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In this paper, we investigate eigenvalues of the Dirichlet eigenvalue
problem of Laplacian on a bounded domain §2 in an n-dimensional
complete Riemannian manifold M. When M is an n-dimensional
Euclidean space R", the conjecture of Pdlya is well known: the
kth eigenvalue Aj of the Dirichlet eigenvalue problem of Laplacian
satisfies

472
A = —zk%, fork=1,2,....
(wpvol 2)n

Li and Yau [P. Li, S.T. Yau, On the Schrddinger equation and the
eigenvalue problem, Comm. Math. Phys. 88 (1983) 309-318] (cf.
Lieb [E. Lieb, The number of bound states of one-body Schrddinger
operators and the Weyl problem, in: Proc. Sympos. Pure Math.,
vol. 36, 1980, pp. 241-252]) have given a partial solution for the
conjecture of Pélya, that is, they have proved

1 n 4772
—ZM} zk%, fork=1,2,...,
k= n+2 (w,vol 2)a

which is sharp in the sense of average. In this paper, we consider a
general setting for complete Riemannian manifolds. We establish
an analog of the Li and Yau’s inequality for eigenvalues of the
Dirichlet eigenvalue problem of Laplacian on a bounded domain
in a complete Riemannian manifold. Furthermore, we obtain a
universal inequality for eigenvalues of the Dirichlet eigenvalue
problem of Laplacian on a bounded domain in a hyperbolic
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space H"(—1). From it, we prove that when the bounded domain

2 tends to H"(—1), all eigenvalues tend to @.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let M be an n-dimensional complete Riemannian manifold. We consider the following Dirichlet
eigenvalue problem of Laplacian:

u=0, on 042, (1.1)

{ Au=—Au, ing2,
where £2 is a bounded domain in M with piecewise smooth boundary 92 and A denotes the Lapla-
cian on M. The eigenvalue problem (1.1) is also called a fixed membrane problem. It is well known
that the spectrum of this eigenvalue problem (1.1) is real and discrete.

D<At <Xy <A3< = 00,

where each A; has finite multiplicity which is repeated according to its multiplicity. Furthermore, the
following Weyl’s asymptotic formula holds (cf. [3]):

472
M~ —— ki, k= oo, (12)

2
(wpvol 2)n

where w, is the volume of the unit ball in R". From this asymptotic formula, it is not difficult to infer

1 4r?
o P ki, k- oo, (13)
= "2 (@pvol2)n

In particular, when M =R", Pélya [22] proved

4772 2
A =2 ————kn, fork=1,2,..., (1.4)

(wpvol 2)n
if £2 is a tiling domain in R" and he conjectured, for a general bounded domain,

Conjecture of Polya. If 2 is a bounded domain in R", then eigenvalue X, of the eigenvalue problem (1.1)
satisfies

4772
> —— ki, fork=1,2,.... (15)

= 2
(wpvol 2)n
On the conjecture of Pélya, Li and Yau [18] (cf. Lieb [16]) attacked it and obtained

1 n 472

SN > ki, fork=1,2,..., (16)
k= n+2 (g, vol 2)n
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by making use of the Fourier transform. It is sharp in the sense of average according to (1.3). From
this formula, we have

n 4772

_kn, fork=1,2,..., (17)
n+2 (g, vol 2)n

WV

k =

which gives a partial solution for the conjecture of Pélya with a factor %

On the other hand, for a complete Riemannian manifold M other than R", is it possible for one
to consider the same problem as the conjecture of P6lya? One of purposes in this paper is to study
this problem by making use of a recursion formula of Cheng and Yang [10] (see Section 2) and Nash’s
theorem: each complete Riemannian manifold can be isometrically immersed in a Euclidean space.

