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ABSTRACT. In this paper we study eigenvalues of Laplacian with any order on
a bounded domain in an n-dimensional Euclidean space and obtain estimates for
eigenvalues, which are the Yang-type inequalities. In particular, the sharper result
of Yang is included here. Furthermore, for lower order eigenvalues, we obtain two
sharper inequalities. As a consequence, a proof of results announced by Ashbaugh
[1] is also given.

1. INTRODUCTION

Let Q C R™ be a bounded domain in an n-dimensional Euclidian space R"™.
Assume that ); is the i*® eigenvalue of the Dirichlet eigenvalue problem of Laplacian
with any order:

(=A)u = u in Q2
(1.1) ou Oty
U—E——W—O OIl@Q,

where A is the Laplacian in R™ and v denotes the outward unit normal. It is well
known that this problem has a real and discrete spectrum

O0<A <A< <A< — 00

When [ = 1, the above problem is called a fixed membrane problem and it is called
a clamped plate problem when [ = 2.
When [ =1, Payne, Pélya and Weinberger [11] proved

k
4
1.2 Mt =M< — SN, k=12
( ) k+1 k_kn;

Further, Hile and Protter [8] generalized the above result to

kn
1.3 > p—12.-..
(1.3) ;)\k—kl_ i 4
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In 1991, Yang [14] (cf. [7]) proved the following sharper result:
k k

4
(1.4) D> (ke = M) < - S ket = AN, k=1,2,---

i=1 i=1
According to the inequality, we can infer

(1.5) Mot < Z)\Z, k=1,2,---

When [ = 2, one usually uses I'; to denote the i*" eigenvalue of (1.1). In this
case, Payne, Pélya and Weinberger [11] proved

8(n —+2
1.6 Pkl—rk<M T, k=12
* n

Chen and Qian [5] and Hook [9], independently, proved

Ea

2 2 2 1

k
1.7 r? k=1,2,---
( ) n + 2 ; Fk+1 _ ; 10 Y )
Recently, Cheng and Yang [6] have proved
k

k
(18) Z(Fk_H — F ) n + 2 Z I‘k—‘,-l - )%7

i=1 =1

N\»—-

which is analogous to the inequality (1.4) of Yang.

For any integer [, Chen and Qian [5] and Hook [9], independently, proved

n2k2 k T k -1
1.9 —— < A N kE=1.2....

By making use of the method of Cheng and Yang [6], Wu and Cao [13] have gener-
alized the inequality (1.9) to

k

Z()\kﬂ — i)
(1.10) = L . )
An+20—2))z ; -1 1 1) 2
< { ( - )} {Z(/\k:-i-l _ 2 N 2_: N1 — 2 'l} ]

i=1
We should notice that when [ = 1, the inequality (1.10) becomes

Z()\k—f—l — i) < %{Z(Ak—&-l - i) Z(/\k-i-l - )\i);)\i}z'

i=1 =1 i=1

N[

From this inequality, we can only infer the inequality (1.5). But we can not derive
the sharper inequality (1.4) of Yang. In this paper, one of our purposes is to derive
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an inequality for eigenvalues of the eigenvalue problem (1.1) for any [/ such that when
[ = 1, we have the sharper inequality (1.4) of Yang.

Theorem 1. Let Q) be a bounded domain in an n-dimensional Fuclidian space R™.
Assume that \;,i = 1,2,--+ is the i eigenvalue of the eigenvalue problem (1.1).
Then, we have

k

Al(n + 2l —2)
(1.11) > M= A< ——5—2 Z Aks1 —
i=1

=1

>

Remark 1. For any [, our result is the Yang-type inequality and it s simple. In
particular, when | = 1, it becomes the inequality (1.4) of Yang.

