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Abstract. Let M be an n-dimensional closed hypersurface with constant mean
curvature H satisfying |H| < e(n) in a unit sphere S"*', n < 7, and S the square of
the length of the second fundamental form of M. There exists a constant §(n, H) > 0,
which depends only on n and H, such that if Sy < S < Sy + é(n, H), then S = Sy and
M is isometric to a Clifford hypersurface, where e(n) is a sufficiently small constant

depending on n and Sy = n + 2(lf—il)Hz + ;Ez:ﬂ\/nzH“ +4(n— 1)H2.

2000 Mathematics Subject Classification. Primary 53C42, Secondary 53B25.

1. Introduction. Let M be an n-dimensional closed hypersurface with constant
mean curvature H in an (n+1)-dimensional unit sphere S"*!. Denote by S and R the
squared length of the second fundamental form and scalar curvature of M, respectively.

When H = 0, a famous rigidity theorem due to Simons [11], Lawson [5], Chern,
do Carmo and Kobayashi [4] says that if S <, then S =0, or S =n. That is, M is

isometric to a totally geodesic sphere S” or a Clifford torus Sk(\/g) x S"k(/ %).

These two kinds of hypersurfaces are the so-called isoparametric ones of types 1
and 2, respectively, where a hypersurface of S” is called isoparametric of type g if it
has g distinct constant principal curvatures of constant multiplicities. The following
conjecture is proposed by Chern, we can find it in Yau [13]:

CHERN CONJECTURE. For any n > 3, the set R, of all the real numbers each of
which can be realised as the constant scalar curvature of a closed minimally immersed
hypersurface in $"*! is discrete.
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There have been some works related to the Chern conjecture. In [9], Peng and
Terng proved that if the scalar curvature of M is a constant, then there exists a
positive constant 8(r) depending only on » such that if n < .S < n+ 8(n), then S = n.
Furthermore, Cheng and Yang [3] improved the pinching constant §(n) to n/3.

Without the assumption of constant scalar curvature, Peng and Terng [10] obtained
the following important pinching theorem.

THEOREM 1.1 ([10]). Let M be an n-dimensional closed minimal hypersurface in
S"1 n < 5. Then there exists a positive constant 8(n) depending only on n such that ifn <

S < n+8(n), then S = n and M is isometric to a Clifford torus Sk(\/g) x S"7k(,/ %)
Further, they proposed the following attractive problem:

OPEN PROBLEM. Let M be an n-dimensional closed minimal hypersurface in
S n > 6. Does there exist a positive constant §(n) depending only on 7 such that

if n<S<n+4é(n), then S=n and M is isometric to a Clifford torus Sk(\/g) X
Snk( =Ry

In [2], Cheng and Ishikawa have solved the above problem under a condition on
Ricci curvature. Recently, Wei and Xu [12] have solved the open problem for n = 6, 7
through the following theorem.

THEOREM 1.2 ([12]). Let M be an n-dimensional closed minimal hypersurface in
S n=6,7. Then there exists a positive constant 8(n) depending only on n such

that if n < S <n+98(n), then S =n and M is isometric to a Clifford torus S"(\/E) X

S (155,

When H is constant, that is, M is a hypersurface with constant mean curvature, a
third author [7] extended Theorem 1.1 of Peng and Terng [10] for minimal hypersurfaces
to the case of hypersurfaces with constant mean curvature H.

THEOREM 1.3 ([7]). Let M be an n-dimensional closed hypersurface with constant
mean curvature H satisfying |H| < e(n) in a unit sphere S"*', n < 5, and S the square of
the length of the second fundamental form of M. Then there exists a constant §(n, H) > 0,
which depends only on n and H, such that if So < S < So+ 8(n, H), then S = Sy and
M is isometric to a Clifford torus Sk(\/g) X S"‘k(\/g) if H=0, M is isometric to a
Clifford hypersurface

1 A
bt JIt 2 JI+2

if H#0, where A = LAY U} “’nzI;ZH(n_l) and g(n) is a sufficiently small constant depending
onn,
n n(n —2)
So = H? 2H4 + 4(n — 1)H?. 1.1
0 n+2(n_1) +2(n—1) n +4(n—1) (1.1)

In this paper, we study the case of n = 6, 7. We prove the following theorem.
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THEOREM 1.4. Let M be an n-dimensional closed hypersurface with constant mean
curvature H satisfying |H| < e(n) in a unit sphere S"*', n <7, and S the squared length
of the second fundamental form of M. There exists a constant §(n, H) > 0, which depends
only onnand H, such that if Sy < S < Sy + §(n, H), then S = Sy and M is isometric to a

Clifford torus Sk(\/g) x §"k( %) if H=0,; M is isometric to a Clifford hypersurface

1 )y
C el = Sl - Sn—l (_)
bt («/1+A2>X T+ 22
if H# 0.