We prove the following:

Theorem 1.1. Let §2 be a bounded domain in an n-dimensional complete Riemannian manifold M. Then, there
exists a constant H(Z), which only depends on M and $2 such that eigenvalues X\;’s of the eigenvalue problem
(1.1) satisfy

k 2 4772

1 n n 2
-y A+ —HZ> ki, fork=1,2,.... (1.8)
ki; 40T /D E D (w,vol 2)7

Corollary 1.1. Let §2 be a domain in the n-dimensional unit sphere S"(1). Then, eigenvalues A;'s of the eigen-
value problem (1.1) satisfy

1< n® n 4772 2
=Y it ~kit, fork=1,2,.... (1.9)
k P 4 JIMm+2)n+4) (wn Vol £2)n

Corollary 1.2. Let §2 be a bounded domain in an n-dimensional complete minimal submanifold M in a Eu-
clidean space RN. Then, eigenvalues 1;’s of the eigenvalue problem (1.1) satisfy

k 2
1 4
—E AP & il 2k%, fork=1,2,.... (1.10)
k= v +2)n+4) (@, vol 2)n

From the above results, we can propose the following:

The generalized conjecture of Pélya. Let $2 be a bounded domain in an n-dimensional complete Riemannian
manifold M. Then, there exists a constant c(M, $§2), which only depends on M and $2 such that eigenvalues
Ai’s of the eigenvalue problem (1.1) satisfy

k 2
1 n 4
=Y ki eM,2) > ki, fork=1,2,.... (111)
ki3 n+2 (w,vol )7
4772 2
A+c(M, 2) > ———kn, fork=1,2,.... (1.12)
(wpvol 2)n

Remark 1.1. On the generalized conjecture of Pélya, we think that when M is the unit sphere S"(1),
c(M, 2) = %, when M is the hyperbolic space H"(—1), c(M, 2) = —@ and when M is a com-
plete minimal submanifold in RN, c¢(M, £2) = 0.
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Remark 1.2. Let 2 be a bounded domain in an n-dimensional complete Riemannian manifold M. We
can consider the so-called clamped plate problem:

A*u=Tru in $2,

ou (1.13)
upo=—| =0
|50
and the so-called buckling problem:
A%u=—AAu in $2,
ulpe=—| =0,
|50

where A? is the biharmonic operator on M and v denotes the unit outward normal vector on the
boundary 952 of £2.
For the clamped plate problem (1.13), it is not hard to prove

T > A,
by the variational principle. Hence, we derive, from Theorem 1.1,

4772

n
VI +2)M+4) (g, vol 2)7

2 2
2 n 2
I’k>{ kn—ZHO} , fork=1,2,....

In particular, when M is a minimal submanifold in a Euclidean space, we have

2 4
n 16
I, > 4k‘ﬁl, fork=1,2,...
m+2)(n+4) (wn Vol 2)7

(cf. [17] for the case of the Euclidean space).

For the buckling problem (1.14), we have Ay > A, by the variational principle. Hence, we can
obtain the lower bound for Aj’s similar to (1.8) and (1.10) from Theorem 1.1.

On universal estimates for eigenvalues of the clamped plate problem and the buckling problem,
the readers can see [5,7] and [9].

The other purpose in this paper is to investigate estimates for eigenvalues of the eigenvalue prob-
lem (1.1) when M is the hyperbolic space H"(—1) with constant curvature —1.

When M is R", universal inequalities for the eigenvalue A, of the eigenvalue problem (1.1) was
studied by many mathematicians. The main contributions was obtained by Payne, P6lya and Wein-
berger [20,21] (cf. [24]), Hile and Protter [15] and Yang [25] (cf. [10]). Namely, Payne, Pélya and
Weinberger [21] and Hile and Protter [15] proved, respectively,

k
4
Mot = e S e DA (115)
i=1
and
k
A kn
L > (1.16)
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Furthermore, Yang [25] (cf. [10]) has proved a sharp universal inequality:
k 4 k
DOt = 2)* < = Y it — A, (117)
i=1 i=1

which has been called the first inequality of Yang by Ashbaugh ([1] and [2] and so on).
For the Dirichlet eigenvalue problem of Laplacian on a domain in S"(1), Cheng and Yang [6] have
proved the following Yang-type inequality:

k k 2
D a1 — 1) < ﬂ2:(?%4 - Ki)(M + nz) (118)
i=1 g
which is optimal since the above inequality becomes an equality for any k when £ = S"(1).

