Recent progress in SN Science

Paolo A. Mazzali

Supernova science is best done early

- Type Ia SNe: properties of outer ejecta
 properties of progenitor (composition, physical nature Single/Double Degenerate)
- GRB-SNe: outermost ejecta move fastest: they carry most of the Kin En, and signatures of any asymmetry (jets)
- Superluminous SNe: overall behaviour suggests physical mechanism

I. Type Ia SNe B Light Curves: Observed v. Normalized

What are SNe Ia: Thermonuclear SNe

White Dwarf in Binary System

WD accretes H until M_{wD}~1.4M⊙, T~10⁹K

- Thermonuclear burning (C burning) to NSE produces:
- Explosion (KE~10⁵¹ erg)
- Total disruption of WD
- ⁵⁶Ni synthesis (~0.7M⊙)

Using observables to understand SNe Ia

Questions

- Properties of SNe Ia (eg Phillips' rel'n)
- Mode of explosion (deflagration, delayed detonation, other even less reasonable modes...)
- Progenitor (SD, DD?)
- Cosmology?

Methods

Look at model spectra & light curves

Data: e.g. SNe 2002bo, 2003du

Early-time spectrum

Homologous expansion

- Ejecta are dense"Photospheric Epoch"
- P-Cygni profiles

absorption
$$L=4\pi R_{ph}^2\sigma T_*^4$$

$$R_{ph} = v_{ph}t$$

Abundance Stratification

Models of spectral sequence reveal composition layering

SN 2002bo: bright $[\Delta m_{15}(B) = 1.15]$

 $[\Delta m_{15}(B) = 1.45]$

(Steh 26.4120192005)

Fuk@okælyniv.

SN 2004eo: dim

(Mazzals et al.

Late-time spectra

Full view of inner ejecta (⁵⁶Ni zone)

Monte Carlo LC code + NLTE nebular code (no radiative transfer)

→ Estimate masses (both ⁵⁶Ni and ejecta)

SN 2002bo

SN 2004eo (narrower

26.4.2019

SN2011fe: one of the nearest recent SNe Ia

- Discovered very early: early spectra allow us to constrain outer density (explosion model) and progenitor metallicity
- Normal SN la
- $\Delta m_{15}(B) \sim 1.1 \text{ mag}$
- HST coverage (UV)

A weak delayed-detonation?

SN la 2011fe in M101

- Discovered very early: early spectra allow us to constrain outer density (explosion model) and progenitor metallicity
- Liverpool Telescope took 1st spectrum the day after discovery (Nugent et al. 2011, Nature)

Fukuoka Univ. 11

What was the progenitor metallicity?

- Outer layers carry progenitor information:
- NEED VERY EARLY SPECTRA
- Best metal content
 ~ 1/3 solar (in
 agreement with
 galaxy estimates)

PM et al 2014

SN 2011fe: Abundance Tomography

5000

2500

Add model of late-time

6000

rest wavelength [Å]

(PM et al 2015)

velocity [km/s]

10000

12500

Si

7500

⁵⁶Ni₀

20000

Test results with Light curve

- Use density and abundance distribution to compute synthetic bolometric LC with Montecarlo method
- Successful match confirms results: Normal SN Ia
 - Mass ~ M(Ch)
 - Ek $\sim 1.25 \cdot 10^{51} \text{ erg}$
 - $M(^{56}Ni) \sim 0.47 M_{\odot}$
 - M(NSE) $\sim 0.70 M_{\odot}$
 - M(IME) $\sim 0.42 M_{\odot}$
 - M(CO) $\sim 0.24 M_{\odot}$

II. Long Gamma-Ray Bursts/Supernovae GRB980425: the first optical counterpart

26.4.2019 Fukuoka Univ. 16

GRB/SNe are Broad-lined SNe Ic

SN2003dh / GRB030329 Matheson et al. 2003

Patat et al. 2001

SN 1998bw / GRB980425

SN 1998bw: high mass and KE

GRB/SNe are all similar SN 2003dh/GRB030329

SN 2003dh was almost as bright and powerful as SN 1998bw:

KE = 3.8
$$10^{52}$$
 erg $M(^{56}Ni)\sim 0.35M_{\odot}$ $M_{ej}\sim 8M_{\odot}$

Mazzali et al. 2003

GRB/SNe are driven by ⁵⁶N

- Strong nebular Fe lines in nebular spectrum resemble SNe Ia, and testify to the large amount of ⁵⁶Ni synthesised
- Oxygen line are broader than Fe lines, indicating an aspherical explosion (Mazzali et al. 2001)

