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Supernova science is best done early

• Type Ia SNe: properties of outer ejecta   
properties of progenitor (composition, 
physical nature – Single/Double Degenerate)

• GRB-SNe: outermost ejecta move fastest: 
they carry most of the Kin En, and 
signatures of any asymmetry (jets)

• Superluminous SNe: overall behaviour 
suggests physical mechanism
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I.  Type Ia SNe
B Light Curves:   Observed v. Normalized
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Standardizable 
candles 

(Phillips 1993)



What are SNe Ia: Thermonuclear SNe 
White Dwarf in Binary System

WD accretes H until
MWD~1.4M⊙, T~109K

• Thermonuclear burning 
(C burning) to NSE 
produces: 

• Explosion (KE~1051 erg)   
• Total disruption of WD
• 56Ni synthesis (~0.7M⊙)
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Using observables to understand    
SNe Ia

Questions
• Properties of SNe Ia (eg Phillips’ rel’n)
• Mode of explosion (deflagration, delayed 

detonation, other even less reasonable modes…)
• Progenitor (SD, DD?)
• Cosmology?

Methods
• Look at model spectra & light curves
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Data: e.g. SNe 2002bo, 2003du
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Early-time spectrum
Homologous 

expansion
(v ≈ R)

• Ejecta are dense
“Photospheric Epoch”
• P-Cygni profiles
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Abundance Stratification
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Models of spectral sequence reveal composition layering

SN 2002bo: bright [∆m15(B)=1.15]  SN 2004eo: dim
[∆m15(B)=1.45]

(Stehle et al. 2005)    (Mazzali et al. 2008)  



Late-time spectra
Full view of inner ejecta (56Ni zone )

Monte Carlo LC code  + NLTE nebular code (no radiative transfer)
 Estimate masses (both 56Ni and ejecta)
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SN 2002bo SN 2004eo (narrower 

lines)



SN2011fe: one of the nearest recent SNe Ia
• Discovered very early: early 

spectra allow us to constrain 
outer density (explosion model) 
and progenitor metallicity 

• Normal SN Ia
• Δm15(B)~1.1 mag
• HST coverage (UV)

• A weak delayed-detonation ?
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SN Ia 2011fe in M101
• Discovered very early: early 

spectra allow us to constrain 
outer density (explosion model) 
and progenitor metallicity 

• Liverpool Telescope took 1st

spectrum the day after discovery 
(Nugent et al. 2011, Nature)
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What was the progenitor metallicity?

• Outer layers carry 
progenitor 
information:

• NEED VERY 
EARLY SPECTRA

• Best metal content 
~ 1/3 solar (in 
agreement with 
galaxy estimates)
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SN 2011fe: Abundance Tomography
– Add model of late-time 

spectra
– Inner layers dominated 

by 56Ni, stable Fe-gp
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(PM et al 2015)



Test results with Light curve
• Use density and abundance 

distribution to compute synthetic 
bolometric LC with Montecarlo 
method

• Successful match confirms 
results: Normal SN Ia
– Mass ~ M(Ch)
– Ek ~ 1.25 1051 erg
– M(56Ni) ~ 0.47 M

– M(NSE) ~ 0.70 M

– M(IME) ~ 0.42 M

– M(CO) ~ 0.24 M
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II. Long Gamma-Ray Bursts/Supernovae
GRB980425: the first optical counterpart
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GRB/SNe are Broad-lined SNe Ic
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SN 1998bw / GRB980425

Matheson et al. 2003

Patat et al. 2001

SN2003dh / GRB030329



SN 1998bw: high mass and KE
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GRB/SNe are all similar 
SN 2003dh/GRB030329

SN 2003dh was 
almost as bright 
and powerful as 
SN 1998bw:

KE = 3.8 1052 erg
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GRB/SNe are driven by 56NI
• Strong nebular Fe 

lines in nebular 
spectrum resemble 
SNe Ia, and testify to 
the large amount of 
56Ni synthesised

• Oxygen line are 
broader than Fe lines, 
indicating an 
aspherical explosion
(Mazzali et al. 2001)

26.4.2019 Fukuoka Univ. 20



GRB/SNe are luminous

• SN1998bw 
was as bright 
as a SN Ia

• It produced 
much more 
56Ni than 
`normal’ core-
collapse SNe       
(~ 0.5 M)
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All available SN Ib/c data
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85 SNe Ib/c + IIb

Ic + GRB/SNe more luminous 
than Ib/IIb

Light curve useful for M(56Ni), 
need spectra for Mej/Ek 

estimates
Prentice et al. 2016



Props of SNe Ibc as f(prog. mass)
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2010bh/XRF100316D

2010bh/XRF100316D

A minimum mass and energy seem to be required for GRBs

SN 2013dx/
GRB130702A

SN 2013dx/
GRB130702A



SN2016jca/GRB161219B
Higher velocities than 1998bw,
UV suppressed: more Ni

Very early data allow better models: 
increasing O ab. at low velocities, 
indicative of aspherical props.

