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In this paper, we investigate eigenvalues of the Dirichlet eigenvalue
problem of Laplacian on a bounded domain Ω in an n-dimensional
complete Riemannian manifold M . When M is an n-dimensional
Euclidean space Rn , the conjecture of Pólya is well known: the
kth eigenvalue λk of the Dirichlet eigenvalue problem of Laplacian
satisfies

λk � 4π2

(ωn vol Ω)
2
n

k
2
n , for k = 1,2, . . . .

Li and Yau [P. Li, S.T. Yau, On the Schrödinger equation and the
eigenvalue problem, Comm. Math. Phys. 88 (1983) 309–318] (cf.
Lieb [E. Lieb, The number of bound states of one-body Schrödinger
operators and the Weyl problem, in: Proc. Sympos. Pure Math.,
vol. 36, 1980, pp. 241–252]) have given a partial solution for the
conjecture of Pólya, that is, they have proved

1

k

k∑
i=1

λi � n

n + 2

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . ,

which is sharp in the sense of average. In this paper, we consider a
general setting for complete Riemannian manifolds. We establish
an analog of the Li and Yau’s inequality for eigenvalues of the
Dirichlet eigenvalue problem of Laplacian on a bounded domain
in a complete Riemannian manifold. Furthermore, we obtain a
universal inequality for eigenvalues of the Dirichlet eigenvalue
problem of Laplacian on a bounded domain in a hyperbolic

* Corresponding author.
E-mail addresses: cheng@ms.saga-u.ac.jp (Q.-M. Cheng), yanghc2@netease.com (H. Yang).

1 Research partially supported by a Grant-in-Aid for Scientific Research from the JSPS.
2 Research partially supported by Chinese NSF, SF of CAS.

0022-0396/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2009.07.015



Author's personal copy

Q.-M. Cheng, H. Yang / J. Differential Equations 247 (2009) 2270–2281 2271

space Hn(−1). From it, we prove that when the bounded domain

Ω tends to Hn(−1), all eigenvalues tend to (n−1)2

4 .
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let M be an n-dimensional complete Riemannian manifold. We consider the following Dirichlet
eigenvalue problem of Laplacian:

{
�u = −λu, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a bounded domain in M with piecewise smooth boundary ∂Ω and � denotes the Lapla-
cian on M . The eigenvalue problem (1.1) is also called a fixed membrane problem. It is well known
that the spectrum of this eigenvalue problem (1.1) is real and discrete.

0 < λ1 < λ2 � λ3 � · · · → ∞,

where each λi has finite multiplicity which is repeated according to its multiplicity. Furthermore, the
following Weyl’s asymptotic formula holds (cf. [3]):

λk ∼ 4π2

(ωn volΩ)
2
n

k
2
n , k → ∞, (1.2)

where ωn is the volume of the unit ball in Rn . From this asymptotic formula, it is not difficult to infer

1

k

k∑
i=1

λi ∼ n

n + 2

4π2

(ωn volΩ)
2
n

k
2
n , k → ∞. (1.3)

In particular, when M = Rn , Pólya [22] proved

λk � 4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . , (1.4)

if Ω is a tiling domain in Rn and he conjectured, for a general bounded domain,

Conjecture of Pólya. If Ω is a bounded domain in Rn, then eigenvalue λk of the eigenvalue problem (1.1)
satisfies

λk � 4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . . (1.5)

On the conjecture of Pólya, Li and Yau [18] (cf. Lieb [16]) attacked it and obtained

1

k

k∑
i=1

λi � n

n + 2

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . , (1.6)
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by making use of the Fourier transform. It is sharp in the sense of average according to (1.3). From
this formula, we have

λk � n

n + 2

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . , (1.7)

which gives a partial solution for the conjecture of Pólya with a factor n
n+2 .

On the other hand, for a complete Riemannian manifold M other than Rn , is it possible for one
to consider the same problem as the conjecture of Pólya? One of purposes in this paper is to study
this problem by making use of a recursion formula of Cheng and Yang [10] (see Section 2) and Nash’s
theorem: each complete Riemannian manifold can be isometrically immersed in a Euclidean space.
We prove the following:

Theorem 1.1. Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M. Then, there
exists a constant H2

0 , which only depends on M and Ω such that eigenvalues λi ’s of the eigenvalue problem
(1.1) satisfy

1

k

k∑
i=1

λi + n2

4
H2

0 � n√
(n + 2)(n + 4)

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . . (1.8)

