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INEQUALITIES FOR EIGENVALUES
OF A CLAMPED PLATE PROBLEM

QING-MING CHENG AND HONGCANG YANG

Abstract. Let D be a connected bounded domain in an n-dimensional Eu-
clidean space R

n. Assume that

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·
are eigenvalues of a clamped plate problem or an eigenvalue problem for the
Dirichlet biharmonic operator:⎧⎪⎨

⎪⎩
∆2u = λu, in D,

u|∂D =
∂u

∂n

∣∣∣∣
∂D

= 0.

Then, we give an upper bound of the (k+1)-th eigenvalue λk+1 in terms of the
first k eigenvalues, which is independent of the domain D, that is, we prove
the following:

λk+1 ≤ 1

k

k∑
i=1

λi +

[
8(n + 2)

n2

]1/2 1

k

k∑
i=1

[
λi(λk+1 − λi)

]1/2

.

Further, a more explicit inequality of eigenvalues is also obtained.

1. Introduction

Let R
n denote an n-dimensional Euclidean space and let D be a connected

bounded domain in R
n. An eigenvalue problem of a fixed membrane or Dirichlet

Laplacian on a bounded domain D in R
n is the following:

(1.1)

{
∆u = −λu, in D,

u|∂D = 0,

where ∆ is the Lapalacian in R
n.

It is well known that this problem has a real and purely discrete spectrum

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞.
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Here each eigenvalue is repeated from its multiplicity. When n = 2, in 1955 and
1956, Payne, Pólya and Weinberger proved that, in [10] and [11],

λ2

λ1
≤ 3 for D ⊂ R

2,

and they conjectured
λ2

λ1
≤ λ2

λ1
|disk ≈ 2.5387

with equality if and only if D is a disk. For general n ≥ 2, an analogous statement
is

λ2

λ1
≤ 1 +

4
n

for D ⊂ R
n,

and the conjecture of Payne, Pólya and Weinberger is

λ2

λ1
≤ λ2

λ1
|n-ball

with equality if and only if D is an n-ball. In their excellent papers [3], [4] and
[5], Ashbaugh and Benguria solved this important conjecture of Payne, Pólya and
Weinberger.

On the other hand, for estimates of higher eigenvalues, Payne, Pólya and Wein-
berger in [11] proved

(1.2) λm+1 − λm ≤ 2
m

m∑
i=1

λi, m = 1, 2, · · · ,

for D ⊂ R
2. For general n ≥ 2, we have

(1.3) λm+1 − λm ≤ 4
mn

m∑
i=1

λi, m = 1, 2, · · · ,

for D ⊂ R
n. Although these results introduced by Payne, Pólya and Weinberger

have been extended by many authors, a result of Hile and Protter in [7] and a result
of the second author in [12] are two main developments. Namely, in 1980, Hile and
Protter [7] proved

(1.4)
m∑

i=1

λi

λm+1 − λi
≥ mn

4
, for m = 1, 2, · · · .

It is not hard to check that the inequality (1.4) of Hile and Protter is sharper than
the inequality (1.3) of Payne, Pólya and Weinberger. In 1991, Yang [12] obtained
very sharp inequalities, that is, he derived

(1.5)
m∑

i=1

(
λm+1 − λi

)(
λm+1 − (1 +

4
n

)λi

)
≤ 0, for m = 1, 2, · · · .

According to the inequality, we can infer

(1.6) λm+1 ≤ 1
m

(1 +
4
n

)
m∑

i=1

λi, for m = 1, 2, · · · .

It is easy to prove that Yang’s inequalities (1.5) and (1.6) are sharper than the
inequality (1.4) of Hile and Protter (see [1] and [2] for details).
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On the other hand, in order to describe vibrations of a clamped plate, we must
consider an eigenvalue problem for Dirichlet biharmonic operator, called a clamped
plate problem:

(1.7)

⎧⎪⎨
⎪⎩

∆2u =λu, in D,

u|∂D =
∂u

∂n

∣∣∣∣
∂D

= 0,

where ∆ is the Laplacian in R
n and ∆2 is the biharmonic operator in R

n.
For this clamped plate problem, in 1956, Payne, Pólya and Weinberger [11] also

established an inequality for the biharmonic operator ∆2. They obtained

(1.8) λk+1 − λk ≤ 8(n + 2)
n2

1
k

k∑
i=1

λi.