REMARK 1.1. When H = 0, Theorem 1.3 reduces to Theorem 1.1 and Theorem 1.4
reduces to Theorem 1.2.

2. Preliminaries. Let M be a closed hypersurface with constant mean curvature
Hin 8" and ey, ..., e,, e,41 a local orthonormal frame field of S"*! along M, such
thatey, ..., e, are tangent to M. Let wy, ..., w, be the dual coframe field of ey, ..., e,.
We shall make use of the following convention on the range of indices:

1<ijk,...<n
We have the structure equation of M:

dx =Y wie;,
de,- = Zj a)iej + Zj h;,‘en+1 — W;X,

2.1
de,,+1 = — Zy- hywjei, ( )
da)_,; = Zk Wik N\ W)j — % Zkl R_i/'klwk N wy,

where /iy = hj; and Ry = —Rjik.
We have the Gauss equation (see, for example, [1])
Rijr = Sikdji — Sudjk + hachjr — hihjk. (2.2)

Let R and h be the scalar curvature and the second fundamental form of M
respectively. Denote by S the squared length of h and H the mean curvature of M.
Then we have the following formulas:

h= Z/’ly'a)i ® wj, S = Zh;, H = %Zh” (23)
i i i

From the Gauss equations, we have
R=nn—1)+n"H*-5. (2.4)

Denote by A, hjy and Ay, components of the first, second and third covariant
derivatives of the second fundamental form, respectively. Then (see [6])

Vh = Z hy'ka),' ® wj QR wy, hg‘k = hikjs (25)
ik
Vzh = Z hy'klwi (4 wj R wr Q@ wy, (2.6)

ik
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hirr = hjuc + Z By Riit =+ Z him Rkt (2.7
m m

hy‘klm = hjikml + Z h(/’erilm + Z hirkR)jilm + Z h;'errklm' (28)

For an arbitrary fixed point p € M, we take orthonormal frames such that s; = A;5;
at p, for all i, j. Then at the point p, we have

Y xi=nH, Y i3 =S. (2.9)
We define f3, f4 to be

=Y hihihii,  fa =" hyhyhihy. (2.10)

ik ik

Then, at the point p, we have
f=Y M fa=) ol Q.11
i i

We define 4, B, u;, A, B by

A=) "Iyal. B=) hiii;, (2.12)
ik ik
wi=r+nH, A= Zh;k,u?, B= Zh;k,ui,uj. (2.13)
ik ik
Then
> ui=S+ni(n+2)H. (2.14)
i

Since H = constant, using (2.2), (2.5), (2.7) and (2.8), we easily get
1
5AS= S(n — S) — n”H? + nHfs + |Vh}? (2.15)
and
1 3 , 3 3 . ~
5A(|Vh| )=02n+3 - S)|Vh|* — E(A —2B) — E(A —2B)
— %n2H2|Vh|2 + %WSIZ + |V?h|%. (2.16)

Further, the following formulas can be found in [7]:

LEMMA 2.1 ([7]). Let M be a closed hypersurface with constant mean curvature H
in S™1. Then

3
|V2h|* > 5[Sf4 —f7 — 8% = 5(S — n) — n* H* + 2nHf3), (2.17)
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IVSI2

fA 2B = /Sf4—f3 S? + nHfy —

\/_+

3(4d—2B) < (S + n*(n + 2)H?)|Vh|*.

Proof. From (2.7) and the Gauss equation (2.2) we have

Thus,

|V2h)? > Z R, +3 Z 3

i#f
3 3
= Z higi + I > Uy + ) + 1 > iy — higi)*
2 2

>3 ;(M — a1+ ring)?

= %[Sﬁx —f =S~ S(S —n) — n*H* + 2nHf3].

This proves (2.17).

417

(2.18)

(2.19)

(2.20)

Consider the smooth function Zl/ hi(f3);j. Since M is closed and H is constant,

from Stokes’ theorem,

/M 2”: hi(f3)j = — /M 2,,: hii(f3); = 0.