Corollary 1.1. Let Ω be a domain in the n-dimensional unit sphere Sn(1). Then, eigenvalues λi ’s of the eigen-
value problem (1.1) satisfy

1

k

k∑
i=1

λi + n2

4
� n√

(n + 2)(n + 4)

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . . (1.9)

Corollary 1.2. Let Ω be a bounded domain in an n-dimensional complete minimal submanifold M in a Eu-
clidean space RN . Then, eigenvalues λi ’s of the eigenvalue problem (1.1) satisfy

1

k

k∑
i=1

λi � n√
(n + 2)(n + 4)

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . . (1.10)

From the above results, we can propose the following:

The generalized conjecture of Pólya. Let Ω be a bounded domain in an n-dimensional complete Riemannian
manifold M. Then, there exists a constant c(M,Ω), which only depends on M and Ω such that eigenvalues
λi ’s of the eigenvalue problem (1.1) satisfy

1

k

k∑
i=1

λi + c(M,Ω) � n

n + 2

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . , (1.11)

λk + c(M,Ω) � 4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . . (1.12)

Remark 1.1. On the generalized conjecture of Pólya, we think that when M is the unit sphere Sn(1),

c(M,Ω) = n2

4 , when M is the hyperbolic space Hn(−1), c(M,Ω) = − (n−1)2

4 and when M is a com-
plete minimal submanifold in RN , c(M,Ω) = 0.
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Remark 1.2. Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M . We
can consider the so-called clamped plate problem:

⎧⎨
⎩

�2u = Γ u in Ω,

u|∂Ω = ∂u

∂ν

∣∣∣∣
∂Ω

= 0
(1.13)

and the so-called buckling problem:

⎧⎨
⎩

�2u = −Λ�u in Ω,

u|∂Ω = ∂u

∂ν

∣∣∣∣
∂Ω

= 0,
(1.14)

where �2 is the biharmonic operator on M and ν denotes the unit outward normal vector on the
boundary ∂Ω of Ω .

For the clamped plate problem (1.13), it is not hard to prove

Γk � λ2
k ,

by the variational principle. Hence, we derive, from Theorem 1.1,

Γk �
{

n√
(n + 2)(n + 4)

4π2

(ωn volΩ)
2
n

k
2
n − n2

4
H2

0

}2

, for k = 1,2, . . . .

In particular, when M is a minimal submanifold in a Euclidean space, we have

Γk � n2

(n + 2)(n + 4)

16π4

(ωn volΩ)
4
n

k
4
n , for k = 1,2, . . .

(cf. [17] for the case of the Euclidean space).
For the buckling problem (1.14), we have Λk � λk by the variational principle. Hence, we can

obtain the lower bound for Λk ’s similar to (1.8) and (1.10) from Theorem 1.1.
On universal estimates for eigenvalues of the clamped plate problem and the buckling problem,

the readers can see [5,7] and [9].

The other purpose in this paper is to investigate estimates for eigenvalues of the eigenvalue prob-
lem (1.1) when M is the hyperbolic space Hn(−1) with constant curvature −1.

When M is Rn , universal inequalities for the eigenvalue λk of the eigenvalue problem (1.1) was
studied by many mathematicians. The main contributions was obtained by Payne, Pólya and Wein-
berger [20,21] (cf. [24]), Hile and Protter [15] and Yang [25] (cf. [10]). Namely, Payne, Pólya and
Weinberger [21] and Hile and Protter [15] proved, respectively,

λk+1 − λk � 4

nk

k∑
i=1

λi (1.15)

and

k∑
i=1

λi

λk+1 − λi
� kn

4
. (1.16)
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Furthermore, Yang [25] (cf. [10]) has proved a sharp universal inequality:

k∑
i=1

(λk+1 − λi)
2 � 4

n

k∑
i=1

λi(λk+1 − λi), (1.17)

which has been called the first inequality of Yang by Ashbaugh ([1] and [2] and so on).
For the Dirichlet eigenvalue problem of Laplacian on a domain in Sn(1), Cheng and Yang [6] have

proved the following Yang-type inequality:

k∑
i=1

(λk+1 − λi)
2 � 4

n

k∑
i=1

(λk+1 − λi)

(
λi + n2

4

)
, (1.18)

which is optimal since the above inequality becomes an equality for any k when Ω = Sn(1).
When M is Hn(−1), although many mathematicians want to derive a universal inequality for

eigenvalues, there are no any results on universal inequalities for eigenvalues of the eigenvalue prob-
lem (1.1) excepting n = 2. If n = 2, by making use of estimates for eigenvalues of the eigenvalue
problem of the Schrödinger like operator with a weight, Harrell and Michel [14] and Ashbaugh [2]
have obtained several results. In fact, if n = 2, the Laplacian on H2(−1) is like to the Laplacian on R2

with a weight (see a formula (3.1)). But, when n > 2, this property does not hold again. For a bounded
domain in Hn(−1), main reason that one could not derive a universal inequality, is that one cannot
find an appropriate trial function. It is our purpose to give a universal inequality for eigenvalues of
the eigenvalue problem (1.1) when M is the hyperbolic space Hn(−1).

