Core-Collapse Supernovae Simulations with CHIMERA: Towards Multi-Messenger Observables

Bronson Messer

Scientific Computing Group
Oak Ridge Leadership Computing Facility

Theoretical Astrophysics Group
Oak Ridge National Laboratory

Department of Physics & Astronomy
University of Tennessee

Multi-messenger From Core-Collapse Supernovae
Fukuoka Dec. 2013

Monday, December 2, 13
CHIMERA Collaboration

- Steve Bruenn, Pedro Marronetti (Florida Atlantic University)
- John Blondin, Chris Mauney (NC State University)
- Eirik Endeve, Raph Hix, Austin Harris, Eric Lentz, Bronson Messer, Anthony Mezzacappa, Konstantin Yakunin (ORNL/UTK)

- Former Team Members
 - Reuben Budjiara, Austin Chertkow, Ted Lee

The research and activities described in this presentation were performed using the resources of the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC0500OR22725.
Post-bounce profile

Hillebrandt, Janka, & Müller 2006 (Sci Am)

Monday, December 2, 13
Neutrino heating depends on neutrino luminosities, spectra, and angular distributions. Must compute neutrino distribution functions.

\[\dot{\epsilon} = \frac{X_n}{\lambda_0^3} \frac{L_{\nu_e}}{4 \pi r^2} \langle E_{\nu_e}^2 \rangle \langle \frac{1}{F} \rangle + \frac{X_p}{\lambda_0^3} \frac{L_{\bar{\nu}_e}}{4 \pi r^2} \langle E_{\bar{\nu}_e}^2 \rangle \langle \frac{1}{F} \rangle \]

Must compute neutrino distribution functions.

\[f(t, r, \theta, \phi, E, \theta_p, \phi_p) \]

\[E_R(t, r, \theta, \phi, E) = \int d\theta_p \, d\phi_p \, f \]

\[F_R(t, r, \theta, \phi, E) = \int d\theta_p \, d\phi_p \, ...f \]

Requires a closure prescription:
- MGFLD
- MGVEF/MGVET
Important neutrino emissivities/opacities

“Standard” Emissivities/Opacities

\[e^- + p, A \leftrightarrow \nu_e + n, A' \]
\[e^+ + e^- \leftrightarrow \nu_{e,\mu,\tau} + \bar{\nu}_{e,\mu,\tau} \]
\[\nu \ + n, p, A \rightarrow \nu \ + n, p, A \]
\[\nu + e^-, e^+ \rightarrow \nu + e^-, e^+ \]

- Nucleons in nucleus independent.
- No energy exchange in nucleonic scattering.

- Include correlations between nucleons in nuclei.

- (Small) Energy is exchanged due to nucleon recoil.
- Many such scatterings.

- Additional source of neutrino-antineutrino pairs.

Important neutrino emissivities/opacities

“Standard” Emissivities/Opacities

\[e^- + p, A \leftrightarrow \nu_e + n, A' \]

\[e^+ + e^- \leftrightarrow \nu_{e,\mu,\tau} + \bar{\nu}_{e,\mu,\tau} \]

\[\nu + n, p, A \rightarrow \nu + n, p, A \]

\[\nu + e^-, e^+ \rightarrow \nu + e^-, e^+ \]

\[N + N \leftrightarrow N + N + \nu_{e,\mu,\tau} + \bar{\nu}_{e,\mu,\tau} \]

- Nucleons in nucleus independent.
- No energy exchange in nucleonic scattering.

- Include correlations between nucleons in nuclei.

- (Small) Energy is exchanged due to nucleon recoil.
- Many such scatterings.

- Additional source of neutrino-antineutrino pairs.

Essential physical realism in neutrino transport

ReducOp = Bruenn (1985) – NES + Bremsstrahlung (no neutrino energy scattering, IPM for nuclei)

See also B. Mueller et al. 2012. *Ap.J.* 756, 84 for a comparison in the context of 2D models, with similar conclusions.
How is the supernova shock revived?

Known, Potentially Important Ingredients

- Gravity
- Neutrino Heating
- Convection
- **Shock Instability (SASI)**
- Nuclear Burning
- Rotation
- Magnetic Fields

Need multidimensional models with all of the above, treated with sufficient realism.
How is the supernova shock revived?