Next, we consider the lower order eigenvalues of (1.1). When [ = 1, Payne, Pdlya,
and Weinberger [11] obtained

/\2+/\3<6

N =0 for Q c R?

and they conjectured

)\2 + )\3 < )\2 + )\3
AT N

~5.077, for Q c R~
disk

(1.12)

The above conjecture was researched by many authors (cf. [1], [3], [10]). Ashbaugh
and Benguria [2] proved, for any dimension n,

A+ A4+ A
A

(1.13) <n (1 + %) , for QCR"™

When 2 is a bounded domain in a complete Riemannian manifold, Chen and Cheng
[4] have derived analogous results. In particular, when € is a domain in the unit
sphere, a sharper result has been obtained by Sun, Cheng and Yang [12]. When
[ = 2, for the clamped plate problem, Ashbaugh has announced two inequalities
which are analogous to (1.13) for any dimension n in [1]:

LI 1 1

(1.14) > (T2, —T7) <4ry,
a=1

(1.15) > (Tag1 —Ty) < 24T,
a=1

Here one should remember that we replace the eigenvalue A with I" for | =
However, in his paper, Ashbaugh didn’t give the proofs of his results. Our second
purpose is to derive universal inequalities for lower order eigenvalues of the eigenvalue
problem (1.1) for any . From our results, one can infer the results of Ashbaugh.
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Theorem 2. Let Q2 C R" be a bounded domain in an n-dimensional Euclidian space
R". Assume that \; is the i™eigenvalue of the eigenvalue problem (1.1). Then, we

have
n

1 -1
(1.16) ST = AT S @A, for 122

a=1

Theorem 3. Under the same assumption as in the theorem 2, we have

n

(1.17) D et = A1) 420 — 1)\

a=1
Remark 2. When | = 2, our inequality (1.16) becomes the inequality (1.14) of
Ashbaugh. Forl =1 and [ = 2, our results in the theorem 3 become the inequalities
(1.13) and (1.15), respectively.
2. PROOF OF THEOREM 1

At first , we prove an algebraic lemma.

Lemma 1. Let A;, B; and C;, fori=1,2,--- |k, satisfy Ay > Ay > -+ > A >0,
0< B <By<---<Bpand 0 < C; <Cy <--- <Oy, respectively. Then, we have

k k k k
(2.1) S AIB Y AC; <> APY ABC
=1 =1 =1 =1

Proof. When k = 1, we have
A3BACy — ATAB.Cy = 0.
Suppose that the inequality (2.1) holds for £ — 1, then for any integer k,

k k k k
k— k—1
Z BZAC ZAQZABC

k—1 k—1
+ AJByCy — ARBiCr + AkCr > AIB; + ARBy Y AC;

i=1 i=1
k—1 k—1

— ApBrCr Y A7 = ALY ABC
=1 i=1

k—1 k—1
< ACip Y ANBi — Bi) — ALY AiCi(Bi — By)
=1 =1
k—1
=AY Ai(ACy, — ACi)(B; — By) < 0.

=1

Thus, the inequality (2.1) is proved. O
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Proof of Theorem 1. Assume that w; is an eigenfunction corresponding to the 7*®
eigenvalue \; such that {u;}$°, becomes an orthonormal basis of L?(Q). Thus, u;
satisfies

(—A)IUZ = )\Z‘Ui, in Q
81&,‘ alflui
(2.2) wi= == S =0, on 90
/ uin = (5”
Q
Let y*, y2,--- ,y" be the standard coordinate functions of the n-dimensional Eu-

clidean space R". We define ¢f and r{;, for i,5 = 1,2,--- | k, by

k
(2.3) oF = uy” — Z Ty,

J=1

(2.4) T :/Uiujya'
0

Then, we have

(2.5) / ofu; =0, forany 4,j=1,2,--- k.
0

It follows from the Rayleigh-Ritz inequality that

(2.6) A < 22

By induction, we can prove
(2.7) (=A) ! (uy®) = y*(—A) 'y — 21V (—=A) ", - Vy,
where Vu; - Vy* = (Vu;, Vy®), (, ) is an inner product on R™. Since
[ennyer = [ oo
Q Q
= [erdrr-atu - avi-artu v
Q
= [P 21 [ rva) e vy
Q Q
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and