26.4.2019 Fukuoka Univ. 25
Ashall et al. 2017



SN 2016jca:
More 56Ni 
early on: 
head-on 

Ni jet

As time passes, 
see deeper into 
aspherical ejecta
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Ni-rich

GRB jet

O-rich



SNe Ib/c:  Modelling results
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2016jca 2016jca

A minimum mass and energy seem to be required for GRBs
SN 2016jca was (again) similar to all other GRB/SNe



What is the “driving force”?
Compare energies of GRBs and SNe
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SN kinetic energy always dominates, and it is close to the 
maximum magnetar energy  (PM+2014)
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A Magnetar in SN Ib 2005bf?

SN 2005bf (Tominaga et al. 2007)                               
showed a bright, late 2nd LC peak

Magnetar activity may have been responsible for the rebrightening  
(Maeda et al. 2007)
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III. SLSNe and ULGRBs?
• Ultra-long (>104 s) GRB111209 showed a SN bump (SN2011kl)
• SN LC intermediate in Lum between GRB/SNe and SLSNe
• Blue spectrum, consistent with high velocity SLSN

Consistent with Magnetar powering
Are all luminous SNe magnetars?

Greiner et al 2015, Nature
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SLSNe:ULGRB = SNeIc:GRB/HNe
Can get spectra of SLSNe (“I”) with same model as SN2011kl, just lower Ek

“peculiar” OII lines are result of non-thermal excitation/ionization at high Temp
HeI lines appear via same process only later, when Temp is “right” (lower)
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The OII ion

Optical OII 
lines come 
from lower 
levels with 
higher 
excitation 
energy than 
HeI (>22eV).

Not thermally 
excited 
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Velocity evolution

• Both SLSNe and HNe 
have high velocities,

• but in SLSNe high vel is 
sustained over a much 
longer time

• Slow decline suggestive 
of Magnetar powering in 
SLSNe
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Comparing SNe Ib/c and SLSNe-I
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• SNe Ib/c: ejected mass correlates with both 56Ni mass and E
• SLSNe: - similar Ek range as SNe Ib/c; may reach larger Mej 

- Ek and Mej correlate; Ek/M typically ~1 (as in low-E SNe Ic) 
- ULGRB/SN is the exception; little info on M(56Ni) (yet).



Comparing properties
Mej (M) Ek (1051erg) Ek/Mej Mej (M) Ek (1051erg)

SNe Ic-
7,6,5

1-4 1-4 ~1 SLSNe-
”I”

5-40 5-40

SNe Ic/BL 4-8 4-20 1-2

GRB/HNe 8-12 20-50 3-5 ULGRB/S
N

2-3 5-8

• ULGRB/SNe can have He and H (like SNe Ib/c, IIb)
• Highly excited OII (and He I) lines due to non-thermal excitation
• These are all cores of massive stars (binaries?)
• GRB/SNe, ULGRB/SNe have the highest Ek, Ek/Mej
• ULGRB/SNe NOT at massive end of range
• GRB/SNe driven by 56Ni, ULGRB/SNe probably not.
• Magnetar powering likely in both GRB/HNe and ULGRB/SNe
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Magnetar parameters?

• GRB, XRF 
require rapid 
energy injection, 
large E/M

• SLSNe powered 
by interaction: 
late injection
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GRB/SNe

XRF/SNe
SLSN-”I”

SN2005bf

SN2011kl-
GRB111209

After Metzger+ 2015



Conclusions
• Type Ia SNe: early and late observations can 

reveal properties of progenitor/explosion.
• GRB/SNe: we know energetics and 

morphology, but what is the engine? 
A ``super-magnetar’’?

• SLSNe: these seem to be different by having 
high Lum but not high E/M. 
Can we disentangle a classical SN?               
Is a Magnetar responsible for the LC?
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