Known, Potentially Important Ingredients

- Gravity
- Neutrino Heating
- Convection
- Shock Instability (SASI)
- Nuclear Burning
- Rotation
- Magnetic Fields

Need multidimensional models with all of the above, treated with sufficient realism.
How is the supernova shock revived?

Known, Potentially Important Ingredients

- Gravity
- Neutrino Heating
- Convection
- Shock Instability (SASI)
- Nuclear Burning
- Rotation
- Magnetic Fields

Need multidimensional models with all of the above, treated with sufficient realism.
How is the supernova shock revived?

Known, Potentially Important Ingredients

- Gravity
- Neutrino Heating
- Convection
- Shock Instability (SASI)
- Nuclear Burning
- Rotation
- Magnetic Fields

Need multidimensional models with all of the above, treated with sufficient realism.
How is the supernova shock revived?

Known, Potentially Important Ingredients

- Gravity
- Neutrino Heating
- Convection
- **Shock Instability (SASI)**
- Nuclear Burning
- Rotation
- Magnetic Fields

Need multidimensional models with all of the above, treated with sufficient realism.
Stationary Accretion Shock Instability (SASI)

Shock wave unstable to non-radial perturbations.

- Decreases advection velocity in gain region.
- Increases time in the gain region.
- Generates convection.

SASI has axisymmetric and nonaxisymmetric modes that are both linearly unstable!
• “Ray-by-ray-Plus” MGFLD Neutrino Transport
 - O(v/c), GR time dilation and redshift, GR aberration

• 2D PPM Hydrodynamics
 - GR time dilation, effective gravitational potential
 - adaptive radial grid

• Lattimer-Swesty EOS + low-density BCK EOS
 - K=220 MeV
 - low-density EOS (BCK+NSE solver) “bridges” LS to network

• Nuclear (Alpha) Network
 - 14 alpha nuclei between helium and zinc

• 2D Effective Gravitational Potential

• Neutrino Emissivities/Opacities
 - “Standard” + Elastic Scattering on Nucleons + Nucleon–Nucleon Bremsstrahlung
The early phase

- For the first ~100 ms after bounce, the supernova shock is essentially spherical, with 1D models identical to 2D models.

- Neutrino-driven convection precedes the development of the SASI at low mass ($12 M_\odot$) and trails the development of the SASI at high mass ($25 M_\odot$).

- One notable feature is the considerable delay in launching an explosion. (cf. Herant et al. (1994): <100ms)
The early phase

- For the first ~100 ms after bounce, the supernova shock is essentially spherical, with 1D models identical to 2D models.

- Neutrino-driven convection precedes the development of the SASI at low mass \((12 \, M_\odot)\) and trails the development of the SASI at high mass \((25 \, M_\odot)\).

- One notable feature is the considerable delay in launching an explosion. (cf. Herant et al. (1994): <100ms)
Working neutrinos

- Gain surface begins to become non-spherical ~70 ms after bounce.
- After ~120 ms, the heating region is characterized by low-entropy downflows and high-entropy upflows.
Explosion energies (& definitions)

- Estimate the explosion energy by assuming efficient conversion of $E_i \Rightarrow E_k$.

- One can construct a “diagnostic” energy, $E^+ = E_i + E_g + E_k$, summed over zones where $E^+ > 0$.

- Add contributions from nuclear recombination and removing the envelope.
Explosion energies vs. observations

Fig. 1. The explosion energy and the ejected 56Ni mass as a function of the main sequence mass of the progenitors for several supernovae/hypernovae.

The new ingredients taken into account in the present nucleosynthesis models are: (i) the variation of E (hypernovae, normal SNe, and faint SNe), (ii) the mixing and fallback, and (iii) neutrino processes that affects neutron excess near the mass cut.

3.1. Energy dependence

In core-collapse supernovae/hypernovae, stellar material undergoes shock heating and subsequent explosive nucleosynthesis. Iron-peak elements are produced in two distinct regions, which are characterized by the peak temperature, T_{peak}, of the shocked material. For $T_{\text{peak}} > 5 \times 10^9$ K, material undergoes complete Si burning whose products include Co, Zn, V, and some Cr.

Nomoto, Tominaga, et al. (2006)
Explosion energies vs. observations

Fig. 1. The explosion energy and the ejected ^{56}Ni mass as a function of the main sequence mass of the progenitors for several supernovae/hypernovae.

The new ingredients taken into account in the present nucleosynthesis models are: (i) the variation of energies (hypernovae, normal SNe, and faint SNe), (ii) the mixing and fallback, and (iii) neutrino processes that affects neutron excess near the mass cut.