As a generalization of their result, in 1984, Hile and Yeh [8] obtained

(1.9)
k∑

i=1

λ
1/2
i

λk+1 − λi
≥ n2k3/2

8(n + 2)

(
k∑

i=1

λi

)−1/2

,

by making use of an improved method of Hile and Protter [7]. Furthermore, in
1990, Hook [9], Chen and Qian [6] proved, independently, the following inequality:

(1.10)
n2k2

8(n + 2)
≤

[∑
i=1

λ
1/2
i

λk+1 − λi

]
k∑

i=1

λ
1/2
i .

Recently, in [1], a survey paper on recent developments of eigenvalue problems,
Ashbaugh pointed out whether one can establish inequalities for eigenvalues of the
vibrating clamped plate problem which are analogous inequalities of Yang in the
case of the eigenvalue problem of the Laplacian with Dirichlet boundary condition.

In this paper, we shall give an affirmative answer for the problem introduced by
Ashbaugh, that is, we obtain the following:

Theorem 1. Let λi denote the i-th eigenvalue of the clamped plate problem

(1.11)

⎧⎪⎨
⎪⎩

∆2u =λu, in D,

u|∂D =
∂u

∂n

∣∣∣∣
∂D

= 0,

where D is a connected bounded domain in R
n. Then we have

(1.12) λk+1 −
1
k

k∑
i=1

λi ≤
[
8(n + 2)

n2

]1/2 1
k

k∑
i=1

[
λi(λk+1 − λi)

]1/2

.

From Theorem 1, we can conclude the following more explicit inequality which
is weaker than (1.12).
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Corollary 1. Under the assumption of Theorem 1, we have

(1.13)

λk+1 ≤
[
1 +

4(n + 2)
n2

]
1
k

k∑
i=1

λi

+

⎧⎪⎨
⎪⎩

[
4(n + 2)

n2

1
k

k∑
i=1

λi

]2

− 8(n + 2)
n2

1
k

k∑
i=1

⎛
⎝λi −

1
k

k∑
j=1

λj

⎞
⎠

2
⎫⎪⎬
⎪⎭

1/2

.

Remark 1. It is obvious that inequalities (1.12) and (1.13) are sharper than the
inequality

(1.14) λk+1 ≤
[
1 +

8(n + 2)
n2

]
1
k

k∑
i=1

λi.

It is easy to see that inequality (1.14) is better than inequality (1.8) of Payne, Pólya
and Weinberger. We shall also discuss the relation between inequality (1.14) and
inequality (1.10) introduced by Hook [9], and Chen and Qian [6] in the Remark 2
of Section 2.

2. Proofs of main results

In this section, we shall prove our main results.

Proof of Theorem 1. Let g = xp, p = 1, · · · , n , where (x1, x2, · · · , xn) are the
standard Euclidean coordinates. Let ui be i-th orthonormal eigenfunction corre-
sponding to eigenvalue λi, i = 1, 2, · · · , k, that is, ui satisfies

(2.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∆2ui = λiui, in D,

ui|∂D =
∂ui

∂n

∣∣∣∣
∂D

= 0,∫
D

uiuj = δij , for any i, j.

Defining a function ϕi by

(2.2) ϕi = gui −
k∑

j=1

aijuj ,

where aij =
∫

D
guiuj = aji, then we have

(2.3)
∫

D

ujϕi = 0, for any i, j = 1, · · · , k.

Hence, we have

(2.4) λk+1 ≤
∫

D
(∆ϕi)2∫

D
(ϕi)2

.

