the formula (2.3) in Theorem 2.1, we have

Fk ≤ C(n, k − 1)

(
k

k − 1

) 4
n

Fk−1 ≤ k
4
n F1 = 2

n
k

4
n λ2

1. (2.11)

we infer from (2.6)

[
λk+1 −

(
1 + 2

n

)
(k

]2
≤

(
1 + 4

n

)
Fk − 2

n

(
1 + 2

n

)
(2

k.
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Hence, we have

2
n(

1 + 4
n

)λ2
k+1 + 1 + 2

n

1 + 4
n

(
λk+1 −

(
1 + 4

n

)
(k

)2
≤

(
1 + 4

n

)
Fk.

Thus, we derive

λ2
k+1 ≤ n

2

(
1 + 4

n

)2
Fk ≤

(
1 + 4

n

)2
k

4
n λ2

1. (2.12)

()

3 Eigenvalues of Dirichlet Laplacian

In this section, we shall study the following eigenvalue problem of Dirichlet
Laplacian on ! ⊂ Rn:

{$u = −λu, in !,
u = 0, on ∂!. (3.1)

First of all, we define several constants, which depend only on either n or k.
Define

a1(n) =
n(1 + 4

n )
(

1 + 8
n+1 + 8

(n+1)2

) 1
2

(n + 1)
2
n

− n,

a2(k, n) = n

k
2
n

(
1 + 4(n + k + 4)

n2 + 5n − 4(k − 1)

)
− n,

a2(k) = max{a(n, k), k ≤ n ≤ 400},
a3(k) = 4

1 − k
400

− 2 log k,

a(k) = max{a1(k), a2(k + 1)), a3(k + 1)}.

Theorem 3.1 Let λk+1 be the (k + 1)th eigenvalue of the eigenvalue problem
(3.1). Then, we have

(1) for n ≥ 41 and k ≥ 41,

λk+1 ≤ k2/nλ1;

(2) for any n and k,

λk+1 ≤ C0(n, k)k2/nλ1,
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where

C0(n, k) =






j2n/2,1

j2n/2−1,1
, for k = 1

1 + a(min{n, k − 1})
n

, for k ≥ 2

and a(1) ≤ 2.64, a(2) ≤ 2.27 and a(p) ≤ 2.2 − 4 log(1 + p−3
50 ) for p ≥ 3.

Proposition 3.1 Under the assumption of Theorem 3.1, we have, for k ≥ n + 1,

λk+1 ≤

(
1 + 4

n

) (
1 + 8

n+1 + 8
(n+1)2

) 1
2

(n + 1)
2
n

k
2
n λ1 =

(
1 + a1(n)

n

)
k

2
n λ1, (3.2)

where a1(n) ≤ 2.31.

Proof Since λk+1 is the (k + 1)th eigenvalue of the eigenvalue problem (3.1),
we know that the λk+1 satisfies Yang’s inequality (1.7). Hence, the conditions
in Theorem 2.1 are satisfied. By making use of the formula (2.3), we have, from
(2.11),

λ2
k+1 ≤ n

2

(
1 + 4

n

)2
Fk ≤ n

2

(
1 + 4

n

)2 (
k

n + 1

) 4
n

Fn+1. (3.3)

On the other hand,

Fn+1 = 2
n

(2
n+1 −

n+1∑

i=1

(λi − (n+1)
2

n + 1

≤ 2
n

(2
n+1 − (λ1 − (n+1)

2 + 1
n (λ1 − (n+1)

2

n + 1

= 2
n

(
(2

n+1 − (λ1 − (n+1)
2

2

)
. (3.4)

It is obvious that (2
n+1 −(λ1 − (n+1)

2/2 is an increasing function of (n+1. From
the result of Ashbaugh and Benguria [4], we have

λn+1 + · · · + λ2 ≤ (n + 4)λ1. (3.5)

Thus, we derive

(n+1 ≤
(

1 + 4
n + 1

)
λ1. (3.6)
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Hence, we have

n
2

Fn+1 ≤
(

1 + 8
n + 1

+ 8
(n + 1)2

)
λ2

1. (3.7)

From (3.3) and (3.7), we complete the proof of Proposition 3.1. ()

Proposition 3.2 Under the assumption of Theorem 3.1, we have, for k ≥ 55 and
n ≥ 54,

λk+1 ≤ k
2
n λ1. (3.8)

Proof If k ≥ n + 1, from Proposition 3.1, we have

λk+1 ≤ 1

(n + 1)
2
n

(
1 + 4

n

)2
k

2
n λ1.