3.1. Energy dependence

In core-collapse supernovae/hypernovae, stellar material undergoes shock heating and subsequent explosive nucleosynthesis. Iron-peak elements are produced in two distinct regions, which are characterized by the peak temperature, T_{peak}, of the shocked material. For $T_{\text{peak}} > 5 \times 10^9$ K, material undergoes complete Si burning whose products include Co, Zn, V, and some Cr after Nomoto, Tominaga, et al. (2006)
Nickel mass

- Another important observable, related to the explosion energy and very relevant to the nucleosynthesis, is the mass of ^{56}Ni.

- Results are reasonable, though fallback over longer timescales is uncertain. Recent studies are finding differing results on fallback.

Figure 11

(a) ^{56}Ni mass versus main-sequence initial mass, reprinted from *Nuclear Physics A*, Copyright 2006 (Nomoto et al. 2006), with permission from Elsevier. The initial masses in this plot are estimated from the ejecta masses derived from lightcurve modeling.

(b) The ^{56}Ni masses for nearby supernovae for which there are reliable restrictions on the progenitor masses from direct constraints (Smartt et al. 2009).
Nickel mass

- Another important observable, related to the explosion energy and very relevant to the nucleosynthesis, is the mass of ^{56}Ni.

- Results are reasonable, though fallback over longer timescales is uncertain. Recent studies are finding differing results on fallback.

![Graph showing Nickel mass versus main-sequence initial mass](image)

![Diagram showing Initial mass versus Nickel mass](image)

Figure 11

(a) ^{56}Ni mass versus main-sequence initial mass, reprinted from *Nuclear Physics A*, Copyright 2006 (Nomoto et al. 2006), with permission from Elsevier. The initial masses in this plot are estimated from the ejecta masses derived from lightcurve modeling.

(b) The ^{56}Ni masses for nearby supernovae for which there are reliable restrictions on the progenitor masses from direct constraints (Smartt et al. 2009).
PNS masses

Proto-Neutron Star: Mass vs Time
12 - 25 W-H Progenitors

Mass [M\(_{\odot}\)]

Time from Bounce [ms]

12 M\(_{\odot}\)
15 M\(_{\odot}\)
20 M\(_{\odot}\)
25 M\(_{\odot}\)

Lattimer and Prakash (2010)
Neutrino emission

sensitive to X_p and phase transition density
GR: Higher luminosity, harder spectrum
Reduced opacities: Narrower breakout burst, $<E>$ spike seen by Thompson et al. (2003)
No Observer Corrections: Greatly reduced breakout burst and luminosity in accretion phase
Recovering “realistic” ν fluxes from RbR simulations

Sanchez, Messer, et al. in prep.
Recovering “realistic” \(\nu \) fluxes from RbR simulations

Sanchez, Messer, et al. *in prep.*
Recovering “realistic” ν fluxes from RbR simulations

Sanchez, Messer, et al. *in prep.*
Example of multi-messenger observables: Anatomy of a GW signature

Yakunin et al. *Class. Quantum Grav.* 27 194005 (2010)

- Lower-frequency envelope: SASI-induced shock excursions
- Higher-frequency variations: Impingement of downflows on PNS from neutrino-driven convection and SASI
- Prompt Convection
- Early Shock Deceleration
- Later Rise: Prolate Explosion/Deceleration at Shock
Using nucleosynthesis tracer particles for a different purpose

- Follow tracer particle hydro evolution at given epochs to determine from where the signal is emanating.
- E.g., convection/SASI-induced features emanate from < 50 km (PNS).
SASI in 3D

SASI in 3D

Entropy
15 M☉ (W-H 2007)
512x45x90

Currently running on O(60,000) cores
Equatorial slice
Summary

- Necessary Realism: Multifrequency neutrino transport with relativistic effects and a state-of-the-art weak interaction set, and general relativity.

- Ongoing CHIMERA models confirm successful prolate explosions across a range of progenitors from 12-25 M☉ driven by neutrino heating and SASI with outcomes consistent with observations.

- Though differences persist with simulations from Garching group, self-consistent CHIMERA simulations point to a successful neutrino-reheating mechanism, with the explosion delayed by 300 ms or more after bounce, at least in 2D.

- A three-dimensional counterpart simulation is underway, for the 15 M☉ progenitor, and has already reached >150 ms post-bounce.