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Abstract

In this paper, we investigate an eigenvalue problem for the Dirichlet Lapla-
cian on a domain in an n-dimensional compact Riemannian manifold. First we
give a general inequality for eigenvalues. As one of its applications, we study
eigenvalues of the Laplacian on a domain in an n-dimensional complex pro-
jective space, on a compact complex submanifold in complex projective space
and on the unit sphere. By making use of the orthogonalization of Gram-
Schmidt (QR-factorization theorem), we construct trial functions. By means
of these trial functions, estimates for lower order eigenvalues are obtained.

1 Introduction

Let M be an n-dimensional compact C∞ Riemannian manifold with or without
boundary, where the boundary ∂M of M is assumed to be C∞. It is known that
a large amount of information about the manifold is carried by the spectrum of its
Laplacian. The spectrum of the Laplacian on M is an important analytic invariant
and has important geometric meanings (cf. Chavel [8] and Protter [28]).

For M = Ω a bounded domain in Rn, let {λi} be the set of eigenvalues and {ui}
an orthonormal basis of eigenfunctions of the following Dirichlet eigenvalue problem:{

4u = −λu in Ω,
u = 0 on ∂Ω,

(1.1)

where 4 denotes the Laplacian on Rn. It is well known that the spectrum of this
eigenvalue problem (1.1) is real and discrete:

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,

where each eigenvalue is repeated with its multiplicity. When Ω = Bn is the
n-dimensional unit ball in Rn, we write λi(B

n) for these eigenvalues. It is well
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known that λi(B
n) are given by squares of the positive zeros of Bessel functions,

e.g. λ1(B
n) = j2

n/2−1,1 and λ2(B
n) = · · · = λn+1(B

n) = j2
n/2,1, where jp,k denotes

the kth positive zero of the Bessel function Jp(x) of the first kind of order p. The
following conjecture of Payne, Pólya and Weinberger is well known:

Conjecture of Payne, Pólya and Weinberger: For a bounded domain Ω in Rn,
the eigenvalues of (1.1) satisfy

(1)
λ2

λ1

≤ λ2(B
n)

λ1(Bn)
,

(2)
λ2 + λ3 + · · · + λn+1

λ1

≤ λ2(B
n) + λ3(B

n) + · · · + λn+1(B
n)

λ1(Bn)
= n

λ2(B
n)

λ1(Bn)
.

The conjecture (1) of Payne, Pólya and Weinberger was studied by many math-
ematicians, for examples, Payne, Pólya and Weinberger [27], Brands [7], de Vries
[13], Chiti [12], Hile and Protter [17]. Finally, Ashbaugh and Benguria [3] (cf. [2]
and [4]) proved this conjecture.

With regard to the conjecture (2) of Payne, Pólya and Weinberger, in the case

n = 2, the bound
λ2 + λ3

λ1

≤ 6 of Payne, Pólya and Weinberger [27] was improved

to
λ2 + λ3

λ1

≤ 3 +
√

7 by Brands [7]. Furthermore, Hile and Protter [17] obtained

λ2 + λ3

λ1

≤ 5.622. In [25], Marcellini proved
λ2 + λ3

λ1

≤ (15 +
√

345)/6. In 1993, for

general dimensions n ≥ 2, Ashbaugh and Benguria [5] proved

λ2 + λ3 + · · · + λn+1

λ1

≤ n(1 +
4

n
). (1.2)

In this paper, we consider an eigenvalue problem for the Dirichlet Laplacian on a
domain Ω in an n-dimensional compact Riemannian manifold without boundary. In
the sequel, we will always assume that boundary ∂Ω of the domain Ω is C∞. First
we will give a general inequality for eigenvalues of the Dirichlet Laplacian. As an
application, we study lower order eigenvalues of the Laplacian on a domain in an
n-dimensional complex projective space CPn(4), on a compact complex subman-
ifold in complex projective space and on the unit sphere, that is, we will give an
upper bound for λ2 + λ3 + · · · + λn+1, where n is the dimension of the Riemannian
manifold. We use the notation CPn(4) in this paper to denote the n-dimensional
complex projective space equipped with the Fubini-Study metric of the holomor-
phic sectional curvature 1 (whereas CPn carries the Fubini-Study metric with holo-
morphic sectional curvature 1

4
). We emphasize that in the sequence of eigenvalues

λ1 < λ2 ≤ λ3 ≤ · · · each eigenvalue is always repeated with its multiplicity.

