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ABSTRACT. In this paper we study eigenvalues of a clamped plate problem on a
bounded domain in an n-dimensional complete Riemannian manifold. By making
use of Nash’s theorem and introducing k free constants, we derive a universal
bound for eigenvalues, which solves a problem proposed by Wang and Xia [16].

1. INTRODUCTION

Let €2 be a bounded domain in an n-dimensional complete Riemannian manifold
M. The following is called a Dirichlet eigenvalue problem of Laplacian:

Au = — in
(1.1) { U Ay in €,

u=>0 on 02,

where A is the Laplacian on M. This eigenvalue problem has a real and discrete
spectrum:

0<)\1<>\2§§)\k§—>007
where each eigenvalue is repeated according to its multiplicity.

When M is a Euclidean space R", namely, when 2 is a bounded domain in R",
Payne, Pélya and Weinberger [15] proved

k
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1.2 Nert = A € — 3 A

(1.2) T A S

i=1
Hile and Protter [11] generalized the above result to

k
1.3 _— > —
(13) DB s v

In 1991, a much sharper inequality was obtained by Yang [17] (cf. [7]):
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which is called Yang’s first inequality (see [1] and [2]). According to the inequality,
one can infer

k
1 4
1.5 M1 < —(1+ — Ais
(15) o S 314D
which is called Yang’s second inequality.

For the Dirichlet eigenvalue problem on a complete Riemannian manifold M,
Chen and Cheng [3] and El Soufi, Harrell and Ilias [9] have proved, independently,

k k

(1.6) D k= A)* < %Z(Akﬂ A+ ),

; , 4
i=1 i=1

where HZ is an nonnegative constant which only depends on M and . When M
is the unit sphere, the above inequality is best possible, which has been obtained in
[5]. In particular, when M is an n-dimensional hypersurface in R"™, Harrell [10]
has also proved the above inequality.

On the other hand, we consider an eigenvalue problem of the biharmonic operator
A? on a bounded domain in an n-dimensional complete Riemannian manifold M,
which is also called a clamped plate problem:

A%’y =Tu in
(1.7) 0

U= 83—0 on 0f),

where A? denotes the biharmonic operator on M, and v is the outward unit normal
of 0€).
When € is a bounded domain in R”, Payne, Pélya and Weinberger [15] proved

(1.8) Ty — Ik < 8(n+2) > T

Chen and Qian [4] and Hook [12], independently, extended the above inequality to

2 2

k F2
1.9 <
(1.9) n+2 Z

Tl —
i—1 k1 i1

M -
l\')h—‘

(cf. [13]).

Recently, answering a question of Ashbaugh [1], Cheng and Yang [6] have proved
the following remarkable estimate:

(1.10) i(FkJrl —Iy) < (n + 2) )2

=1 7

N|=

ML

Li(Trpr — )2,
1

which is analogous to Yang’s first inequality.

In 2007, Wang and Xia ([16] p. 336) have proposed that for what kind of M, there
exists a universal bound on the (k+ 1) eigenvalue in terms of the first k eigenvalues
of (1.7). When M is either a complete minimal submanifold in a Euclidean space
or the unit sphere, Wang and Xia [16] have solved this problem. Namely, they
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have proved the following: when M is an n-dimensional minimal submanifold in a
Fuclidean space,

k k

(1.11) S ([ -T2 < 202 Z Fpor —

i=1
and when M is an n-dimensional unit sphere,

(112) S (e —To < ni S (Tesr = T)(n + (20 + 4)T2) (n® + 4T2).

i=1 =1

have been proved.
When M is a hyperbolic space H"(—1), Cheng and Yang [8] have also solved this
problem, that is, they have proved

(1.13)
i(ﬂﬂ— : <24Z Cigr — {PE_@}{F%_W}

In this paper, our purpose is to solve the problem proposed by Wang and Xia,
completely. We derive that, for any complete Riemannian manifold M, there exists
a universal bound on the (k 4 1) eigenvalue in terms of the first k eigenvalues of
(1.7). In order to prove our result, we making use of Nash’s theorem [14] to construct
trial functions and introduce k free constants to deal with the undesired terms.