[ v-ay vy = [ Ay v vy

Q Q
= [ = 20 V-8 e
Q
- / uiy ™V (=A) " - Vy - / ui(=A) "M
Q Q
+2(1 - 1)/(—A)12uiVya -V (Vu, - Vi),
Q

that is,

2/ wy*V(=A)" ;- Vy©
(2.8) L

_ —/ui(—A)l_lui+2(Z—1)/(—A)l_2uiVyo‘-V(Vui-Vyo‘).
Q Q

Thus, we infer

/ S A = A, / (8)? — 2 / Wy YV (—A) - Vg
9] Q

Q

k
+ 21 ZT% / ujV(—A)l_lui : Vyo‘
j=1 O

= [P [ sy

k
—20(l—1) /Q(—A)IQuiVya -V(Vu,; - Vy*) — 21 Zr%s%,

Jj=1

where

Siy = / w V(=A) "y - Vy* = — / uV(=A)" ;- Vy* = =5,
Q

Q
From (2.6) and (2.9), we derive

(Aks1 — X))l i

< z{/gui(—A)l—lui —2(l — 1)/(—A)l‘2uiVy“ - V(VUrVy“)}

(2.10) Q
k
— 2l er‘js?j,
j=1

where

2= [ 1P
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On the other hand, from

1
(2.11) / uwy*Vu; - Vy* = —-,
Q

we have

k
/ @i Vu,; - Vy* = / (ugy® — Z?“f}-uj)vw - Vy®
Q Q

j=i

(2.12) L
=3~ er‘jt%,
j=1
where
(2.13) te = /Qujvui VY = —/QuiVuj VYt =t

Thus, for any constant 6 > 0, we have

k
1+ 2Zr?jt% = —Z/ngf‘Vui - Vy©
j=1

k
= —2/ o (Vu; - Vy* — Zt%u])
Q .
(2.14) =
(o7 1 (6% (0%
< St + 51l = Vi - Vo + 3 5P

j=1

k
1 1
= ollg? 1P + Sl Vs Vo IF = 5 D ()
7j=1

Multiplying (2.14) by (Ag+1 — A;)?, we infer

k
(N1 = XNi)> +2(Ngeg1 — N Z Tijti
7=1
1
(2.15) < 6N — N8P + = (e — N)? [V - Vy©?

o
k

- %O\kﬂ — ) Z(t%)z

Jj=1
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Putting § = (Agr1 — Ai)d1 , where ¢; is a positive constant, and taking sum on i
from 1 to k, we have

k k
D ke = A7 +2 ) (Mt — X))’
i=1 i,j=1
k 1 k
(2.16) <6 > (e — ) llef]” + 5 D esr = A Vs - Vi

=1 =1

- = Z Aes1 — i) (87
1] 1

From (2.10), we have

k k
Z()\k+1 — ) +2 Z (Mgt — Ag)*r it
i=1 i,j=1
k
< Z(/\kJrl - )\i)zl{/ui( A)
=1
k
—2(1-1) /(—A)Z‘QUNZ/“ V(Vu; - Vy*) =2 ZT%S%}
j=1
k 1 k
Z Meg1 — A ||V - Vy©[|2 — Z()\k-i-l — X)(t5)?
(2.17) i=1 i

i (g1 — {/ui(—A)llui

_o(1—-1) / (—A) 20V - V(i - vya)}

Z Mt = M) [V - Vg7 = 2161 Y (M — Xi)*rijsfy

1791
1
- = Z Aot — Ao (E55)%.

2,7=1

Since rf; =, t; = —t$; and (A, — \j)r; = —2lsf;, we have
k k
(218) 2 Z (/\k+1 - )\Z')27’%t% = -2 Z (>\k+1 - /\z)<)\z — )\j)Tiajtiaj

i,j=1 i,j=1
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and
k k
-2l Z()\kﬂ - )\i)QT?jS% = Z()\k—i-l - Ai)Q()‘i - /\j)(r?j)Q
(2.19) Ve Ve
== 3 et = A — A2,
ij=1
It is obvious that
k
2 Z (/\k—l—l - )\z)<>\z — )\j)T’Z-ajt%
(2.20) S .
< (51 Z<)\k+1 — /\z)()\z — /\j)2<7‘%)2 + 5—1 Z (/\k+1 - )\z)(t%>2
i,j=1 hj=1
We infer, from (2.17) to (2.20)
k
> ke = A)?
i=1
k
S 51 Z(/\k+1 — )\z)2l{/ ui(—A)l_lui
(2.21) i=1 “
—2(l—-1) /(—A)l_zuiVya -V (Vu; - Vyo‘)}
Q
L E
a2
5 ;wﬂ = )| Vui - V.
Defining
& Ag, k is even
VH = h—1 :
V(A™), kisodd,
by the result of [5]
k
(2.22) [VFu[* < AL
Q
we have
-1
(2.23) / w(—AYw = [ [V < AT
Q Q
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—Z / Py (e ) = [ (A,

- / (-a) (=B = [ [V <AT
Q
and

(2.25) Z”V“z Vy©||? = /|Vul\2 < AL

(2.24)

N\H

Summing on « from 1 to n for (2.21) and making use of (2.23), (2.24) and (2.25)
we have

k

n Z()‘k—l-l —\)?