Theorem 1.2. For a bounded domain Ω in Hn(−1), eigenvalues λi ’s of the eigenvalue problem (1.1) satisfy

k∑
i=1

(λk+1 − λi)
2 � 4

k∑
i=1

(λk+1 − λi)

(
λi − (n − 1)2

4

)
. (1.19)

Let Ω be an n-disk of radius r > 0 in Hn(−1). McKean [19] (cf. [3] and [12]) has proved that the
first eigenvalue λ1(r) of the eigenvalue problem (1.1) satisfies

λ1(r) � (n − 1)2

4
,

lim
r→∞λ1(r) = (n − 1)2

4
. (1.20)

From the domain monotonicity of eigenvalues, we have, for any bounded domain Ω in Hn(−1),

λ1(Ω) � (n − 1)2

4
,

lim
Ω→Hn(−1)

λ1(Ω) = (n − 1)2

4
, (1.21)

where Ω → Hn(−1) means that Ω includes an n-disk of radius r > 0 and r → ∞. It is obvious that,
for any k > 1,

λk(Ω) > λ1(Ω) � (n − 1)2

4
.
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It is important to study the behaviors of λk(Ω), for k � 2, when Ω tends to Hn(−1). By making use
of the recursion formula of Cheng and Yang [10] (see Section 2) and the universal inequality (1.19) in

Theorem 1.2, we prove that all eigenvalues tend to (n−1)2

4 if Ω tends to Hn(−1).

Corollary 1.3. Let Ω be a bounded domain in Hn(−1). Then, the eigenvalue λk(Ω) of the eigenvalue problem
(1.1) satisfies

lim
Ω→Hn(−1)

λk(Ω) = (n − 1)2

4
.

2. Lower bounds for eigenvalues

In this section, we will give a proof of Theorem 1.1. In order to prove Theorem 1.1, the following
recursion formula of Cheng and Yang [10] plays an important role.

Theorem 2.1. Let μ1 � μ2 � · · · � μk+1 be any non-negative real numbers satisfying

k∑
i=1

(μk+1 − μi)
2 � 4

t

k∑
i=1

μi(μk+1 − μi). (2.1)

Define

Gk = 1

k

k∑
i=1

μi, Tk = 1

k

k∑
i=1

μ2
i , Fk =

(
1 + 2

t

)
G2

k − Tk. (2.2)

Then, we have

Fk+1 � C(t,k)

(
k + 1

k

) 4
t

Fk, (2.3)

where t is any positive real number and

C(t,k) = 1 − 1

3t

(
k

k + 1

) 4
t (1 + 2

t )(1 + 4
t )

(k + 1)3
< 1.

Proof of Theorem 1.1. Since M is a complete Riemannian manifold, from Nash’s theorem, we know
that M can be isometrically immersed into a Euclidean space RN , that is, there exists an isometric
immersion:

ϕ : M → RN .

We denote mean curvature of the immersion ϕ by |H|. Thus, M can be seen as a complete submani-
fold isometrically immersed into RN . From Theorem 1.1 in [4] (cf. [13] and [11]), we have

k∑
i=1

(λk+1 − λi)
2 � 4

n

k∑
i=1

(λk+1 − λi)

(
λi + n2

4
sup
Ω

|H|2
)

. (2.4)
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Since eigenvalues are invariants of isometries, we know that the above inequality holds for any iso-
metric immersion from M into a Euclidean space. We define

Φ = {ϕ; ϕ is an isometric immersion from M into a Euclidean space}.
Putting

H2
0 = inf

ϕ∈Φ
sup
Ω

|H|2,

from the formula (2.4), we infer

k∑
i=1

(λk+1 − λi)
2 � 4

n

k∑
i=1

(λk+1 − λi)

(
λi + n2

4
H2

0

)
. (2.5)

Letting μi = λi + n2

4 H2
0, we have

k∑
i=1

(μk+1 − μi)
2 � 4

n

k∑
i=1

(μk+1 − μi)μi . (2.6)

From Theorem 2.1 with t = n of Cheng and Yang [10], we have

Fk+1 � C(n,k)

(
k + 1

k

) 4
n

Fk �
(

k + 1

k

) 4
n

Fk.