From the definition of g, we have

(2.5) ∇g = (0, · · · , 0, 1, 0, · · · , 0),

where ∇ denotes the gradient operator of R
n.
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Next, we shall make an estimate of
∫

D
(∆ϕi)2. From (2.1), (2.2) and (2.3), we

obtain

(2.6)

∫
D

(∆ϕi)2 =
∫

D

ϕi∆2ϕi

=
∫

D

ϕi

⎧⎨
⎩∆2(gui −

k∑
j=1

aijuj)

⎫⎬
⎭

=
∫

D

ϕi

⎛
⎝∆2(gui) −

k∑
j=1

aijλjuj

⎞
⎠

=
∫

D

ϕi

(
4〈∇g,∇(∆ui)〉 + λigui

)

=
∫

D

{
4(gui −

k∑
j=1

aijuj)〈∇g,∇(∆ui)〉 + ϕiλigui

}

=λi ‖ ϕi ‖2 −4
k∑

j=1

aijbij +
∫

D

4gui〈∇g,∇(∆ui)〉,

where

(2.7) bij =
∫

D

〈∇g,∇ui〉(∆uj) = −bji

and

‖ϕi‖2 =
∫

D

ϕi
2.

By a simple calculation, we have, from (2.5),

(2.8)

4
∫

D

gui〈∇g,∇(∆ui)〉

= − 2
∫

D

∆ui〈∇ui,∇g2〉 − 2
∫

D

∆ui(ui∆g2)

=
∫

D

(
4|∇pui|2 + 2|∇ui|2

)
= 4‖∇pui‖2 + 2‖∇ui‖2.

Then, according to (2.4), (2.6) and (2.8), we obtain

(2.9) (λk+1 − λi) ‖ ϕi ‖2≤
(
2‖∇ui‖2 + 4‖∇pui‖2

)
− 4

k∑
j=1

aijbij .

On the other hand, since ∫
D

ui〈∇(gui),∇g〉 =
1
2
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holds, we have

(2.10)

∫
D

ϕi(−2〈∇g,∇ui〉)

= − 2
∫

D

(gui −
k∑

j=1

aijuj)〈∇g,∇ui〉

=2
∫

D

ui〈∇(gui),∇g〉 + 2
∫

D

k∑
j=1

aijuj〈∇g,∇ui〉

=1 + 2
k∑

j=1

aijcij ,

where

(2.11) cij =
∫

D

uj〈∇g,∇ui〉 = −cji.

Because of

λiaij =
∫

D

(∆2ui)guj = λjaij + 4
∫

D

〈∇g,∇uj〉(∆ui) = λjaij − 4bij ,

we have

(2.12) −(λi − λj)aij = 4bij = −4bji.

For any constant α > 0, we have, from (2.3), (2.5) and (2.10),

(2.13)

1 + 2
k∑

j=1

aijcij

=
∫

D

ϕi

⎛
⎝−2〈∇g,∇ui〉 + 2

k∑
j=1

cijuj

⎞
⎠

≤
∫

D

{
αϕ2

i +
1
α

(
−〈∇g,∇ui〉 +

k∑
j=1

cijuj

)2}

=α‖ϕi‖2 +
1
α

⎛
⎝‖∇pui‖2 −

k∑
j=1

c2
ij

⎞
⎠ .
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Multiplying (2.13) by (λk+1 − λi), we infer, from (2.9),

(2.14)

(1 + 2
k∑

j=1

aijcij)(λk+1 − λi)

≤(λk+1 − λi)

⎧⎨
⎩α‖ϕi‖2 +

1
α

(
‖∇pui‖2 −

k∑
j=1

c2
ij

)⎫⎬
⎭

≤α

⎛
⎝2‖∇ui‖2 + 4‖∇pui‖2 − 4

k∑
j=1

aijbij

⎞
⎠

+
λk+1 − λi

α

⎛
⎝‖∇pui‖2 −

k∑
j=1

c2
ij

⎞
⎠ .