Theorem 1.1. For a domain Ω in CPn(4), we consider the eigenvalue problem:{
4u = −λu in Ω,
u = 0 on ∂Ω,

(1.3)

2



where 4 denotes the Laplacian on CPn(4). Let λk be the kth eigenvalue of the
eigenvalue problem (1.3). Then we have

1

2n

2n∑
i=1

λi+1 ≤ 4(n + 1) + (1 +
2

n
)λ1.

Theorem 1.2. For a domain Ω in an n-dimensional compact complex submanifold
M of CPn+m(4), we consider the eigenvalue problem:{

4u = −λu in Ω,
u = 0 on ∂Ω,

(1.4)

where 4 is the Laplacian on M . Then, the eigenvalues λk (k = 1, 2, · · · , 2n + 1) of
the eigenvalue problem (1.4) satisfy

1

2n

2n∑
i=1

λi+1 ≤ 4(n + 1) + (1 +
2

n
)λ1.

Theorem 1.3. For a domain Ω in the n-dimensional unit sphere Sn(1), let λk be
the kth eigenvalue of the eigenvalue problem:{

4u = −λu in Ω,
u = 0 on ∂Ω,

(1.5)

where 4 is the Laplacian on Sn(1). Then we have

1

n

n∑
i=1

λi+1 ≤ n + (1 +
4

n
)λ1. (1.6)

Remark 1.1. When Ω = Sn(1), we know that λ1 = 0 and λ2 = · · · = λn+1 = n.
Hence, inequality (1.6) in the Theorem 1.3 becomes an equality. Thus, the inequality
(1.6) is optimal.

On the other hand, it seems to be an interesting and difficult problem to discuss
the sharpness of the inequalities in Theorems 1.1 and 1.2.

Remark 1.2. Estimates for higher order eigenvalues of the Laplacian have been
obtained by many mathematicians (cf. [9], [10], [11], [14], [15], [16], [17], [22], [23],
[24], [27], [29], [30] and [31]). For instance, when Ω is a bounded domain in Rn, the
sharpest estimate for higher order eigenvalues is due to Yang [30] (cf. Payne, Pólya
and Weinberger [27], Hile and Protter [17]), that is

k∑
i=1

(λk+1 − λi)(λk+1 − (1 +
4

n
λi)) ≤ 0, for k = 1, 2, · · · .

In particular, we should remark that, in [24], Levitin and Parnovski have used com-
mutator identities to obtain universal estimates for eigenvalues. They have given
abstract generalizations of the Payne, Pólya and Weinberger formula and of the
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Yang’s formula. It seems difficult, however, to make the estimates in [24] explicit
for the situation treated in this paper so that the relation of our present results to the
general results of Levitin and Parnovski would be clarified. We believe that it is not
possible to derive our present results from [24], at least if the ambient Riemannian
manifold has non-constant curvature.

When Ω is a domain in the unit sphere Sn(1), Cheng and Yang [9] have proved

k∑
i=1

(λk+1 − λi)
2 ≤

k∑
i=1

(λk+1 − λi)(n +
4

n
λi), for k = 1, 2, · · · .

When Ω is a domain in the n-dimensional complex projective space CPn(4), in [11],
they have derived

λk+1 ≤
(

1 +
1

n

)
1

k

k∑
i=1

λi + 2(n + 1)

+


[

1

n

1

k

k∑
i=1

λi + 2(n + 1)

]2

−
(

1 +
2

n

)
1

k

k∑
j=1

(
λj −

1

k

k∑
i=1

λi

)2


1/2

.

This paper is organized as follows. In Section 2 we consider an eigenvalue problem
for the Laplacian on a domain in an n-dimensional compact Riemannian manifold.
A general inequality for eigenvalues λi+1 will be given. As applications, in Sections 3,
4 and 5, we shall prove our Theorems 1.1, 1.2 and 1.3, respectively. In order to prove
our theorems, we must find good trial functions. In this paper, we make use of the
orthogonalization of Gram-Schmidt (QR-factorization theorem) to construct trial
functions. By means of these trial functions we obtain our estimates for eigenvalues.

Acknowledgements. We would like to express our gratitude to the referee and
the editor for their valuable suggestions.