Theorem. Let ) be a bounded domain in an n-dimensional complete Riemannian
manifold M. Assume that T; is the i" eigenvalue of the clamped plate problem (1.7).
Then, there exists a constant Hy, which only depends on M and ) such that

k k
1 1 1
(1.14) Y (Tper —T3)* < — Y (Tes —T) <n2H§ + (2n + 4)r;) (n2H§ + 41“3).
i=1 =1

holds.

Remark 1. For a complete minimal submanifold M in a Fuclidean space, we can
infer Hy = 0. For an n-dimensional unit sphere M = S™(1), which can be considered
as a hypersurface in R with the mean curvature H = 1, we have Hy = 1. Hence,
the results of Wang and Xia [16] are simple consequences of our result.

When M s the unit sphere S™(1) and Q tends to S™(1), we know that I'y tends
to zero and T';, fori=2,--- ,n+1, tends to n®. Therefore, for k =1,2,--- . n, our
inequality (1.13) becomes equality.

Since our inequality (1.13) is a quadratic inequality of I'y41, it is not difficult to
derive an upper bound on I'y,; according to the first k eigenvalues and H.

Corollary 1. Under the assumptions of the theorem, we have

(1.15) Tt < Ay + /A2 — By,
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where

k k
1 1 2772 1 27172 3
A = %{;FZ DS :<n H2 + (2n+4)r;> <n HZ + 4T7

=1

and

{ZF2+n—ZF( g2 2n+4)r5) (MH&HF})}.

Since k is an any integer, we know that (1.13) also holds if we replace k + 1 with
k, that is, we have

k-1 k-1

1 1 1
M —T)* <> (T —Ty) (nzHg + (2n+ 4)r}) (n2H§ + 4r}>.
n

i=1 =1
Therefore, we infer
k k

1 1 1
D M —T)* <> (T —Ty) (nzHg + (2n+ 4)F5) (rﬂﬂg + 4r5).
n

i=1 =1

Namely, ' also satisfies the same quadratic inequality. We derive

FkZAk—\/A%—Bk.

Thus, we can obtain an estimate on I'yy; — 'y as following:

Corollary 2. Under the assumptions of the theorem, we have

(1.16) T — T < 24/A2 — B,

where Ay and By, are given in the corollary 1.

2. PROOF OF THEOREM

In order to prove our theorem, the following Nash’s theorem plays an important
role.

Nash’s theorem ([14]). Each complete Riemannian manifold M can be isometri-
cally immersed into a Euclidean space RV .

Let M be an n-dimensional isometrically immersed submanifold in RY. For an
arbitrary point p € M, let (z',-- - 2") be an arbitrary coordinate system in a
neighberfood U of p € M. Let y be the position vector of p € M which is defined
by

Yy = (yl(l’l,‘ . .,x")’ .. .’yN(xl, .. 73;”))
Since M is isometrically immersed in R,

(O D0 ROy D S0y
Oxi’ Oxd’ £ Oa’ 8y°"ﬁzl / N

(2~1) 9i; = 9
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where g denotes the induced metric of M from RY and (, ) is the standard inner
product in RY. The following lemma of [3] is necessary for proving our theorem.
For reader’s convenience, we will give its proof.

Lemma (Chen and Cheng [3]). For any function u € C*(M),

(22) é(ng w>)2: IVl

N N
(2.3) > g(Vyr vyt =D |Vt =
a=1 a=1
N
(2.4) Z(Ay“V =n’|Hf,
a=1
N
(2.5) DAYyt =
a=1

where V denotes the gradient operator on M, and |H| is the mean curvature of M.