GRB/SNe are luminous

All available SN lb/c data

85 SNe Ib/c + IIb

Ic + GRB/SNe more luminous than Ib/IIb

Light curve useful for M(56Ni), need spectra for Mej/Ek estimates

Prentice et al. 2016

Props of SNe Ibc as f(prog. mass)

A minimum mass and energy seem to be required for GRBs

26.4.2019 Fukuoka Univ. 24

SN2016jca/GRB161219B

Higher velocities than 1998bw, UV suppressed: more Ni

Very early data allow better models: increasing O ab. at low velocities, indicative of aspherical props.

Ashall et al. 2017

Fukuoka Univ.

SN 2016jca: More ⁵⁶Ni early on: head-on Ni jet

As time passes, see deeper into aspherical ejecta

SNe lb/c: Modelling results

A minimum mass and energy seem to be required for GRBs SN 2016jca was (again) similar to all other GRB/SNe

What is the "driving force"? Compare energies of GRBs and SNe

SN kinetic energy always dominates, and it is close to the maximum magnetar energy (PM+2014)

A Magnetar in SN lb 2005bf?

SN 2005bf (Tominaga et al. 2007) showed a bright, late 2nd LC peak

Magnetar activity may have been responsible for the rebrightening (Maeda et al. 2007)

III. SLSNe and ULGRBs?

- Ultra-long (>10⁴ s) GRB111209 showed a SN bump (SN2011kl)
- SN LC intermediate in Lum between GRB/SNe and SLSNe

Blue spectrum, consistent with high velocity SLSN

Consistent with Magnetar powering Are all luminous SNe magnetars?

SLSNe:ULGRB = SNeIc:GRB/HNe

Can get spectra of SLSNe ("I") with same model as SN2011kl, just lower Ek

"peculiar" OII lines are result of non-thermal excitation/ionization at high Temp Hel lines appear via same process only later, when Temp is "right" (lower)

The OII ion

Optical OII
lines come
from lower
levels with
higher
excitation
energy than
HeI (>22eV).

Not thermally excited

Velocity evolution

- Both SLSNe and HNe have high velocities,
- but in SLSNe high vel is sustained over a much longer time
- Slow decline suggestive of Magnetar powering in SLSNe

Comparing SNe lb/c and SLSNe-I

- SNe Ib/c: ejected mass correlates with both ⁵⁶Ni mass and E
- SLSNe: similar Ek range as SNe lb/c; may reach larger Mej
 - Ek and Mej correlate; Ek/M typically ~1 (as in low-E SNe Ic)
 - ULGRB/SN is the exception; little info on M(56Ni) (yet).

26.4.2019 Fukuoka Univ. 34

Comparing properties

	M _{ej} (M _⊙)	Ek (10 ⁵¹ erg)	Ek/Mej		M _{ej} (M _⊙)	Ek (10 ⁵¹ erg)
SNe Ic- 7,6,5	1-4	1-4	~1	SLSNe-	5-40	5-40
SNe Ic/BL	4-8	4-20	1-2			
GRB/HNe	8-12	20-50	3-5	ULGRB/S N	2-3	5-8

- ULGRB/SNe can have He and H (like SNe lb/c, llb)
- Highly excited OII (and He I) lines due to non-thermal excitation
- These are all cores of massive stars (binaries?)
- GRB/SNe, ULGRB/SNe have the highest Ek, Ek/Mej
- ULGRB/SNe NOT at massive end of range
- GRB/SNe driven by ⁵⁶Ni, ULGRB/SNe probably not.
- Magnetar powering likely in both GRB/HNe and ULGRB/SNe

26.4.2019 Fukuoka Univ. 35

Magnetar parameters?

- GRB, XRF
 require rapid
 energy injection,
 large E/M
- SLSNe powered by interaction: late injection

After Metzger+ 2015

Conclusions

- Type Ia SNe: early and late observations can reveal properties of progenitor/explosion.
- GRB/SNe: we know energetics and morphology, but what is the engine?
 A ``super-magnetar''?
- SLSNe: these seem to be different by having high Lum but not high E/M.
 Can we disentangle a classical SN?
 Is a Magnetar responsible for the LC?