2 An estimate for the eigenvalues of the Lapla-

cian

In this section, we shall consider an eigenvalue problem for the Laplacian on a domain
Ω in an n-dimensional Riemannian manifold M . We shall obtain a general inequality
for the eigenvalues which plays an important role in proofs of the Theorems 1.1, 1.2
and 1.3.

Theorem 2.1. For a domain Ω in an n-dimensional compact Riemannian manifold
M without boundary, we consider the eigenvalue problem:{

4u = −λu in Ω,
u = 0 on ∂Ω,

where 4 denotes the Laplacian on M . Assume that λi is the ith eigenvalue and {ui}
be an orthonormal system of eigenfunctions corresponding to {λi}. If gi ∈ C2(Ω̄)
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satisfies
∫

Ω
giu1uj = 0 for j = 2, · · · , i, then, the following holds:

(λi+1 − λ1)‖(∇gi)u1‖2 ≤ ‖(4gi)u1 + 2∇gi · ∇u1‖2,

where ∇ denotes the gradient operator on M and ‖f‖2 =
∫
Ω

f2.

Proof. From the assumptions of the Theorem 2.1, we have∫
Ω

giu1uj = 0, for i ≥ j > 1. (2.1)

We define a function ϕi by

ϕi = giu1 − u1

∫
Ω

giu
2
1. (2.2)

It is easy to see ∫
Ω

ϕiu1 = 0.

Combining with (2.1) ϕi satisfies∫
Ω

ϕiuj = 0, for any j with j ≤ i.

Thus, ϕi is a trial function. According to the Rayleigh-Ritz inequality, we have

λi+1 ≤
∫

Ω
|∇ϕi|2∫
Ω

ϕ2
i

. (2.3)

From the definition of ϕi, we have∫
Ω

ϕ2
i =

∫
Ω

ϕi

(
giu1 − u1

∫
Ω

giu
2
1

)
=

∫
Ω

ϕigiu1, (2.4)

and

4ϕi = (4gi)u1 + 2∇gi · ∇u1 − λ1giu1 + λ1u1

∫
Ω

giu
2
1. (2.5)

From (2.2), (2.4) and (2.5), we infer∫
Ω

|∇ϕi|2 = −
∫

Ω

ϕi4ϕi

= −
∫

Ω

ϕi{(4gi)u1 + 2∇gi · ∇u1 − λ1giu1}

= λ1

∫
Ω

ϕ2
i −

∫
Ω

ϕi{(4gi)u1 + 2∇gi · ∇u1}.

From (2.3) and the above inequality, we obtain

(λi+1 − λ1)

∫
Ω

ϕ2
i ≤ −

∫
Ω

ϕi{(4gi)u1 + 2∇gi · ∇u1}.
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Letting ωi = −
∫

Ω
ϕi{(4gi)u1 + 2∇gi · ∇u1}, we have

(λi+1 − λ1)‖ϕi‖2 ≤ ωi. (2.6)

From the Cauchy-Schwarz inequality, we derive

ω2
i ≤ ‖ϕi‖2‖(4gi)u1 + 2∇gi · ∇u1‖2. (2.7)

Multiplying (2.7) by (λi+1 − λ1), we get

(λi+1 − λ1)ω
2
i ≤ (λi+1 − λ1)‖ϕi‖2‖(4gi)u1 + 2∇gi · ∇u1‖2. (2.8)

Combining this with (2.6) we obtain

(λi+1 − λ1)ωi ≤ ‖(4gi)u1 + 2∇gi · ∇u1‖2. (2.9)

On the other hand, we have

ωi = −
∫

Ω

ϕi{(4gi)u1 + 2∇gi · ∇u1}

= −
∫

Ω

gi(4gi)u
2
1 −

1

2

∫
Ω

∇g2
i · ∇u2

1

+

∫
Ω

(4gi)u
2
1

∫
Ω

giu
2
1 +

∫
Ω

∇gi · ∇u2
1

∫
Ω

giu
2
1.

(2.10)

By making use of Stokes’ formula, it is easy to obtain

−
∫

Ω

gi(4gi)u
2
1 =

∫
Ω

|u1∇gi|2 +
1

2

∫
Ω

∇g2
i · ∇u2

1 (2.11)

and ∫
Ω

(4gi)u
2
1 = −

∫
Ω

∇gi · ∇u2
1. (2.12)

Substituting (2.11) and (2.12) into (2.10), we have

ωi =

∫
Ω

|u1∇gi|2 = ‖(∇gi)u1‖2. (2.13)

According to (2.13) and (2.9), we infer

(λi+1 − λ1)‖(∇gi)u1‖2 ≤ ‖(4gi)u1 + 2∇gi · ∇u1‖2.

