



## From simple fluid dynamics to the asymmetric character of supernova explosions



Thierry Foglizzo

**CEA Saclay** 











## Supernovae types



thermonuclear supernovae la

gravitational supernovae II, Ibc



Crab (1054)



SN 1006

Tycho (1572)



Volume distribution (Li+11)



Cassiopeia A (~1680)



SN1987A



Kepler (1604)

# The high velocities of neutron stars suggest an asymetric supernova explosion



pulsar in the guitar nebula: 1600km/s







## Hydraulic jumps and shock waves



## Hydraulic jumps and shock waves





#### SWASI: an experimental analogue of SASI

Shallow Water Analogue of a Shock Instability









#### SWASI: simple as a garden experiment



May 2010



June 2010



November 2010





CEA Saclay November 2013

## Dynamics of water in the fountain

## Dynamics of the gas in the supernova core

diameter 40cm 1 000 000 x bigger 3s/oscillation 100 x faster 1000 x fast











Foglizzo, Masset, Guilet, Durand PRL (2012)

#### The "supernova fountain" in Paris science museum "Palais de la Découverte"

17 December 2013-16 February 2014



12 astrophysicists138 presentations2059 visitors







Supernovae explosions, from stellar core-collapse to neutron stars and black holes

Thierry Foglizzo
Julien Faure
Rémi Hosseini-Kazeroni
Noël Martin
Jérôme Novak
Micaela Oertel
Patrick Blottiau
Elias Khan
Jérôme Guilet
Bruno Peres
Michael Urban
Jérôme Margueron











#### Rotating progenitor: redistribution of angular momentum by SASI







Blondin & Mezzacappa 07

rotation period: 246s injection slit: 0.55mm flow rate: 1.17L/s



### faster rotation: another instability



### Towards higher Reynolds numbers



- -diameter 3m50: Reynolds x 15
- -overspilling injection
- -angular momentum



## SASI oscillations can leave a direct imprint on the gravitational wave and neutrino signals





Indirect information can be learnt from
-the kick, spin of the compact object -the chemical composition of the remnant







#### Conclusion



Numerical models indicate that hydrodynamical instabilities break the spherical symmetry

The supernova fountain uses accessible timescales and lengthscales to illustrate extreme astrophysical processes



The dynamics of the fountain suggests that

- 1/ neutron stars can be kicked at birth
- 2/ neutron stars can be spun up at birth
- 3/ transverse motions are favorable to neutrino capture and explosion
- 4/ direct information expected from gravitational waves and neutrinos LIGO, VIRGO & KAGRA, Super Kamiokande & IceCube





#### Classification of the elements



# Abundances of elements In the solar system