Therefore, we infer

Fk+1

(k + 1)
4
n

� Fk

k
4
n

.

For any positive integers l and k, we have

Fk+l

(k + l)
4
n

� Fk

k
4
n

. (2.7)

From Weyl’s asymptotic formula (1.2)

lim
l→∞

λl

l
2
n

= 4π2

(ωn volΩ)
2
n

,

by making use of an elementary computation, we infer

lim
l→∞

1
l

∑l
i=1 λi

l
2
n

= n

n + 2

4π2

(ωn volΩ)
2
n

and

lim
l→∞

1
l

∑l
i=1 λ2

i

l
4
n

= n

n + 4

16π4

(ωn vol Ω)
4
n

.
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Hence, we obtain, from the definitions of Fk and μi ,

lim
l→∞

Fk+l

(k + l)
4
n

= 2n

(n + 2)(n + 4)

16π4

(ωn volΩ)
4
n

.

According to (2.7), we have, for any positive integer k,

Fk

k
4
n

� 2n

(n + 2)(n + 4)

16π4

(ωn vol Ω)
4
n

.

Since

Fk =
(

1 + 2

n

)
G2

k − Tk = 2

n
G2

k − 1

k

k∑
i=1

(μi − Gk)
2 � 2

n
G2

k ,

we derive

2

n

G2
k

k
4
n

� Fk

k
4
n

� 2n

(n + 2)(n + 4)

16π4

(ωn volΩ)
4
n

.

Thus, we have proved, from the definition of μi ,

1

k

k∑
i=1

λi + n2

4
H2

0 � n√
(n + 2)(n + 4)

4π2

(ωn volΩ)
2
n

k
2
n , for k = 1,2, . . . .

This finishes the proof of Theorem 1.1. �
Proof of Corollary 1.1. Since Sn(1) can be seen as a compact hypersurface in Rn+1 with the mean
curvature 1, from Theorem 1.1, we have the inequality (1.9). �
Proof of Corollary 1.2. Since M is a complete minimal submanifold in RN , the mean curvature |H| = 0.
From Theorem 1.1, we have the inequality (1.10). �
Proposition 2.1. Let Ω be a domain in the n-dimensional complex projective space CPn(4) of the holomorphic
sectional curvature 1. Then, eigenvalues λi ’s of the eigenvalue problem (1.1) satisfy

1

k

k∑
i=1

λi + 2n(n + 1) � n√
(n + 1)(n + 2)

4π2

(ω2n volΩ)
1
n

k
1
n , for k = 1,2, . . . . (2.8)

Proof. From the formula (3.21) in Cheng and Yang [8], we infer that the eigenvalues of the eigenvalue
problem (1.1) satisfy

k∑
i=1

(λk+1 − λi)
2 � 2

n

k∑
i=1

(λk+1 − λi)
(
λi + 2n(n + 1)

)
. (2.9)

From Weyl’s asymptotic formula and the same proof as in Theorem 1.1, we can prove Proposi-
tion 2.1. �
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3. Universal inequality for eigenvalues

In this section, we will give a proof of Theorem 1.2. For convenience, we will use the upper half-
plane model of the hyperbolic space, that is,

Hn(−1) = {�x = (x1, x2, . . . , xn) ∈ Rn; xn > 0
}

with the standard metric

ds2 = (dx1)
2 + (dx2)

2 + · · · + (dxn)
2

x2
n

.

In this case, by a simple computation, we have the Laplacian on Hn(−1)

� = x2
n

n∑
j=1

∂2

∂x j∂x j
+ (2 − n)xn

∂

∂xn
. (3.1)

From the above formula, we have the following lemma:

Lemma 3.1. Defining fi = xi , for i = 1,2, . . . ,n − 1, fn = 1
xn

and f = log xn, then we have

� f i = 0, for i = 1,2, . . . ,n − 1,

� fn = nfn,

� f = 1 − n. (3.2)

We define a function

ϕi = f ui −
n∑

j=1

aiju j,

with aij = ∫
Ω

f uiu j , where ui is the eigenfunction corresponding to the eigenvalue λi such that
{ui}i∈N becomes an orthonormal basis of L2(Ω). It is easy to check

ϕi = 0 on ∂Ω,

∫
ϕiu j = 0, for j = 1,2, . . . ,k.