Proof. For any point p, we define @ = (', -, 7") by y — y(p) = yA such that

(%)p,- . (7)p span T,M and g(32 i) = (513, where A = (ag) € O(N) is an

oy’ oy’
orthogonal matrix. For any function u € C*°(M), at p,

N 2 N 2
Z(g(Vy“, Vu)) = Z[ ) + Za ]
a=1 a=1

N N 2
=> [g(VZaz@ﬂ, VU)]
a=1 6=1
(2.6) N (N L T 8u)
"L\ o
n N
B Jy® dy® du Ou
B 2; oy oy’ Oy Oy
= |Vul?

This completes the proof of (2.2).

By definition,

= MO .~
(2.7) ;gww,w ZZ azin azj V= %:gz—jg” =n

a=1 14,j

Since y is the position vector of M, we have

(2.8) Ay =nH.
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Thus we can derive

N

(2.9) > (Ay*)? =n’|H|”.

a=1

Since Vy is tangent to M, we have

N
(2.10) > Ay Vi =0.
a=1
Therefore,
N
(2.11) > Ayrvy* =0.
a=1

O

Proof of Theorem. Since M is a complete Riemannian manifold, Nash’s theorem
implies that there exists an isometric immersion from M into a Euclidean space RY.
Thus, M can be considered as an n-dimensional complete isometrically immersed
submanifold in RY. We denote, by y = (y®), the position vector of M in RY. Let

u; be an eigenfunction corresponding to the eigenvalue I'; such that

AQUZ‘ = quz in
8ui
(2.12) wi= S = 0 on 052

/UZ'U]‘:(SZ‘J' (27]21,2>
Q

Fori=1,--- Jk,and a=1,--- , N, we define

k

(2.13) ¢ =yt — > iy,

J=1

where rj; = / y“u;u;. By a simple calculation, we obtain
Q

(2.14) /uj¢§‘:0, ,j=1,--- k.
Q
From the Rayleigh-Ritz inequality, we have
AN
(2.15) M <& —— 1<i<k.

[
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Since
k
/ AT = / Ay s = ) _riju;)
Q Q j=1
(2.16) — /qs;?‘{AQyo‘ ~u; + 2V (Ay®) - Vu; + 2Ay% A,
Q

+ 2A(Vy® - V) +2Vy® - V(Ay,;) + Fiyaui}a

we infer from (2.14), (2.15) and (2.16)

k

(2.17) (s — T)l[62] < / R
j=1

where

= A% u; +2V(Ay®) - Vu; 4 2Ay* Au; + 2A(Vy® - V) + 2Vy* - V(Aw,),

o (67 o o,
Sij—/pi“ja Wi _/piy Ui
Q Q

From Stokes’ theorem, we infer

2/y°‘uiV(Ay°‘) -Vu; = /{2uiAy°‘Vui VY +ul(Ay®)? — yau?Aan},

) Q

Q/yau,A(Vya-Vui) = /{QUZAyaVyO‘-Vui—|—4(Vya-Vu,-)2+2yaAuiVyo‘-Vui},
Q Q

Q/yau,-Vyo‘ -V(Au,) = —2/ (|Vyo‘\2uiAui + y*Au;Vy® - Vu; + yaAyauiAuZ).
Q Q
Thus, we obtain

(2.18) w§ = /{(Aya)Qul2 +4(Vy* - Vu,)? — 2| Vy*Pu A + du; Ay*Vy® - Vu,-}.
0

Since

2/ Auija : VUZ — Au,Vyo‘ . VU]‘

Q

= (FJ — Fl)'l"f; — /UiA’U/jAya + /'U,jA’U,iAya,
Q Q

we can infer

(2.19) sy = (I = Ty)re..

ij
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Then (2.17) can be written as

(2.20) (Crr = T)ll6F]]* < wi” + Z )(r5;)*.