It completes the proof of the Theorem 2.1.

¤
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3 Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. First we state two simple
algebraic lemmas, which will be used in proof of the Theorem.

Let A∗ denote the adjoint matrix of a matrix A = (aij), U(n) and O(n) be
the set of all n × n unitary matrices and the set of all n × n orthogonal matrices,
respectively.

Lemma 3.1. For a matrix C = (Cpq) ∈ U(n), we have A = (Aαβ) = (CpsCqt) ∈
U(n2) and B = (Bαβ) = (CpsCqt) ∈ U(n2), where α = (p, q), β = (s, t).

Lemma 3.2. For a complex matrix A + iB ∈ U(n), where A and B are n × n real

matrices, we have D =

(
A −B
B A

)
∈ O(2n).

Let Z = (Z0, Z1, · · · , Zn) be a homogeneous coordinate system on CPn(4).
Defining functions fpq̄ by

fpq̄ =
ZpZq

n∑
r=0

ZrZr

, (3.1)

we have

fpq̄ = fqp̄,

n∑
p,q=0

fpq̄fpq̄ = 1. (3.2)

Let Ω be as in Theorem 1.1. For any fixed point P ∈ Ω, we can choose a new
homogeneous coordinate system on CPn(4) such that, at P ,

Z̃0 6= 0, Z̃1 = · · · = Z̃n = 0 (3.3)

and

Zp =
n∑

r=0

CprZ̃
r, (3.4)

where the (n + 1) × (n + 1)-matrix C = (Cpr) ∈ U(n + 1). Therefore, if we denote

zp = Z̃p/Z̃0, then z = (z1, · · · , zn) is a local holomorphic coordinate system on
CPn(4) in a neighborhood U of P ∈ Ω and

z0 = 1, z1 = · · · = zn = 0 (3.5)

at P . Define functions f̃pq by

f̃pq =
Z̃pZ̃q

n∑
r=0

Z̃rZ̃r

=
zpzq

1 +
n∑

r=1

zrzr

. (3.6)

It is easy to check that f̃pq and fpq satisfy

fpq =
n∑

r,s=0

CprCqsf̃rs, p, q = 0, 1, · · · , n. (3.7)
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Now we consider the 2(n + 1)2 functions Re(fpq) and Im(fpq), denoted by gα,
where p, q = 0, 1, . . . , n. Then, we have

2(n+1)2∑
α=1

g2
α =

n∑
p,q=0

fpqfpq =
n∑

p,q=0

f̃pqf̃pq = 1, (3.8)

and
2(n+1)2∑

α=1

gα∇gα = 0. (3.9)

In the local coordinate system we have

∆f =
n∑

p,q=1

4gpq ∂2f

∂zp∂zq ,

where ds2 =
n∑

p,q=1

gpqdzpdzq is the Fubini-Study metric of CPn(4), and

gpq =
δpq

1 +
n∑

r=1

|zr|2
− zqzp(

1 +
n∑

r=1

|zr|2
)2 ,

(gpq)
−1 = (gpq),

gpq =

(
1 +

n∑
r=1

|zr|2
)

(δpq + zqzp).

Let g̃α denote the 2(n + 1)2 functions Re(f̃pq) and Im(f̃pq), where p, q = 0, 1, . . . , n.
From (3.5) and (3.6), it is not difficult to check that, at P ,

∆ = 4
n∑

r=1

∂2

∂zr∂zr
, (3.10)


∇f̃pq = 0, when pq 6= 0 or p = q = 0,

Re∇pf̃q0 = δpq, Im∇pf̃q0 = δpq,

Re∇pf̃0q = δpq, Im∇pf̃0q = −δpq,

(3.11)

∆f̃pq =


0, when p 6= q,
−4n, when p = q = 0,
4, when p = q = r 6= 0.

(3.12)

8



Lemma 3.3. At any point P ∈ Ω, the functions gα satisfy

2(n+1)2∑
α=1

|∇gα|2 = 4n,

2(n+1)2∑
α=1

|∆gα|2 = 16n(n + 1),

2(n+1)2∑
α=1

∇gα∆gα = 0,

2(n+1)2∑
α=1

|∇gα · ∇u1|2 = 2|∇u1|2.

