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ABSTRACT. In this paper, we investigate universal inequalities for eigenvalues
of a clamped plate problem on a bounded domain in an n-dimensional hyper-
bolic space. It is well known that, for a bounded domain in the n-dimensional
Euclidean space, Payne, Pélya and Weinberger (1955), Hook (1990) and Chen
and Qian (1990) studied universal inequalities for eigenvalues of the clamped
plate problem. Recently, Cheng and Yang (2006) have derived the Yang-
type universal inequality for eigenvalues of the clamped plate problem on a
bounded domain in the n-dimensional Euclidean space, which is sharper than
the other ones. For a domain in a unit sphere, Wang and Xia (2007) have also
given a universal inequality for eigenvalues. For a bounded domain in the n-
dimensional hyperbolic space, although many mathematicians want to obtain
a universal inequality for eigenvalues of the clamped plate problem, there are
no results on universal inequalities for eigenvalues. The main reason that one
could not derive a universal inequality is that one cannot find appropriate trial
functions. In this paper, by constructing “nice” trial functions, we obtain a
universal inequality for eigenvalues of the clamped plate problem on a bounded
domain in the hyperbolic space. Furthermore, we can prove that if the first
(";61)4 when the domain

(n—1)*
6 -

eigenvalue of the clamped plate problem tends to

tends to the hyperbolic space, then all of the eigenvalues tend to

1. INTRODUCTION

Let M and D denote an n-dimensional complete Riemannian manifold and a
bounded domain with boundary 0D in M, respectively. We consider the Dirichlet
eigenvalue problem of the biharmonic operator, the so-called clamped plate problem,
which describes vibrations of a clamped plate:

A%y =Tu, in D,
(1.1) Ou

u|aD = a_ = Oa
v
oD
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462 QING-MING CHENG AND HONGCANG YANG

0
where A2 is the biharmonic operator in M and % denotes the outward normal
v

derivative on 9D.
When M = R”, for the clamped plate problem, Payne, Pélya and Weinberger
[14] and [15] established a universal inequality for eigenvalues. They obtained

2)
(1.2) Dpyr —Tp < ”+ Zr

Hile and Yeh [I0] improved the above result to

k 1/2 21.3/2 k -1/
I, n°k
(1.3) Z T, Z R’ 1 2) (ZF’) '

I
—1 kL i—1

Furthermore, Hook [I1] and Chen and Qian [3] proved the following inequality:

1/2
/2
o ey * [ "

Ashbaugh in [I] has pointed out whether one can establish inequalities for eigen-
values of the clamped plate problem which are analogs of the inequalities of Yang
for eigenvalues of the Dirichlet eigenvalue problem of the Laplacian. In [6], Cheng
and Yang have solved the problem of Ashbaugh affirmatively; that is, they have
proved the following:

k 1/2 , k
1 8(n+2)1"%1
(1.5) P — ¢ ;:1: I < {T} T ?:1: {Fi(rk-&-l - Fi)]

By making use of Chebyshev’s inequality, it is not hard to prove that (1.5) implies
(1.4).

When M is a unit sphere, Wang and Xia [16] have also given a universal inequal-
ity. They have proved

1/2

k k 9

n+2 /2 n? /2 N
1.6 T - I F — (I, —).
(1.6) ;( k+1 i)? < ; k+1 — I+ 2n+4)( i T 4)

When M is a hyperbolic space H"(—1), although many mathematicians want to
derive a universal inequality for eigenvalues, there are no results on the universal
inequalities for eigenvalues of the clamped plate problem (1.1). For a bounded
domain in H™(—1), a main reason that one could not derive a universal inequality
for eigenvalues is that one cannot find an appropriate trial function. In this paper,
we find “nice” trial functions. By making use of them, we infer a universal inequality
for eigenvalues of the eigenvalue problem (1.1).