Since

(n + 1)
2
n = exp

(
2
n

log(n + 1)

)

≥ 1 + 2
n

log(n + 1) + 2
n2 (log(n + 1))2

≥
(

1 + 1
n

log(n + 1)

)2
, (3.9)

we have

λk+1 ≤
(

1 + 4
n

1 + 1
n log(n + 1)

)2

k
2
n λ1. (3.10)

Then, when n ≥ 54, log(n + 1) ≥ 4, we have

λk+1 ≤ k
2
n λ1.

On the other hand, if k ≤ n, then (k ≤ (n+1. Since

n
2

Fk = (2
k − n

2

∑k
i=1(λi − (k)2

k

≤ (2
k − n

2

(λ1 − (k)2 +

{∑k
i=2(λi − (k)

}2

k − 1
k

≤ (2
k − (λ1 − (k)2

2

≤ (2
n+1 − (λ1 − (n+1)

2

2
≤

(
1 + 4

n

)2
λ2

1,
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from (2.11), we have

λk+1 ≤
(

1 + 4
n

) √
n
2

Fk ≤ 1

k
2
n

(
1 + 4

n

)2
k

2
n λ1 ≤

(
1 + 4

n

1 + log k
n

)2

k
2
n λ1.

Here we used k
2
n ≥ (1 + log k

n )2. By the same assertion as above, when k ≥ 55,
we also have

λk+1 ≤ k
2
n λ1.

()

Proof of Theorem 3.1 From Propositions 3.1 and 3.2, we know, for n ≥ 54 and
k ≥ 55, λk+1 ≤ k

2
n λ1 and for any n, if k ≥ n + 1, then λk+1 ≤ (1 + a1(n)

n )k
2
n λ1.

Hence, we only need to prove the case that k ≤ 54 and k ≤ n. Because of k ≤ n
and k ≤ 54, from (3.5), we derive,

λk+1 ≤ 1
n − k + 1

{(n + 5)λ1 − k(k}. (3.11)

From Yang’s inequality (1.8), we have

λk+1 ≤
(

1 + 4
n

)
(k. (3.12)

Since the right hand side of (3.10) is a decreasing function of (k and the right
hand side of (3.11) is an increasing function of (k, for 1

n−k+1 {(n+5)λ1 −k(k} =(
1 + 4

n

)
(k, we infer

λk+1 ≤ 1

k
2
n

(
1 + 4(n + k + 4)

n2 + 5n − 4(k − 1)

)
k

2
n λ1

=
(

1 + a2(k, n)

n

)
k

2
n λ1. (3.13)

From the definition of a2(k) = max{a(n, k), k ≤ n ≤ 400}, when n ≤ 400, we
obtain

λk+1 ≤
(

1 + a2(k)

n

)
k

2
n λ1. (3.14)

When n > 400 holds, from (3.10), we have

λk+1 ≤
(

1 + 4
n − k

)
λ1.
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Since n > 400 and k ≤ 54, we know 2
n log k < 1

50 . Hence, we have

k− 2
n = e− 2

n log k = 1 − 2
n

log k + 1
2

(
2
n

log k
)2

− · · ·

≤ 1 − 2
n

log k + 1
2

(
2
n

log k
)2

.

Therefore, we obtain

(
1 + 4

n − k

)
k− 2

n ≤
(

1 + 4
n − k

) (

1 − 2
n

log k + 1
2

(
2
n

log k
)2

)

≤ 1 +

(
4/(1 − k

400 ) − 2 log k
)

n
.