Proof. By making use of the same notation as above, because of C = (Cpq) ∈
U(n + 1), from the Lemma 3.1 we infer A = (Aαβ) = (CpsCqt) ∈ U((n + 1)2). Put
A = A1 + iA2. From (3.7), we know

(gα) =

(
A1 −A2

A2 A1

)
(g̃β).

From the Lemma 3.2, we see (
A1 −A2

A2 A1

)
is a 2(n + 1)2 × 2(n + 1)2 orthogonal matrix. We denote it by O = (Oαβ). Thus, we
have, for any α,

gα =
∑

β

Oαβ g̃β. (3.13)

Without loss of generality, we rearrange the 2(n + 1)2 functions g̃α such that the
first 4n functions are

Ref̃10, · · · , Ref̃n0, Imf̃10, · · · , Imf̃n0, Ref̃01, · · · , Ref̃0n, Imf̃01, · · · , Imf̃0n,

denoted by g̃s0 and g̃0t, where s, t = 1, · · · , n. And we still denote the other 2(n +
1)2 − 4n functions by g̃α. Therefore, from (3.11), we have

∇pg̃p0 = 1, p = 1, · · · , 2n,
∇pg̃0p = 1, p = 1, · · · , n,
∇pg̃0p = −1, p = n + 1, · · · , 2n,
∇pg̃α = 0, α = 4n + 1, · · · , 2(n + 1)2.

(3.14)

Since O is an orthogonal matrix, from (3.13) and (3.14), we have

2(n+1)2∑
α=1

|∇gα|2 =

2(n+1)2∑
α=1

2(n+1)2∑
β=1

Oαβ∇g̃β ·
2(n+1)2∑

γ=1

Oαγ∇g̃γ

=

2(n+1)2∑
α=1

|∇g̃α|2 =
2n∑

p=1

[(∇pg̃p0)
2 + (∇pg̃0p)

2]

= 4n.
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Similarly, we have

2(n+1)2∑
α=1

∇gα∆gα =
n∑

p,q=0

(∇Ref̃pq∆Ref̃pq + ∇Imf̃pq∆Imf̃pq) = 0,

2(n+1)2∑
α=1

|∆gα|2 =

2(n+1)2∑
α=1

|∆g̃α|2 =
n∑

p,q=0

∆f̃pq∆f̃pq

= 4n · 4n + 4 · 4 · n = 16n(n + 1),

2(n+1)2∑
α=1

(∇gα · ∇u1)
2 =

2(n+1)2∑
α=1

2(n+1)2∑
β=1

Oαβ∇g̃β · ∇u1

2(n+1)2∑
γ=1

Oαγ∇g̃γ · ∇u1

=

2(n+1)2∑
β=1

(∇g̃β · ∇u1)
2 =

2(n+1)2∑
β=1

(
2n∑

p=1

∇pg̃β∇pu1)
2

=
2n∑

p=1

[(∇pg̃p0∇pu1)
2 + (∇pg̃0p∇pu1)

2]

= 2|∇u1|2.
This finishes the proof of the Lemma 3.3.

¤

Lemma 3.4. Let (hα) = Q(gβ), where Q = (qαβ) is a constant orthogonal 2(n +
1)2 × 2(n + 1)2 matrix. At any point P ∈ Ω, we then have

|∇hα|2 ≤ 2, α = 1, · · · , 2(n + 1)2.

Proof. From (3.13), we have

(hα) = Q(gβ) = QO(g̃β).

Without loss of generality, we still denote the orthogonal 2(n+1)2×2(n+1)2 matrix
QO by O = (Oαβ). Thus, we have

(hα) = O(g̃β).

By rearranging the 2(n + 1)2 functions g̃α as in the proof of the Lemma 3.3, from
(3.13) and (3.14) we obtain

|∇hα|2 =
2n∑

p=1

2(n+1)2∑
β=1

Oαβ∇pg̃β

2(n+1)2∑
γ=1

Oαγ∇pg̃γ

=
2n∑

p=1

(Oα(p,0)∇pg̃p0 + Oα(0,p)∇pg̃0p)
2
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=
n∑

p=1

(Oα(p,0) + Oα(0,p))
2 +

2n∑
p=n+1

(Oα(p,0) − Oα(0,p))
2

≤
2n∑

p=1

[(Oα(p,0))
2 + (Oα(0,p))

2 + 2|Oα(p,0)Oα(0,p)|]

≤ 2
2n∑

p=1

[(Oα(p,0))
2 + (Oα(0,p))

2]

≤ 2
2(n+1)2∑

β=1

(Oαβ)2 = 2.