When M is H"(—1), although many mathematicians want to derive a universal inequality for
eigenvalues, there are no any results on universal inequalities for eigenvalues of the eigenvalue prob-
lem (1.1) excepting n = 2. If n = 2, by making use of estimates for eigenvalues of the eigenvalue
problem of the Schrodinger like operator with a weight, Harrell and Michel [14] and Ashbaugh [2]
have obtained several results. In fact, if n = 2, the Laplacian on H?(—1) is like to the Laplacian on R?
with a weight (see a formula (3.1)). But, when n > 2, this property does not hold again. For a bounded
domain in H"(—1), main reason that one could not derive a universal inequality, is that one cannot
find an appropriate trial function. It is our purpose to give a universal inequality for eigenvalues of
the eigenvalue problem (1.1) when M is the hyperbolic space H"(—1).

Theorem 1.2. For a bounded domain $2 in H"(—1), eigenvalues A;’s of the eigenvalue problem (1.1) satisfy

k k (n—1)2
Y Cepr = )? <4 Oy —m(xi - T) (119)
i=1 i=1

Let 2 be an n-disk of radius r > 0 in H"(—1). McKean [19] (cf. [3] and [12]) has proved that the
first eigenvalue A1(r) of the eigenvalue problem (1.1) satisfies

—1)2
)»l(r)>¥,
N2
,g&xmozgjgl. (1.20)

From the domain monotonicity of eigenvalues, we have, for any bounded domain £ in H"(-1),

(n—1)2
ME2) 2 ———,
1(£2) )
. (n—1)°
I M(R2) = —— 1.21
o lim | A(2) 1 (1.21)

where 2 — H"(—1) means that £2 includes an n-disk of radius r > 0 and r — oo. It is obvious that,
for any k > 1,

(n—1)°

M(§2) > M (82) = —
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It is important to study the behaviors of A, (£2), for k > 2, when £2 tends to H"(—1). By making use
of the recursion formula of Cheng and Yang [10] (see Section 2) and the universal inequality (1.19) in

Theorem 1.2, we prove that all eigenvalues tend to @ if £ tends to H"(—1).

Corollary 1.3. Let 2 be a bounded domain in H"(—1). Then, the eigenvalue A, (£2) of the eigenvalue problem
(1.1) satisfies

lim A(Q)—(n_l)z
QoHn—y KT T

2. Lower bounds for eigenvalues

In this section, we will give a proof of Theorem 1.1. In order to prove Theorem 1.1, the following
recursion formula of Cheng and Yang [10] plays an important role.

Theorem 2.1. Let 1 < pup < -+ - < Ukr1 be any non-negative real numbers satisfying

k k
4
D (esr — i) < . D Wit — 40)- (2.1)
i=1 i=1

Define

Then, we have

k+1\1
F](+]<C(tvl<)( k ) Fk7 (23)

where t is any positive real number and

1( k )‘f‘(l+%><1+%)

Cltk)y=1——
¢k 3t \k+1 k+1)3

Proof of Theorem 1.1. Since M is a complete Riemannian manifold, from Nash’s theorem, we know
that M can be isometrically immersed into a Euclidean space RV, that is, there exists an isometric
immersion:

¢:M— RV,

We denote mean curvature of the immersion ¢ by |H|. Thus, M can be seen as a complete submani-
fold isometrically immersed into RY. From Theorem 1.1 in [4] (cf. [13] and [11]), we have

k k 2

4 n
E (M1 — 2% < " E (Ak1 — ?»i)<?»i + ) S}lzp |H|2>- (2.4)
i1 i=1
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Since eigenvalues are invariants of isometries, we know that the above inequality holds for any iso-
metric immersion from M into a Euclidean space. We define