Putting α = (λk+1 − λi)1/2α1, α1 = (2n + 4)−1/2, we have

(2.15)

λk+1 − λi + 2
k∑

j=1

(λk+1 − λi)aijcij

≤ α1(λk+1 − λi)1/2

⎛
⎝2‖∇ui‖2 + 4‖∇pui‖2 − 4

k∑
j=1

aijbij

⎞
⎠

+
1
α1

(λk+1 − λi)1/2

⎛
⎝‖∇pui‖2 −

k∑
j=1

c2
ij

⎞
⎠ .

Taking sum on i from 1 to k for (2.15), we have

(2.16)

k∑
i=1

(λk+1 − λi) + 2
k∑

i=1

k∑
j=1

(λk+1 − λi)aijcij

≤ α1

k∑
i=1

(λk+1 − λi)1/2

⎛
⎝2‖∇ui‖2 + 4‖∇pui‖2 − 4

k∑
j=1

aijbij

⎞
⎠

+
1
α1

k∑
i=1

(λk+1 − λi)1/2

⎛
⎝‖∇pui‖2 −

k∑
j=1

c2
ij

⎞
⎠ .

Defining

(2.17) A =
k∑

i=1

(λk+1 − λi)1/2

[
α1

(
4‖∇pui‖2 + 2‖∇ui‖2

)
+

1
α1

‖∇pui‖2

]
,

we have

(2.18)

k∑
i=1

(λk+1 − λi) + 2
k∑

i=1

k∑
j=1

(λk+1 − λi)aijcij

≤ A − 4α1

k∑
i=1

k∑
j=1

(λk+1 − λi)1/2aijbij −
1
α1

k∑
i=1

k∑
j=1

(λk+1 − λi)1/2c2
ij .
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Since aij = aji, cij = −cji, we have

2
k∑

i=1

k∑
j=1

(λk+1 − λi)aijcij = −
k∑

i=1

k∑
j=1

(λi − λj)aijcij .

From (2.12), we have
4bij = −(λi − λj)aij .

Thus, we can obtain

(2.19)

− 4α1

k∑
i=1

k∑
j=1

(λk+1 − λi)1/2aijbij

=α1

k∑
i=1

k∑
j=1

(λk+1 − λi)1/2(λi − λj)a2
ij

=
α1

2

k∑
i=1

k∑
j=1

{
(λk+1 − λi)1/2 − (λk+1 − λj)1/2

}
(λi − λj)a2

ij

= − α1

2

k∑
i=1

k∑
j=1

1
(λk+1 − λi)1/2 + (λk+1 − λj)1/2

(λi − λj)2a2
ij

and

(2.20)

− 1
α1

k∑
i=1

k∑
j=1

(λk+1 − λi)1/2c2
ij

= − 1
2α1

k∑
i=1

k∑
j=1

{
(λk+1 − λi)1/2 + (λk+1 − λj)1/2

}
c2
ij .

Since

(2.21)

k∑
i=1

k∑
j=1

(λi − λj)aijcij

≤α1

2

k∑
i=1

k∑
j=1

1
(λk+1 − λi)1/2 + (λk+1 − λj)1/2

(λi − λj)2a2
ij

+
1

2α1

k∑
i=1

k∑
j=1

{
(λk+1 − λi)1/2 + (λk+1 − λj)1/2

}
c2
ij

holds, we infer, from (2.18), (2.19), (2.20) and (2.21),

k∑
i=1

(λk+1 − λi) ≤ A.

That is,

(2.22) kλk+1 −
k∑

i=1

λi ≤ A.
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From the definition of A and α1 = (2n + 4)−
1
2 , we obtain, by taking the sum on p

from 1 to n for (2.22),

(2.23)

n(kλk+1 −
k∑

i=1

λi) ≤
k∑

i=1

(λk+1 − λi)1/2

[
α1(2n + 4) +

1
α1

]
‖∇ui‖2

= [8(n + 2)]1/2
k∑

i=1

(λk+1 − λi)1/2‖∇ui‖2.