Also,

1
32 hi(hi
i
1
=3 Z M (f3 )ik
k

= Z M (Z hiikk)\% +2 Z hgk)\i)

= Z hukk)\k)\ +2 Z h/k)‘ A

ijk
=D ki + (i = 21+ Ado)Pad] + 2B
ik
Z ( Z % k) A+ Y (i = a)( + Aik)hed] + 2B
ik

= -thh,gs + S — f? — S* 4+ nHfy — (A4 — 2B).
ik

(2.21)



418 QING-MING CHENG, YIJUN HE AND HAIZHONG LI

Integrating both sides and using (2.21) yields

ik

B
/M(A —2B) = /M 5 O hichiSy + Sfs = f3 = 8 + an3:|

= /M — Z(h whi)iSi + Sfa — f3 — S* + an3:|
ik

= [ -3 X hwhosi+ - 12 - S2+ans}
M

ik

r 2
=/ 'VS' S-S S2+an3].
M

This proves (2.18).
From (2.13), we have

3(4 —2B)
= Z o7 + 147 + pg — 2pipty — 2pLiftk — 2tiik)

= YRR+ ]+ ) — (it A+ )]

i), i#k j#k
+3) huk — i) + Z (=317
i+k
~/_ 741
<2y up Y et Z Z B (222)
/ i#), ik j#k
where we have used
V17 -1 V1741
— Ak < pp + 3 ui 3 w?
v + 1 2,2
—— (i + i)
V1741 2
< Z 1
Inequality (2.19) follows from (2.14) and (2.22). Il

3. Proof of Theorem 1.4. In order to prove our Theorem 1.4, the following lemma
(Lemma 3.1) plays an important role.
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Ifn = 6 or 7, we know that t = 2.428 and s = 1.62 satisfy the following inequalities:

t—s V17+1
+ b

t >

n—1 2
3s > 21, (3.1
t t 2t
§>2—=4+4/2— - /1— —.
2 2 VI7+1
We define ®(i, k) by
2 .
My — dLifik, k # 1,
oG ky=1{"" (3.2)
S(S+rP(n+2)H?), k=i

LEMMA 3.1. Let M be an n-dimensional closed hypersurface with constant mean
curvature H in S”“,for n==6,7. Then

D hy®i k) < (S +m(n+2H)Y Iy, 1<k<n (3.3)

Proof. Without loss of generality, we can assume k = 1. If ®(i, 1) < (S + n*(n +
2)H?) for any i, it is obvious that (3.3) holds. Otherwise, if there exists an i such
that ®(i, 1) > #(S + n*(n + 2)H?), without loss of generality, we can suppose ®(2, 1) >
(S 4 n*(n + 2)H?); then, according to

V1741
5+ ) = i — dppn = @2, 1) > (S + 7 (n + 2)H?),
we have
17 +1
(2, 1) < I+ (S+n*(n+2)H?) (3.4)

2

and, for 3 <m < n,

2t
2 2 2 2 2 2 2
Wy <S+n"(n+2)H" — (u] +p <<1— )S—i—n n+2)H?). 3.5
On the other hand, since
2 2 2 2 2 2
wi + (g +4u3) > py — 4 pn > (S +n"(n+2)H"), (3.6)

we infer
13 < (S +nP(n+2)H?) — i}

< (S+r2(n+2)H?) — S | (2 4 2 (3.7)

< Q2= IS +ni(n+2)H?).
From (3.5) and (3.7), we have

d(m, 1) = ut — 4ui i < (S + n’(n + 2)H?). (3.8)
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Since ), h; =constant, we have
h2
P T (3.9)
. n—1
i#2
From (3.4), (3.8) and (3.9), we obtain
(S +n*(n+2)H?) Y hy,

= (S +n*(n+ 2)H?){h3y, + Z hiy}
i#2
(S + n*(n+ QH)5y, + Y hy @i, 1)
i#2

A%

2
+(t— (S +n’(n+ 2)112)—}12211
n —_—

=YL IR (3.10)

since t and s satisfy (3.1). This finishes the proof of Lemma 3.1. O

Proof of Theorem 1.4. Forn < 5 or H = 0, Theorem 1.4 has been proved in [7] and
[12]. Thus, we only consider the case of |H| > O andn =6, 7.
Integrating equation (2.15), Sx(2.15) and (2.16) gives

/S(n—S):/ n*H? — nHfy — |Vh|?, (3.11)
M M
1
/ §|VS|2=/ S2(S —n) + n*H*S — nHSf; — S|Vh|?, (3.12)
M M
22 3 2172 2 3
|V?h)* = [ (S —2n—3+ Zn*H*)|Vh]* + (4 — 2B)
" " 2 2
3. o 3
+5(4—2B) + J|VSI. (3.13)
From (2.17) and (3.11), we derive