Hence, the Lemma 3.4 is proved.

¤

Proof of Theorem 1.1. Let Z = (Z0, Z1, · · · , Zn) be a homogeneous coordinate
system on CPn(4). We consider the functions fpq defined by (3.1). Let gα denote
the 2(n+1)2 functions Refpq and Imfpq as above. We consider the 2(n+1)2×2(n+1)2

matrix A defined by

A =


∫

Ω
g1u1u2

∫
Ω

g1u1u3 · · ·
∫

Ω
g1u1u2(n+1)2+1∫

Ω
g2u1u2

∫
Ω

g2u1u3 · · ·
∫

Ω
g2u1u2(n+1)2+1

· · · · · · · · · · · ·∫
Ω

g2(n+1)2u1u2

∫
Ω

g2(n+1)2u1u3 · · ·
∫

Ω
g2(n+1)2u1u2(n+1)2+1

 .

From the orthogonalization of Gram-Schmidt (QR-factorization theorem), we know
that A can be written by

T = OA,

where O = (Okl) is an orthogonal 2(n + 1)2 × 2(n + 1)2 matrix and T is an upper
triangular matrix. Hence, we have, for any k and j with k > j,

2(n+1)2∑
l=1

Okl

∫
Ω

glu1uj+1 = 0.

Defining functions hk by (hk) = O(gj), i.e. hk =
∑2(n+1)2

j=1 Okjgj, we infer, for any

i, j = 1, 2, · · · , 2(n + 1)2 satsfying i > j,∫
Ω

hiu1uj+1 = 0. (3.15)

Hence, these functions hα, α = 1, 2, · · · , 2(n + 1)2, satisfy the conditions in the
Theorem 2.1. Applying the theorem we obtain

(λα+1 − λ1)‖(∇hα)u1‖2 ≤ ‖(4hα)u1 + 2∇hα · ∇u1‖2.

Summing on α from 1 to 2(n + 1)2, we have

2(n+1)2∑
α=1

λα+1‖(∇hα)u1‖2 ≤
2(n+1)2∑

α=1

‖(4hα)u1 + 2∇hα · ∇u1‖2. (3.16)
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Since hα =
2(n+1)2∑

β=1

Oαβgβ holds, from the Lemma 3.3 we obtain



2(n+1)2∑
α=1

|∇hα|2 = 4n,

2(n+1)2∑
α=1

|∆hα|2 = 16n(n + 1),

2(n+1)2∑
α=1

∇hα∆hα = 0,

2(n+1)2∑
α=1

|∇hα · ∇u1|2 = 2|∇u1|2.

(3.17)

Hence, we infer, from (3.16) and (3.17),

2(n+1)2∑
α=1

λα+1‖∇hαu1‖2 ≤ 16n(n + 1) + 4(n + 2)λ1.

On the other hand, from (3.17) and Lemma 3.4, we have

2(n+1)2∑
α=1

λα+1|∇hα|2

≥
2n∑

α=1

λα+1|∇hα|2 + λ2n+1

2(n+1)2∑
α=2n+1

|∇hα|2

=
2n∑

α=1

λα+1|∇hα|2 + λ2n+1(4n −
2n∑

α=1

|∇hα|2)

=
2n∑

α=1

λα+1|∇hα|2 + λ2n+1

2n∑
α=1

(2 − |∇hα|2)

≥
2n∑

α=1

λα+1|∇hα|2 +
2n∑

α=1

(2 − |∇hα|2)λα+1

= 2
2n∑

α=1

λα+1.

Therefore, we have∫
Ω

2
2n∑

α=1

λα+1u
2
1 ≤

∫
Ω

2(n+1)2∑
α=1

λα+1|∇hα|2u2
1 =

2(n+1)2∑
α=1

λα+1‖∇hαu1‖2.

Thus, we finally infer

1

2n

2n∑
i=1

λi+1 ≤ 4(n + 1) + (1 +
2

n
)λ1,

which is the claim made in Theorem 1.1.