=1

(2.26) ) o
<Oln+20-2)Y (A — PAT +6—12()\k+1 — M)AL
=1 =1
Letting
k . 1
5 — { > im1 (A1 — M)A }
- S
I(n+20=2) % (egr — M)A,
we have
k 2 k k
Al(n+ 20 —2 =1 1
220) (00w = 20?) < HEEIED Y 0 AT S O - AN
=1 =1 1=1
1—
By the lemma 1 with A; = Apst — A, Bi = A,T and C; = AT, we obtain
k Lk
S eer = APAT D (g -
i=1 i=1
(2.28) . .
Z Mett = A2 D (et = M)A,
i=1 i=1
namely,
i Aln + 21 — 2) &
) _

It completes the proof of the theorem 1.
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3. PROOF OF THEOREM 2

In this section, we will prove the theorem 2. At first, we will construct the
test function by using the method of Sun, Cheng and Yang [12]. Let u; be an
eigenfunction corresponding to the i*" eigenvalue ); such that {u;}32, becomes an
orthonormal basis of L*(€2). We define an n x n-matrix B as following:

B := (bap)

where byp = / y“uiugyr and (y*) is a position vector of R™. From the orthogonal-

Q
ization of Gram-Schmidt, there exists an upper triangle matrix R = (R,z) and an
orthogonal matrix () = (g,s) such that R = QB . Thus,

Rop = Z Gaybyp = /QqugﬂuluﬁH =0, I<f<ax<n
y=1 v=1

By defining g% := Z dory’, we have
v=1

n
/gauluml - / qu?ﬂuluﬁﬂ =0, 1<B8<a<n.
Q Q
v=1

Putting
Vo = (g% —a®)u; and a” = / g%u3,
we obtain )
/@Dauﬁﬂ:(], 0<pf<a<n.
Next, we will prove the folgfowing lemma 2.

Lemma 2. Let u; be an eigenfunction corresponding to the i eigenvalue \; of the
eigenvalue problem (1.1). Then, for k =1,2,--- 1 —1 , we have

1 1
& k+1
(/ |Vk_1ui,a|2> S (/ |vkui,a|2> )
Q Q

where u; o = (Vu;, Vg®).
Proof. When k = 1, from Stokes’ theorem,

/(Uz’,a)2 = _/ui<vui,aav9a> < </ <VUi,a,Vga>2) < (/ ’VUz’,a|2> )
Q Q Q Q

where we have used < Vg% Vg® >= 1. Assume that the lemma 2 holds for k — 1,

that is,
= %
(/ ‘Vk2ui7Q‘2> S (/ |vklui,a’2) )
Q Q
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Then, for k,
/|V'C Yiol® = /Vk QUWV]“UW
! :
S (/ ’Vk_ZuLa’Q) (/ |vkui,a|2)
Q Q
k—1 1
2k 2
< ( / |Vk_1ui,a|2) ( / \Vkum\Q) .
Q Q
Therefore,
( / |vk—1uz-,a|2) < ( / |v’€ui,a|2) 7
Q Q
that is,

1

3 =]
(/ |Vk_1ui,a|2> S (/ |Vkui,a|2) .
Q Q

Proof of Theorem 2. By making use of the Rayleigh-Ritz inequality, we have

¢a(_A)l¢a

(3.1) a1 <228 1<a<n

Q

By induction, we can derive
(=A)'(g"ur) = (=A)'ur - g* = 20(=A) " unq,
where vy , = (Vug, Vg®). Hence, it follows that

(=8) 0 = (=A)ur - g = 2(=A) " ure — a*(=A)
— (=AU 0+ Mt

Therefore, we have, from (3.1),

ot — AP < —21 / (A ur -

- —21{ [ -2y ua—a [ u1<—A>l-1u1,a}.
Q Q

By Stokes’” Theorem,

/ ul(—A)l_luLa =0
Q
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and

/ s (—A) g = / o (—A) ! (gus)