Theorem 1.1. Let T'; denote the it eigenvalue of the clamped plate problem (1.1)
on a bounded domain D in H™(—1). Then, we have

(1.7)
zk: (Thy1 —Ty)% < 24 Z (Tga1 — {Fz% _ W}{Ff B @}

Furthermore, we have the following Yang-type universal inequality for eigenval-
ues:
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Corollary 1.2. Let I'; denote the it eigenvalue of the clamped plate problem (1.1)
on a bounded domain D in H™(—1). Then, we have

k

k
(1.8) > (Tryr —T9)? <24 > (Tpgr — T (T —

i,7=1 i,j=1

(n— 1)

16 )

Remark 1.3. For a buckling problem on a bounded domain in the hyperbolic space,
a universal inequality for eigenvalues will be given in a forthcoming paper. Re-
cently, Cheng, Ichikawa and Mametsuka [4] have obtained a universal inequality
for eigenvalues of the clamped plate problem on a bounded domain in a complete
Riemannian manifold. This occurred after we completed this paper.

For the Dirichlet eigenvalue problem of the Laplacian on a bounded domain in

—1)?
H™(—-1), McKean [I3] (cf. [2] and [9]) proved that the first eigenvalue Ay > (n—17

4
—1)2
and limp_, gn(—)A1 = u In [§], Cheng and Yang have proved that all of

(n—1)?
4

H"™(—1). From the Corollary 1.2 and the recursion formula in Cheng and Yang [7],
we have the following:

the eigenvalues of the Laplacian must tend to when the domain tends to

Theorem 1.4. Let T'; denote the it" eigenvalue of the clamped plate problem (1.1)

—1)4
on a bounded domain D in H™(—1). If limp_,gn_I'1 = %, then, for any
k, we have
. n—1)*
(19) hmD_>Hn(_1)].—‘k = %

2. PROOFS OF THE THEOREMS

In this section, we shall prove our results.
For convenience, we will use the upper half-plane model of the hyperbolic space;
that is,

H"(-1) = {f: (x1,22, -+ ,2n) € R 20 > O}

with the standard metric
(dr1)? + (dz2)? + - + (dzy)?

ds? = 5
xn

In this case, by a simple computation, we have the Laplacian in H"(—1):

- 0? 0
— 2 _ —
(2.1) A=z jél 92,07, +(2—n)x, T

From the above formula, we have the following lemma:

Lemma 2.1. Defining f; = x;, fori=1,2,--- n—1, f, = ﬁ and f =logx,, we
have

Af;=0, fori=1,2,--- ,n—1,
(2.2) Afn =nfn,

Af=1-n.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



464 QING-MING CHENG AND HONGCANG YANG

Proof of Theorem 1.1. Let u; be the i** orthonormal eigenfunction corresponding
to the eigenvalue I';, + = 1,2,--- | k; that is, u; satisfies

2 .
A%u; =Tu;, inD,

8ui

(2.3) wlon = 5| =0,

oD

/ uu; = 65, for any 1, j.

D

For the function f = logx,,, we have

(2.4) Vf?=Vf-Vf=1, Af=1-n.

We define functions
n
ei = fu; — Zaz’ﬂtﬁ
j=1

with a;; = [, fuiu;. Then, we have

i
pilop = 7 0,
(2.5) /Dujgoi:O, forany i,j=1,--- k.
Thus, @;’s are trial functions. Hence, from the Rayleigh-Ritz inequality we have
(2.6) Dppr < M

fD(‘pi)2 .
From (2.3), (2.4) and (2.5), we obtain

k
Alp; = A2(fui - Zaijuj)
j=1

k
= A(Afu; + 2V f - Vu; + fAu;) — Z aiiL'ju;
Jj=1

=(1—n)Au; + 2A(Vf - Vu;) + AfAu;

k
+ 2Vf . V(Auz) + fAz’U/Z — Z aijl‘juj
j=1
k
=2(1 - n)Au; + 2A(Vf - V) + 2V f - V(Aw;) + Tifu; — Y agTju;.
j=1