Since

(2.24) ‖∇ui‖2 =
∫

D

|∇ui|2 =
∫

D

ui(−∆ui) ≤
(
‖ui‖2‖∆ui‖2

)1/2
= (λi)1/2,

we have

(2.25) kλk+1 −
k∑

i=1

λi ≤
[8(n + 2)]1/2

n

k∑
i=1

[
(λk+1 − λi)λi

]1/2

.

This completes the proof of Theorem 1.

We now prove Corollary 1.

Proof of Corollary 1. Let

(2.26) Λk =
1
k

k∑
i=1

λi, Tk =
1
k

k∑
i=1

λ2
i .

It follows from (2.25) that

(2.27)

(λk+1 − Λk)2

≤8(n + 2)
n2

[
1
k

k∑
i=1

{
(λk+1 − λi)λi

}1/2
]2

≤8(n + 2)
n2

1
k

k∑
i=1

(λk+1 − λi)λi

=
8(n + 2)

n2
(λk+1Λk − Tk).

Therefore,

(2.28)

{
λk+1 −

[
1 +

4(n + 2)
n2

]
Λk

}2

≤
[
8(n + 2)

n2
+

16(n + 2)2

n4

]
Λ2

k − 8(n + 2)
n2

Tk.

Namely,

(2.29)

λk+1 −
[
1 +

4(n + 2)
n2

]
Λk

≤

⎧⎨
⎩

[
4(n + 2)

n2
Λk

]2

− 8(n + 2)
n2

1
k

k∑
j=1

(λj − Λk)2

⎫⎬
⎭

1/2

.

This finishes the proof of Corollary 1.
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Remark 2. In order to prove our Theorem 1, we introduced a factor (λk+1 − λi)
in the formula (2.14). From the assertions from formulas (2.14) to (2.22), we know
that unwanted terms between both sides of the inequalities are eliminated perfectly.
If we do not introduced the factor (λk+1−λi) in the formula (2.14), we shall obtain
the inequality (2.10) of Hook, and Chen and Qian. In fact, putting α = (λk+1−λi)α2∑k

l=1 λ
1
2
l

,

α2 = nk
4(n+2) and taking the sum on i from 1 to k for (2.13), we have, from (2.9),

k + 2
k∑

i,j=1

aijcij

≤ α2∑k
l=1 λ

1
2
l

{2
k∑

i=1

(‖∇ui‖2 + 4‖∇pui‖2) +
k∑

i,j=1

(λi − λj)a2
ij}

+
∑k

l=1 λ
1
2
l

α2

k∑
i=1

1
λk+1 − λi

⎛
⎝‖∇pui‖2 −

k∑
j=1

c2
ij

⎞
⎠ ,

where we used the formula (2.12). From the antisymmetry of cij and (λi − λj)a2
ij ,

we have

2
k∑

i,j=1

aijcij = 0 and
k∑

i,j=1

(λi − λj)a2
ij = 0.

Making use of the similar assertion in the proof of Theorem 1, we have

(2.30) nk ≤ 2(n+2)α2 +
1
α2

[∑
i=1

λ
1/2
i

λk+1 − λi

]
k∑

i=1

λ
1/2
i −

∑k
l=1 λ

1
2
l

α2

k∑
i,j=1

c2
ij

λk+1 − λi
.

Hence, we have

(2.31)
n2k2

8(n + 2)
≤

[∑
i=1

λ
1/2
i

λk+1 − λi

] k∑
i=1

λ
1/2
i −

k∑
l=1

λ
1
2
l

k∑
i,j=1

c2
ij

λk+1 − λi
.

Therefore, in order to infer the inequality (1.10), we must throw away the unwanted
term in (2.31). Thus, we know that the inequality in Theorem 1 should be sharper
than (1.10). If we multiply (2.13) by a factor (λk+1 − λi)

1
2 and use a similar

argument, we shall obtain the inequality (1.14).
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