Q Q
— [l () g = 20 = D(-8) )
Q
= — / {ul{ (—A)lflul,a : ga + (—A)lflul} + 2(l — 1)U17a(—A)12U17a},
Q

that is,

2/ P ur(—A) "y, — —/{ul(—A)l_lul +2(1 - 1)u1,a(—A)l—2uLa}.
Q Q

Hence, we derive

(32)  Oass — A)[[el? < z/ul(—A)Hul+2(z—1)/u1,a(—A)l—2um.
Q

Q

Since
Ag, k is even
(A™z), kisodd,

then, we have

Alz/ul(—A)lulz/ ]Vlul\Q.
Q Q

Therefore, (3.2) can be expressed as

(33) (et — M)l <1 / VN 42— 1) / V20 o
0 Q

Now, we prove that either

Sl ik -k
(3.4 ST O AT 220 - [ 19 P
k=1 Q
or
1 1
(3.5) Mo Al <4 / (11.0)?
Q

hold for any a, 1 < o < n. Assume that there exists an « such that neither (3.4)
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nor (3.5) holds. From (2.22) and (3.3), we have

Ot = Al <1 [ 9042100 1) [ (92
Q Q

-1
<1\ +21(l—1)/|V12u17a\2
Q

thus,
(3.6) Aasr = ADal? < 1.
On the other hand, since
i ==
g Uil e = — 73,
; 1U1 5
we have

/Qwa (—2upe) = 1.

From the Cauchy-Schwarz inequality,

- ( / e <—zm,a>)2 < [l 4 / (110)?

(3.7)
1 1
< (Ad1 = AD[%al %

which contradicts with (3.6). Therefore, either (3.4) or (3.5) holds for any a, 1 <

a < n.

Next, we prove that
=

ML =A< 2 / V120, 2
Q

(3.8)
It suffices to show that both (3.4) implies (3.8) and (3.5)

hold for 1 < o < n .
implies (3.8).
Assume that (3.4) holds. From the definition of u; , and (2.22), we have

n k
. B lLal| — > lu = L, 4,0 — 1.
(3.9) §:/|v’“u,\2 /|Vku1|2<)\1 he192 . -1
a=1 Q Q
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Then, we infer

=1 k=1  1—k I—k
A1) [ IV 7ural* > ) NT (L = A"
Q k=1
Pl ke 1=k
2 )\ll (/\1 : )\Olc-i-l_)\ll )
k=1

L= DAT (A — A
AT (Ao — A

That is

1 1 1
M= <2 [ 1920y
Q

If (3.5) holds, from the lemma 2 and [ > 2, we have
Mo = <21 [ (wa)?

Q
< 2z</ Vura)?
Q

A

1

< 21(/ V120, ).
Q

Thus, (3.8) holds. By taking sum on « from 1 to n, we can infer

n

ST =A< @D

a=1

This completes the proof of Theorem 2.

4. PROOF OF THEOREM 3

In this section, we will prove the theorem 3.
Proof of Theorem 3. From (3.7),

(4.1) 1= </Q (O (—2U1,a))2§ [[Wall? - 4/9(u1,a)2-

—2 1 1
> (- 1| 9" 2ua POl - AD
Q

15
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Multiplying (4.1) by (Aa+1 — A1) , we have, from (3.3),

Nt = A1 < Ot = M)l 2 / (ur0)?
<4z/{|vl Ly 4 21— 1))V a|}/u1a |

namely,

(42)  Aag1— A < 4z/ |Vl_1u1|2/(u1,a)2 + 8I(1 — 1)/ |vi—2
Q Q Q

(ul,a>2-
Q

Clearly,

(4.3) /Q(U1,a)2 >0,

(4.4) / V20 4% > 0.
Q

Summing on « from 1 to n for (4.2), we derive from (3.9), (4.3), and (4.4),

n

Z(/\a—i-l - )‘1)
a=1
_41/ |vl—1u1122/(u1,a)2+8z(1—1)2/ yvl—2u1,a|2/(u1,a)2
Q _ Q _ Q Q
AT +8I(l—1) Z/|Vl Uy of?)( Z/ula

< AINT A
<420 — 1)\
This completes the proof of Theorem 3.
O
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