Hence, we infer

λk+1 ≤
(

1 + 4
n − k

)
k− 2

n k
2
n λ1

≤



1 +

(
4/(1 − k

400 ) − 2 log k
)

n



 k
2
n λ1

=
(

1 + a3(k)

n

)
k

2
n λ1. (3.15)

By Table 1 of the values of a1(k), a2(k+1) and a3(k+1) which are calculated by
using Mathematica and are listed up in the next page, we have a1(1) ≤ a2(2) ≤
a3(2) = a(1) ≤ 2.64 and, for k ≥ 2,

a3(k + 1) ≤ a2(k + 1) ≤ a1(k).

Hence, a(k) = a1(k) for k ≥ 2. Further, for k ≥ 41, we know a(k) < 0. Hence,
for k ≥ 2, we derive

λk+1 ≤
(

1 + a(min{n, k − 1})
n

)
k

2
n λ1

and for n ≥ 41 and k ≥ 41, we have

λk+1 ≤ k
2
n λ1.
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Table 1 The values of a1(k), a2(k + 1) and a3(k + 1)

k 1 2 3 4 5 6 7 8 9 10

a1(k) ≤ 2.31 2.27 2.2 2.12 2.03 1.94 1.86 1.77 1.69 1.61
a2(k + 1) ≤ 2.62 2.05 2.00 1.96 1.90 1.84 1.77 1.70 1.63 1.56
a3(k + 1) ≤ 2.64 1.84 1.27 0.84 0.48 0.18 −0.07 −0.30 −0.50 −0.68

k 11 12 13 14 15 16 17 18 19 20
a1(k) ≤ 1.53 1.46 1.39 1.32 1.25 1.18 1.12 1.06 1.00 0.94
a2(k + 1) ≤ 1.49 1.42 1.35 1.29 1.22 1.16 1.10 1.04 0.98 0.92
a3(k + 1) ≤ −0.84 −0.99 −1.13 −1.26 −1.37 −1.48 −1.59 −1.68 −1.78 −1.86

k 21 22 23 24 25 26 27 28 29 30
a1(k) ≤ 0.89 0.83 0.78 0.72 0.67 0.62 0.58 0.53 0.48 0.44
a2(k + 1) ≤ 0.87 0.82 0.76 0.71 0.66 0.61 0.57 0.52 0.47 0.43
a3(k + 1) ≤ −1.94 −2.02 −2.10 −2.17 −2.23 −2.30 −2.36 −2.42 −2.47 −2.53

k 31 32 33 34 35 36 37 38 39 40 41
a1(k) ≤ 0.39 0.35 0.31 0.27 0.23 0.19 0.15 0.11 0.07 0.03 −0.00
a2(k + 1) ≤ 0.38 0.34 0.30 0.26 0.22 0.18 0.14 0.10 0.07 0.03 −0.01
a3(k + 1) ≤ −2.58 −2.63 −2.68 −2.72 −2.77 −2.81 −2.85 −2.89 −2.93 −2.97 −3.00

When k = 1, from the solution of the conjecture of Payne, Pólya and Weinberger
(cf. [3]), we know

λ2 ≤
j2n/2,1

j2n/2−1,1
λ1.

It is easy to check that, when k ≥ 3, by a simple calculation,

a(k) ≤ 2.2 − 4 log
(

1 + k − 3
50

)
.

This completes the proof of Theorem 3.1. ()

Remark 3.1 According to Theorem 3.1, we would like to propose that, for any
n ≥ 2, there exists a positive integer N(n) such that, if k ≥ N(n), then

λk+1 ≤ k
2
n λ1

is satisfied.
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Appendix: A proof of Yang’s inequality (1.7)

In this section, we shall give a proof of Yang’s inequality (1.7).
Proof of Yang’s inequality (1.7). Let uk be the orthonormal eigenfunction
corresponding to the kth eigenvalue λk, i.e. uk satisfies






$uk = −λkuk, in !

uk|∂! = 0,∫
! uiuj = δij.

(4.1)

Let x1, . . . , xn be the standard coordinate functions in Rn. For any fixed p =
1, . . . , n, putting g = xp and defining a trial function ϕi by

ϕi = gui −
k∑

j=1

aijuj, aij =
∫

!

guiuj = aji, (4.2)

we have
∫

!