Hence, we infer

/(A<Pz')2:/ <PiA2§0i
D D

=Tl | +2 [ soz{u — m)Aus + A(Vf - Vui) + VS vmw}.
D
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Thus,
Th1 —To) [ i |I?
< 2/D<Pi{(1 —n)Au; + A(Vf -Vu;))+Vf- V(Aui)}
2/Df l{(l YAu; + A(Vf - V) + Vf-V(A l)}

k
=t /P
Defining b;; by

bij = /D{(l —n)Au; + AVf -Vu))+Vf- V(Aui)}ujv

we have
(28) 2()” = —(Fz - Fj)aij = _iji-

In fact,
bij = / (1 — n)Auzu] —|—/ \ VuiAuj - / (Vu] . VfA’LLZ + ’U,JAfAU,l)
D D D
= / Vf . VuiAuj —/ VU,J' . VfAuz
D D
Since
/ Vf . VuiAuj
D
D D
=(n-— 1)/ Auju; —|—/ fVu; - V(Auy) —1—/ fuiAPu;
D D D
=(n-— 1)/ Auju; — / Vf-Vu;Au, —/ fAu;Auj + Fj/ fuiug,
D D D D

we have

D
= (Tl - 1)/ Aujui - / fAuzAuj + F]/ fuiuj.
D D D

Furthermore, we know that

2/ Vf-VujAu,
D

= (n—l)/ Auiuj—/ fAu]Aul—i—Fz/ fu]ul
D D D

Hence, we infer that
2bi; = —(I's = I'j)ai;.
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From (2.7) and (2.8), we have
(Crar = Ta) [ i |7

(29) (T; = Tj)aj;.

1

k
j=

< 2/ ful{(l —n)Au; + A(Vf -Vu;))+Vf- V(Aui)}—i—
D
Since
w;Au; = (1—n * VUil u; Aug,
/D f (1 )+ 2/D Vf-V + /D f

we infer that

-1
(2.10) / WV f -V = 2
D
By a direct computation, we have
[ ru(vs-u)
D
D

= — ZV VZ \Y% 'qu2 A’Lv 'viu
(1 n)/Duf u+2/D(f u)—i—/Dfuf U
/fuivf'V(Aui)
D
. =— [ AuVf- i) = | fAfuiAu;
(2.12) /D wVf-V(fu;) /D FfAfu;Au
=- iAu; — Au;Vf-Vu; — (1 - iAu.
/Du U /Df w;Vf-Vu; — (1 n)/Dfu U

Therefore, we derive
2/ fui{(l —n)Au; + A(Vf-Vu;) —l—Vf-V(Aui)}
D
(2.13) _z/D\vw —|—4/D(Vf Vu)? - (n—1)
6 Vuz 2_ n—1 2.
<6 [ [Fuf - (-1

1
Thus, from [, |Vu;|* <T'Z, we derive

(Crar = T3) [ i |

2.14 1 k
(214) g6r§ —(n—1)%+) (I —T;)al;.

j=1

Defining

cij:/(Vf-Vui—n_
D

/Vf~Vuiuj:(n—1)/uiuj—/Vf~Vujui,
D D D

’U,i)’U,j,

since
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we have

—1
(2.15) Cij = — /D(Vf . Vuj — nTU,J)’U,Z = —Cji.

According to |[Vf|?> =1 and
/fuin~Vui:—/ Affuf—/ u12|Vf|2—/ fu;Vf-Vuy,
D D D D

Z/Dfuin-Vui:—1+(n—1)/Dfu§.

we have

Hence, we infer that

—2/D<pi(Vf'Vui—

n—1

k
:—2/ fqufVul+2Za”/ uijVuz
D D

j=1
(2.16)

k
-1
=1+ QZGM / (Vf -Vu; — n—uz)uj
=t 7P 2

k
=1 + 2Zaijcij.
j=1

On the other hand, for any positive constant «;, we have

k
1+2 Z @ijCij
j=1

1
= —2/ 0i(Vf - Vu; — n u;)
D 2
n—1 k
(2.17) = —2/D 0i(Vf-Vu; — —y Ui _z;cijuj)
i=
1 n—1 b
< 04i||§0i||2 + Oz_va -Vu; — TUZ‘ - Zcijujnz
7 j:1
1 n—1 K
= allsl|? + E{”Vf Vi — ——uil* - Zcfj}-
) Jj=1

IfI'yy1 — T'; > 0, we define
;= (Tr1 —T4)B:.