¤
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4 Proof of Theorem 1.2

In this section, we shall give the proof of the Theorem 1.2. Let Ω be a do-
main in an n-dimensional compact complex submanifold M of CPn+m(4). Let
Z = (Z0, Z1, · · · , Zn+m) be a homogeneous coordinate system on CPn+m(4). The
functions fpq̄ defined by

fpq̄ =
ZpZq

n+m∑
r=0

ZrZr

(4.1)

satisfy

fpq = fqp ,

n+m∑
p,q=0

fpqfpq = 1. (4.2)

By making use of the same assertion as in the section 3, for any point P ∈ Ω, we
can choose a new homogeneous coordinate system on CPn+m(4) such that, at P,

Z̃0 6= 0, Z̃1 = · · · = Z̃n+m = 0 (4.3)

and

Zp =
n+m∑
r=0

CprZ̃
r, (4.4)

where C = (Cpr) ∈ U(n + m + 1). Therefore, if we denote zp = Z̃p/Z̃0, then
z = (z1, · · · , zn+m) is a local holomorphic coordinate system of CPn+m(4) in a
neighborhood U of P ∈ Ω and

z0 = 1, z1 = · · · = zn+m = 0 (4.5)

at P , and zn+i = li(z
1, . . . , zn) (i = 1, · · · ,m) are holomorphic functions of

z1, . . . , zn which satisfy

∂li
∂zp

(P ) = 0, p = 1, · · · , n. (4.6)

Then, we can easily compute

f̃pq =
Z̃pZ̃q

n+m∑
r=0

Z̃rZ̃r

=
zpzq

1 +
n+m∑
r=1

zrzr

, (4.7)

and

fpq =
n+m∑
r,s=0

CprCqsf̃rs, p, q = 0, 1, · · · , n + m. (4.8)

13



Now we consider the 2(n + m + 1)2 functions Re(fpq) and Im(fpq), denoted by gα,
where p, q = 0, 1, . . . , n + m. Then, we have

2(n+m+1)2∑
α=1

g2
α =

n+m∑
p,q=0

fpqfpq =
n+m∑
p,q=0

f̃pqf̃pq = 1, (4.9)

and
2(n+m+1)2∑

α=1

gα∇gα = 0. (4.10)

In the local coordinate system on U , we have ds2
M =

n∑
p=1

dzpdzp + O(z2). For the

Laplacian 4 on the n-dimensional complex submanifold M in CPn+m(4) we have

4CPn+m(4)f = 4f +
m∑

i=1

fn+i n+i. We denote the 2(n+m+1)2 functions Re(f̃pq) and

Im(f̃pq) by g̃α, where p, q = 0, 1, . . . , n + m. From (4.6), (4.7) and (4.8) we have, at
P ,

∆ = 4
n∑

r=1

∂2

∂zr∂zr
, (4.11)

∇f̃pq = 0, when pq 6= 0 or p = q = 0,

Re∇pf̃q0 = δpq, Im∇pf̃q0 = δpq,

Re∇pf̃0q = δpq, Im∇pf̃0q = −δpq,

(4.12)

∆f̃pq =

 0, when p 6= q, or p = q = n + 1, · · · , n + m,
−4n, when p = q = 0,
4, when p = q = 1, · · · , n.

(4.13)

By making use of the same calculations as in the Lemma 3.3 and Lemma 3.4, we
now obtain the following:

Lemma 4.1. For any point P ∈ Ω, we have

2(n+m+1)2∑
α=1

|∇gα|2 = 4n,

2(n+m+1)2∑
α=1

|∆gα|2 = 16n(n + 1),

2(n+m+1)2∑
α=1

∇gα∆gα = 0,

2(n+m+1)2∑
α=1

|∇gα · ∇u1|2 = 2|∇u1|2.

(4.14)

Lemma 4.2. Let (hα) = Q(gβ), where Q = (qαβ) is a constant orthogonal 2(n +
m + 1)2 × 2(n + m + 1)2 matrix. At any point P ∈ Ω, we have

|∇hα|2 ≤ 2, α = 1, · · · , 2(n + m + 1)2. (4.15)
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Proof of Theorem 1.2. From Lemma 4.1 and Lemma 4.2, we can derive Theorem by
employing the same arguments as in the proof of Theorem 1.1.