ϕiuj = 0, for i, j = 1, . . . , k.

Letting

bij =
∫

!

uj∇g · ∇ui, (4.3)

from Green’s formula, we derive

λjaij =
∫

!

g(−$uj)ui =
∫

!

(−2uj∇ui · ∇g − guj$ui) = −2bij + λiaij,

namely,
2bij = (λi − λj)aij. (4.4)

By a simple calculation, we have

$ϕi = −λigui + 2∇g · ∇ui +
k∑

j=1

aijλjuj.

Hence, we infer
∫

!

|∇ϕi|2 = λi

∫

!

ϕ2
i − 2

∫

!

ϕi∇g · ∇ui.

On the other hand, from the definition of ϕi, (4.3) and (4.4), we derive
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−2
∫

!

ϕi∇g · ∇ui = −2
∫

!

g∇g · ui∇ui + 2
k∑

j=1

aij

∫

!

uj∇g · ∇ui

= 1 +
k∑

j=1

(λi − λj)a2
ij. (4.5)

From the Rayleigh–Ritz inequality, we obtained

(λk+1 − λi)

∫

!

ϕ2
i ≤ 1 +

k∑

j=1

(λi − λj)a2
ij. (4.6)

Multiplying (4.5) by (λk+1 −λi)
2 and then taking sum on i from 1 through k, we

obtain

k∑

i=1

(λk+1 − λi)
2 +

k∑

i,j=1

(λi − λj)(λk+1 − λi)
2a2

ij

= −2
k∑

i=1

(λk+1 − λi)
2
∫

!

ϕi∇g · ∇ui.

By the symmetry of aij and the anti-symmetry of bij, we have

−2
k∑

i=1

(λk+1 − λi)
2
∫

!

ϕi∇g · ∇ui

=
k∑

i=1

(λk+1 − λi)
2 − 4

k∑

i,j=1

(λk+1 − λi)b2
ij ≡ f . (4.7)

Similarly, multiplying (4.6) by (λk+1 − λi)
2 and taking sum on i from 1 through

k, we infer

k∑

i=1

(λk+1 − λi)
3
∫

!

ϕ2
i ≤

k∑

i=1

(λk+1 − λi)
2 − 4

k∑

i,j=1

(λk+1 − λi)b2
ij = f . (4.8)

Since
∫
! uiϕj = 0 for all i, j = 1, . . . , k, we have, for arbitrary constants dij,

f 2 =




−2
k∑

i=1

(λk+1 − λi)
2
∫

!

ϕi∇g · ∇ui






2
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≤ 4
k∑

i=1

∫

!

(λk+1 − λi)
3ϕ2

i

k∑

i=1

∫

!



(λk+1 − λi)
1/2∇g · ∇ui −

k∑

j=1

dijuj




2

≤ 4f
k∑

i=1

∫

!



(λk+1 − λi)|∇g · ∇ui|2

−2
k∑

j=1

dij(λk+1 − λi)
1/2uj∇g · ∇ui +




k∑

j=1

dijuj




2


 .

Then we have

f ≤ 4
k∑

i=1

∫

!

(λk+1 − λi)|∇pui|2 + 4



−2
k∑

i,j=1

dij(λk+1 − λi)
1/2bij +

k∑

i,j=1

d2
ij



 .

Putting dij = (λk+1 − λi)
1/2bij, we obtain

f ≤ 4
k∑

i=1

(λk+1 − λi)

∫

!

|∇pui|2 − 4
k∑

i,j=1

(λk+1 − λi)b2
ij.

From (4.7), we infer

k∑

i=1

(λk+1 − λi)
2 ≤ 4

k∑

i=1

(λk+1 − λi)

∫

!

|∇pui|2.

Taking sum on p from 1 through n, we obtain

n
k∑

i=1

(λk+1 − λi)
2 ≤ 4

k∑

i=1

(λk+1 − λi)

∫

!

|∇ui|2 = 4
k∑

i=1

(λk+1 − λi)λi.

()
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