Hence, ϕi is a trial function. By making use of the Rayleigh–Ritz inequality and the standard assertion
on estimates for eigenvalues, we may have the following theorem which has been proved by Cheng
and Yang [8]:

Theorem CY. Let λi be the ith eigenvalue of the Dirichlet eigenvalue problem on an n-dimensional compact
Riemannian manifold Ω̄ = Ω ∪ ∂Ω with boundary ∂Ω and ui be the orthonormal eigenfunction correspond-
ing to λi . Then, for any function f ∈ C2(Ω) ∩ C1(∂Ω) and any integer k, we have

k∑
i=1

(λk+1 − λi)
2‖ui∇ f ‖2 �

k∑
i=1

(λk+1 − λi)‖2∇ f · ∇ui + ui� f ‖2,

where ‖ f ‖2 = ∫
M f 2 and ∇ f · ∇ui = g(∇ f ,∇ui).
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Proof of Theorem 1.2. Let ui be the eigenfunction corresponding to the eigenvalue λi such that
{ui}i∈N becomes an orthonormal basis of L2(Ω). Put f = log xn . Since Hn(−1) is complete and Ω

is a bounded domain, we know that Ω̄ is a compact Riemannian manifold with boundary. From The-
orem CY of Cheng and Yang, we infer

k∑
i=1

(λk+1 − λi)
2‖ui∇ f ‖2 �

k∑
i=1

(λk+1 − λi)‖2∇ f · ∇ui + ui� f ‖2.

It is not difficult to prove that |∇ f |2 = 1. Thus, we have

‖ui∇ f ‖2 = 1,

and

‖2∇ f · ∇ui + ui� f ‖2 = 4
∫
Ω

(∇ f · ∇ui)
2 + 4

∫
Ω

∇ f · ∇ui(ui� f ) +
∫
Ω

(ui� f )2

= 4
∫
Ω

(∇ f · ∇ui)
2 + 4(1 − n)

∫
Ω

ui∇ f · ∇ui + (n − 1)2,

according to Lemma 3.1. Since

∫
Ω

ui∇ f · ∇ui = −
∫
Ω

ui∇ f · ∇ui −
∫
Ω

(ui)
2� f ,

we have
∫
Ω

ui∇ f · ∇ui = n − 1

2
.

From the Cauchy–Schwarz inequality, we have

(∇ f · ∇ui)
2 � |∇ f |2|∇ui |2 = |∇ui |2.

Hence, we infer

‖2∇ f · ∇ui + ui� f ‖2 � 4‖∇ui‖2 − (n − 1)2 = 4λi − (n − 1)2.

Therefore, we obtain

k∑
i=1

(λk+1 − λi)
2 � 4

k∑
i=1

(λk+1 − λi)

(
λi − (n − 1)2

4

)
.

This finishes the proof of Theorem 1.2. �
Proof of Corollary 1.3. From Theorem 1.2 and putting μi = λi − (n−1)2

4 � 0, we have

k∑
i=1

(μk+1 − μi)
2 � 4

k∑
i=1

(μk+1 − μi)μi .



Author's personal copy

2280 Q.-M. Cheng, H. Yang / J. Differential Equations 247 (2009) 2270–2281

Thus, Theorem 2.1 holds with t = 1. By making use of the recursion formula in Section 2, we have

μk+1 � 5k2μ1

(cf. Cheng and Yang [10]). Since μ1 → 0 when Ω → Hn(−1) from (1.21), we have, for a fixed k,

lim
Ω→Hn(−1)

μk+1 = 0,

namely,

lim
Ω→Hn(−1)

λk+1 = (n − 1)2

4
.

This completes the proof of Corollary 1.3. �
4. A remark on a conjecture of Yau

For a compact Riemann surface Mg with genus g , we can consider a closed eigenvalue problem:

�u = −λu.

By making use of branched conformal maps from Mg to S2(1), Yang and Yau [26] proved

λ1 � 8π(1 + g)

Area(Mg)
.

Furthermore, Yau conjectured the following (see [23]):

Conjecture of Yau. For a Riemann surface M g with genus g, there is an absolute constant c such that for any
metric on Mg ,

λk

k
� c(1 + g)

Area(Mg)
.

From Nash’s theorem, we know that Mg with a metric can be isometrically immersed into a
Euclidean space RN . By the same proof as in Chen and Cheng [4] and using the recursion formula
of Cheng and Yang [10], we infer

λk

k
� 3

(
λ1 + H2

0

)
� 24π(1 + g)

Area(Mg)
+ 3H2

0,

where H0 only depends on the Mg .
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