@ = {¢; @ is anisometric immersion from M into a Euclidean space}.
Putting

H(z): inf sup|H|2,
ped

from the formula (2.4), we infer

k k 2
4 n
D Cuepr = 2)* < 2 ) Chkpr = 2) (Ai + ZH%). (2.5)
i=1 i=1
Letting i = Aj + %Hz, we have
Z(Mm i) Z(Mk+1 J40) L. (2.6)

From Theorem 2.1 with t =n of Cheng and Yang [10], we have

4
k+1 k+1\7
Fiy1 < C(n, k)( P > Fk<( . ) Fy.

Therefore, we infer

Fi1 < ﬂ

(k + 1)n kn

For any positive integers | and k, we have

F F
k+1 _ < _‘l:. (2.7)
(k+Dn  kn

From Weyl’s asymptotic formula (1.2)

)»l 4772

=00 l% 12 % ’
(wn vol £2)
by making use of an elementary computation, we infer

it M _n 4m?
>oo |k n+2 (g, vol 2)7

and

Y0 on 1674
l>o0 & n+4 (@, vol 2)i
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Hence, we obtain, from the definitions of Fy and wu;,

lim Fk—H _ 2n 167‘(4
> (ki (M+2)M+4) (4, vol 2)n

According to (2.7), we have, for any positive integer k,

2n 1674
- -
ki (M+2)(+4) (o, vol 2)n

|

Since

2 2
Fi= (1 + E)Gk Z(u, Go® < =G,

we derive

2GE _ Fy 2n 1674
— 25 2 e
Nkn  kn @+2)0+4) (4, vol 2)n

Thus, we have proved, from the definition of w;,

n 2 4r? 2
_Z)‘H' skn, fork=1,2,....
= 4 «/(n+2)(n+4 (wn vol.Q)n

This finishes the proof of Theorem 1.1. O

Proof of Corollary 1.1. Since S"(1) can be seen as a compact hypersurface in R"*! with the mean
curvature 1, from Theorem 1.1, we have the inequality (1.9). O

Proof of Corollary 1.2. Since M is a complete minimal submanifold in RV, the mean curvature |H| =
From Theorem 1.1, we have the inequality (1.10). O

Proposition 2.1. Let £2 be a domain in the n-dimensional complex projective space CP" (4) of the holomorphic
sectional curvature 1. Then, eigenvalues A;’s of the eigenvalue problem (1.1) satisfy

k 2
1 n 4 1
- Ait+2nn+1) > kn, fork=1,2,.... (2.8)
k ; ’ VDO +2) (s vol 2)7

Proof. From the formula (3.21) in Cheng and Yang [8], we infer that the eigenvalues of the eigenvalue
problem (1.1) satisfy

k k
2
i§=]ﬁ<xk+l —1)* < - > s — A (A 420 + 1)). (2.9)

i=1

From Weyl’'s asymptotic formula and the same proof as in Theorem 1.1, we can prove Proposi-
tion 2.1. O
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3. Universal inequality for eigenvalues

In this section, we will give a proof of Theorem 1.2. For convenience, we will use the upper half-
plane model of the hyperbolic space, that is,

H'(—1) ={X=(x1.X2,....%2) €R"; x, >0}
with the standard metric

_ (@x1)? + (dx2)? + - + (dxn)?

Xi

ds?

In this case, by a simple computation, we have the Laplacian on H"(—1)

82 )
A=x2 2 — )Xy —-. 3.1
”;axjaxj RS (-1

From the above formula, we have the following lemma:
Lemma 3.1. Defining fi =x;,fori=1,2,...,n—1, fy = % and f = logxy,, then we have

Afi=0, fori=1,2,...,n—1,

Afn :nfnv
Af=1-n. (3.2)
We define a function
n
i = fui— Yy ajuj,
j=1

with a;; = [, fujuj, where u; is the eigenfunction corresponding to the eigenvalue %; such that
{ui}ieny becomes an orthonormal basis of L2(£2). It is easy to check

¢i=0 onas2, /(p,-uj:O, forj=1,2,...,k.