[ ez [ (-2 - 5 s - (90 (3.14)
M M 2

From (2.18) and (3.12), we infer
3 3 2 3 2 2 2
/ (A4 =2B)+ $|VS| =f =(Sfa—f5 — S” + nHf; — |Vh|*)

9 3
+7 [SZ(S —n)+n*H*S —nHSf; — S|Vh|21|+§ |Vh|2}. (3.15)



SCALAR CURVATURE OF HYPERSURFACES 421
Substituting (3.15) into (3.13) and using (3.14), we obtain

3 3 3. .
/ (S—2n— =+ Zn*H?)|Vh* + =(4 — 2B)
M 22 2

9

+3 [S(S(S —n)+n*H?> — an3> —S|Vh|2} }z 0. (3.16)

It is not difficult to prove the following elementary inequality (cf. [8]):

n—
\/<—1)

Since S > Sy and S > Sy is equivalent to

H)| < ——= (S — nH?):.

n3H? T n(n —2)|H| -
4(n— ) T 2/nn—1) ~ 0

where Sy is defined by (1.1), we have

S(S — n) +n*H? — nHf;
= —(S —nH»{n+nH?> — (S — nH*} — nH Z(xi — H)

> (S—nHZ){n+nH2—(S nHz)—i—n(n—2)|H|\/S— H2}

Jnn—1)
PP n3 H? ———  n(n—2)|H]|
=—(S nH)|: n+4(n_1)+ S —nH —2 n(n—l)j|
n3H? T n(n —2)|H|
x |: 4(” - 1) H+ 2 /n(n — 1):|
> 0. (3.17)

According to Sy < S < Sy + 8(n, H), we derive, from (3.11) and (3.17),
/MS[S(S —n)+n*H? — an3}
< (So + 8(n, H)) /MS(S —n)+n*H* — nHfs
= (Sp + 8(n, H))/M|Vh|2. (3.18)
From (3.16) and (3.18), we obtain

3 3 R -9
f (S —2n— 5+ S H)|Vh]> + (4 — 2B) + £[So + 8(n, H) — S]|Vh*} = 0.
o 22 2 4
(3.19)
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On the other hand, since ¢ and s satisfy (3.1), we have, from Lemma 3.1,

3) Wi — 4u,uk)+2h,,,( 3u?)

i#k

—3Zth®(z k) — 32}1 ks(S+n2(n+2)H2)+th( 3u?)

< HS+n*n+2)H?S 32, — (S +rP(n+ 2)H2) 22
iik iii
ik

= 1S + n(n + 2)H?) (Z 302, + Z h) . (3.20)

i#k
Hence, we infer

3(4 - 2B)
= > Qi+ ppd) — it + )
i#] j#k k£
+3 Z h,,k(ﬂk dpipr) + Z hm( 3“12)
i#k
SAS+Am+DHY) Y by
i jk ki

+ (S +n*(n+2)H?) (3 > hi + Z h)

i#k
< (S +n’(n+2)H?)|Vh|. (3.21)

From (3.19) and (3.21), we have

2t—5 33 ! 9
/ S—2n— =+ Zn*H* + =n*(n+ 2)H* + =(So + 8(n, H)) | |[Vh|* > 0.
vl 4 22 2 4

Since Sy < S < Sy + 8(n, H), we have

2t +4 3 3 t 9
/ + So—2n— =+ -n*H>+ —n*(n+2)H> + =8(n, H) | |[Vh)* > 0.  (3.22)
vl 4 22 2 4

From Definition (1.1) of Sy, we have

2+ 4 33 t 9
+ So—2n—2+ EnZH2 + —nz(n +2)H? + —S(n, H)
3 [nG+2) (n+2)t(n) + 2
2 4n—1) 2 2

n(n—2)(t+2)

9
2H* 4 4(n — )H? + ~8(n, H).
2= ) nH*+4(n—1) +48(n, )
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Since 5 —n — % < 0and |H| < e(n), if e(n) is small enough, we can choose §(n, H) > 0
such that

%44 303 . 9
: So— 20— 5 + SIPH + 20200+ DH? + (1 H) < 0, (3.23)

According to (3.22) and the above inequality, we infer |[Vh| = 0. Hence, all of the above
inequalities are equalities. From (3.17), we have S = Sy and M is isometric to a Clifford
hypersurface. This completes the proof of Theorem 1.4. O
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