Hence, for any i and for 5; > 0, we infer that

k
(Thpr =T (142 aici;)
j=1

i

k
1 n—1
< (Trer1 = o) Billpil® + B_(FkH - Fi){HVf Vg = ——ui|* — ZC%}

Jj=1
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From (2.10) and

—1 n—1)? n—1)>2
195 = a2 = 95 G2 - E2 < gz - 021
we have
(Fk-‘rl - Fz)2(1 + 2 Z aijcij)
L k
(2.18) < (Thgr — Fi)zﬂi{6rf —(n—-1)>%*+ Z(Fz - Tj)afj}
j=1
Ll oylph_ (=17 1F N
52( i = L) g7 = 1 (" ﬂz k+1 — ;clj.
Since ¢;; = —cj;, we have
k k
(2.19) Z (Crp1 — Do) %aijei; = — Z (Trg1 — )T — T)aisciy
3,J=1 i,j=1
Thus,
k k
2 ) Pk = D)L = Tagzei — Y (Trn = D) (Fi = 1) Bia;
4,j=1 i,j=1

2
— Z 3 (D41 —Ty)c; <0,

1,j=1

According to (2.18), (2.19) and the above inequality, we derive

k
> (T —T4)?
ij=1
k 1
< Z (1 — Fi)Qﬁi{6F? —(n— 1)2}
(2.20) i’fl
+ Z (Tre1 — T9)?Bi(Ls — Tj)a; + Z (Thyr —L9)Bi(Ts — ;) a;
1,j=1 i,j=1
1 (n—1)2
+ ;lﬂz Dhgr — F){Ff T4 [

From the variational principle, we can prove that
where \; denotes the i*? eigenvalue of the Dirichlet eigenvalue problem of the Lapla-

(n—1)°
1

cian on the same domain D. Since Ay > , putting

=t >0
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we have
K k
Z (Cry1 — To)?Bi(Ts — Ty)ai; + Z (P — T3)Bi(Ts = Tj)%a;
ij=1 ij=1
k
Z Pit1 = D) (Crgr = T5)8:(Ts — Tj)a;
k
2.21 1
(221) =3 Z Lip1 — 1) (Drgr — T5)(0s — T5)(Bi — By)as;
1,j=1
5 (Dpsr — To)(Taps — T;)(TF 4 TH)(TF — T3y
_ _ﬁ Z k+1 — k+1 — 15 i j i j az.
2 1 (n—-1)2% 1 (n—1)72 Y
=1 rz _ rz
(T'; 0 )
<0

From (2.20) and the above inequality, we obtain

k k
Z (T —1)* <68 Z (Tpy1 —Ty)?
(2.22) v W=
1 1 (n—1)2 1 (n—1)?
S ) )
Taking
k 1 (n—1) 1 (n—1)2
5 D1 Ty — Fi){riz S Iy - 6
= - ,
6 Ei,j:1(rk+1 - Pi)z
we derive
k
—1)2 1 —1)2
Tpt — T2 <24 5" (e — T {rd = =7V ps  (n= D71
4 J 6
i,j=1 i,j=1
This finishes the proof of Theorem 1.1. O
) 1 (n—1)2
Proof of Corollary 1.2. Since I'? > 1 Ve have
T Ot Vi U A S (U O O 3l Vi
’ 4 3 6 - 16
From Theorem 1.1, Corollary 1.2 is proved. ([

Proof of Theorem 1.4. According to the following recursion formula of Cheng and

-1
Yang [7] with pu; =T'; — % and t = %, we have, by making use of the same
assertion as in Cheng and Yang [7], that

1 < 25k pg;
that is,

(n—1)"
16

(n—1)*

< 25k%(Ty — )
< 25k7°(Iy 16)

Tpi1—
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—1)4
Hence, if limp_, gn(—1)['1 = %, then, for any fixed k, we have
) n—1)*
(223) hmD*}Hn(,l)Fk = %
This completes the proof of Theorem 1.4. ([

Recursive Formula (Cheng and Yang [7]). Let u1 < po < -+ < ppq1 be any
non-negative real numbers satisfying

k k
4
(2.24) D (s —mi)* < n D papnr — ).
=1 =1
Define
1e 1 2
2.25 Gr=— T = — 2 EB=(1+2)G?—-T,.
(2.25) kk;u kk;m 2 <+t>k 2
Then, we have
4
kE+1\1
(2.26) Fop1 < C(t k) (%) F,

where t is any positive real number and

L RN+
C(t’k)_1_§(k+1) (k+1)3 <1
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