¤

5 Proof of Theorem 1.3

In this section, we shall give the proof of the Theorem 1.3.
Let Ω ⊂ Sn(1) be a domain in the n-dimensional unit sphere Sn(1). Let

x1, x2, · · · , xn+1 be the standard coordinate functions on Rn+1 so that Sn(1) =
{(x1, x2, · · · , xn+1) ∈ Rn+1;

∑n+1
j=1 (xj)2 = 1}. It is well known that xp (for p =

1, · · · , n + 1) satisfy
∆xp = −nxp.

Lemma 5.1. Let (hα) = Q(xβ), where Q = (qαβ) is a constant orthogonal (n+1)×
(n + 1) matrix. For any point P in Ω, we have

|∇hp|2 ≤ 1, for p = 1, 2, · · · , n,
n+1∑
p=1

|∇hp|2 = n,

n+1∑
p=1

(∇hp · ∇ui)
2 = |∇ui|2.

Proof. For any fixed point P ∈ Ω, we can find a coordinate system (x̄1, . . . , x̄n+1)
on Rn+1 such that, at P ,

x̄1 = · · · = x̄n = 0, x̄n+1 = 1,

∇x̄n+1 = 0; ∇px̄
q = δpq. (p, q = 1, . . . , n).

(5.1)

In fact, we can choose a constant (n + 1) × (n + 1) orthonormal matrix A = (aij)
such that

xp =
n+1∑
α=1

apαx̄α,

and (5.1), (5.2) is satisfied at P . Hence, we have

(hα) = QA(x̄β),

where QA is also a constant orthogonal (n + 1)× (n + 1) matrix. We still denote it
by A = (aij) without loss of generality. Thus, at P , we have

|∇hp|2 =
n+1∑
α=1

apα∇x̄α ·
n+1∑
β=1

apβ∇x̄β

15



=
n∑

j=1

n+1∑
α,β=1

apαapβ∇jx̄
α · ∇jx̄

β

=
n∑

j=1

apjapj ≤ 1,

n+1∑
p=1

|∇hp|2 = n,

and
n+1∑
p=1

(∇hp · ∇ui)
2 =

n+1∑
p,q,α=1

aα
p aα

q (∇x̄p · ∇ui)(∇x̄q · ∇ui)

=
n+1∑
p=1

(∇x̄p · ∇ui)
2 =

n∑
p=1

(∇pui)
2

= |∇ui|2.
Since P is arbitrary the Lemma is proved.

¤

Proof of Theorem 1.3. For the functions gi = xi, we consider the (n + 1) × (n + 1)
matrix A defined by

A =


∫

Ω
g1u1u2

∫
Ω

g1u1u3 · · ·
∫
Ω

g1u1un+2∫
Ω

g2u1u2

∫
Ω

g2u1u3 · · ·
∫
Ω

g2u1un+2

· · · · · · · · · · · ·∫
Ω

gn+1u1u2

∫
Ω

gn+1u1u3 · · ·
∫

Ω
gn+1u1un+2

 .

From the same arguments as in the proof of Theorem 1.1 in the Section 3, we
infer that there exists an orthogonal matrix O = (Okj) such that hk =

∑n+1
j=1 Okjgj

satisfies, for any i, j = 1, 2, · · · , n + 1 with i > j,∫
Ω

hiu1uj+1 = 0. (5.2)

Applying Theorem 2.1 to the functions hi and summing on i from 1 to n+1, we get

n+1∑
i=1

(λi+1 − λ1)‖(∇hi)u1‖2 ≤
n+1∑
i=1

‖(4hi)u1 + 2∇hi · ∇u1‖2.

Since
∑n+1

p=1 (xp)2 = 1, 4xp = −nxp, we have

n+1∑
p=1

∇(xp)2 = 0,

n+1∑
p=1

|∇xp|2 = −
n+1∑
p=1

xp∆xp = n.
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Hence, from Lemma 5.1, we infer

n+1∑
i=1

λi+1‖∇hiu1‖2 ≤ n2 + (4 + n)λ1

and

n+1∑
i=1

λi+1|∇hi|2 ≥
n∑

i=1

λi+1|∇hi|2 + λn+1|∇hn+1|2

=
n∑

i=1

λi+1|∇hi|2 + λn+1(n −
n∑

i=1

|∇hi|2)

≥
n∑

i=1

λi+1.

Thus we have proved the claim

1

n

n∑
i=1

λi+1 ≤ n + (1 +
4

n
)λ1.

¤
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