Hence, ¢; is a trial function. By making use of the Rayleigh-Ritz inequality and the standard assertion
on estimates for eigenvalues, we may have the following theorem which has been proved by Cheng
and Yang [8]:

Theorem CY. Let A; be the ith eigenvalue of the Dirichlet eigenvalue problem on an n-dimensional compact
Riemannian manifold 2 = 2 U 952 with boundary 952 and u; be the orthonormal eigenfunction correspond-
ing to A;. Then, for any function f € C?(£2) N C'(3£2) and any integer k, we have

k

k
D O = 2wV FIP <Y Cier = DIV F - Vi + u Af|2,
i=1 i=1

where || fI|2 = [}, f2and V f - Vu;j = g(V f, Vu;).
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Proof of Theorem 1.2. Let u; be the eigenfunction corresponding to the eigenvalue X; such that
{uj}ien becomes an orthonormal basis of L2(£2). Put f = logx,. Since H"(—1) is complete and 2
is a bounded domain, we know that £2 is a compact Riemannian manifold with boundary. From The-
orem CY of Cheng and Yang, we infer

k k
D 01 = AV FIP <Y CGier = M2V - Vg + A f .
i=1 i=1
It is not difficult to prove that |V f|2 = 1. Thus, we have
luiVfI? =1,

and

12V f - Vu; + uiAf |2 =4/(Vf'Vui)2 +4/Vf : Vui<u,-Af>+/(uiAf>2
2 2 2
:4[(Vf-Vu,-)2+4(l —n)/uin-Vui+(n—1)2,
2 2

according to Lemma 3.1. Since

/uivf‘vui=—/uivf'vui —/(ui)zAf,

2 2 2

we have

n—1

fuin-Vui: 5

2

From the Cauchy-Schwarz inequality, we have
(Vf - Vup? < V1P| Vuil? = | Vil
Hence, we infer
12V f - Vui +ui A1 <4 Vuil? = (1= D? =43 — (n — D).

Therefore, we obtain

k k

Eakﬂ — 1)’ <4 E(Akﬂ — ) (Ai - g)

This finishes the proof of Theorem 1.2. O

Proof of Corollary 1.3. From Theorem 1.2 and putting u; = Aj — (”_41)2 > 0, we have

k k
Z(MkH — wi)* < 4Z(Mk+l — M) i
i=1 i=1
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Thus, Theorem 2.1 holds with t = 1. By making use of the recursion formula in Section 2, we have
Mk+1 S 5](2;/4

(cf. Cheng and Yang [10]). Since w1 — 0 when £ — H"(—1) from (1.21), we have, for a fixed k,

lim Mk+1 = O,

2-—HY(-1)
namely,
, n—1)>
lim Ay = !
Q—>HY(-1) 4

This completes the proof of Corollary 1.3. O

4. Aremark on a conjecture of Yau

For a compact Riemann surface Mg with genus g, we can consider a closed eigenvalue problem:
Au = —Au.
By making use of branched conformal maps from M; to S2(1), Yang and Yau [26] proved

8t (14 92)
1S o -
Area(Myg)

Furthermore, Yau conjectured the following (see [23]):

Conjecture of Yau. For a Riemann surface Mg with genus g, there is an absolute constant ¢ such that for any
metric on Mg,

Ak < c1+g)
k ~ Area(Myg)

From Nash’s theorem, we know that My with a metric can be isometrically immersed into a
Euclidean space RN. By the same proof as in Chen and Cheng [4] and using the recursion formula
of Cheng and Yang [10], we infer

247 (14 2)

3HZ,
Area(Mg)

M <30+ HE) <

where Ho only depends on the Mg.
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