On the other hand, defining

and

then it follows that

) = —}—QZTW i

Multiplying (2.21) by (T's41 — I';)%, we obtain, from (2.20),

(2.21) /Q—w;“(vy -V, +

k
(T — T3)? (0 + QZTfjtf})
j=1
w; Ay®
= (T — I))? / 2¢>a{( LV, + y Ztu j}
3 L« 2 Fk+1 2
< 0i(Crpa — o)l (|7 + 6—\|Vy Ztm uj|

o L'y u; Ay” £\
= 64Tt~ T + L{||Vy R ()%

)
7 ]:1

< 0;(Typr — 1})2{%“ + Zk;(n - Fj)(r%)Q}

T _Fz o UZAya b o
# L o v B0 S g

=1

(2.22)

where 9; is a positive constant. By the Stokes’ theorem and the Schwarz’s inequality,

we have
1
/Q|Vui|2 <TI?.
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From (2.18) and the lemma, we have

N
Zwéx :n2/ |H|2uf+(2n—|—4)/ |VU1‘2
a=1 Q Q

(2.23)
< n?sup |H|* + (2n + 4)T?
Q
and
il u; Ay® 1
(2.24) ZHVyO“Vui—i— ,2y |? < " sup|H\2—|—I‘2

By a simple calculation, we derive

N N
(2.25) S =3 [ vy =n
a=1 a=1 2

Summing on 7 from 1 to k for (2.22), we have

k k
D (T =T’ =2 (Tq = L) (T3 = Ty)ristss
=1 %]
k F u; Ay
2 .« « i
(2.26) < ;ai(r,m — )2 + ; E(Fk“ ~ DIV - Vi + =
k k 1
DI NTTE BEIVES WIS = (i = D) (85)%
ij iy
Putting
) . L
0; = T 0 is a positive constant,
n?supq |H|? + (2n + 4)I?
then, we have
k k
= 0i(Trpr =TT =Ty (r)” = Y 6i(Thgr — T) (T = 1) (r)?
i.j i.j
k
== 6i(Tpp1 —T)(Tppr — 0T =T (r%)?
2om 2Tt = T (Tt =TT = 1))
1 k
— 5 D (Pt = T)(Dher = T3) (T = T5)(6 = ) (1)
ij

> 0.
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It is clear that

k k
(0% ]' (0%
=2 0i(Cher = T (T = D)) = D = (Trer — Do) (8)7
ij ij o

(2.28) k
< -2 Z(FkJrl - )T =Ty )letfj'

Therefore, it follows that

k
D (Cepr = To)%0f
=1
(2.29) )

k
1
Z (e =T +> 5 Lo =T VY™ - Vi +

i=1 ¢

Summing on « from 1 to N for (2.29), we infer, from(2.23), (2.24) and (2.25),

k

n Z(Fk_H — FZ)Q

=1

1
<Y 6i(Tpyr —Ty)? <n2 sup |H|*> + (2n + 4)1“2.2)
Q

1 1
(2.30) + 5 —(This —F)(4n sup |H|? +T7 )
i=1 "
k
=0 (Tppr —T4)
i=1
1o 1 1
+_Z<F’f+1 —F)( n sup\HF—i—F ><n28up|H|2+(2n+4)Ff).
3 4 @

Putting

1 1
ey — T nsup H2+F2 n*sup |H|> + (2n + 4)T'?
4 K3
: Q

k

Z(Pk—H —I;)?

i=1

N
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we obtain
k
> (Ten — i)
(231) T
1 1 1
<= T —T)) (n2 sup |H|* + (2n + 4)P;) <n2 sup |H|? + 41“;).
[ Q Q

Since the spectrum of the clamped plate problem is an invariant of isometries, we
know that the above inequality holds for any isometric immersion from M into a
Euclidean space.

Now we define ¢ as

¥ = {¢; ¢ is an isometric immersion from M into a Euclidean space}.
Putting
H? := inf sup |H|?,
0 dev QP| |

We infer (1.13). This completes the proof of the theorem.
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