
Collaborators: 
A. Torres-Forné (AEI)
M. Obergaulinger (TU Darmstadt/UV)
J. A. Font (UV)
A. Passamonti (U. Alicante)
B. Müller (Monash University)
P. Astone, I. di Palma, F. Ricci, F. Muciaccia (INFN, Roma)
Marco Drago (GSSI) 
P. Maturana, R. Meyer (U. Auckland)
M. A. Bizouard, N. Christiansen (Observatoire de la Cote d'Azur) 
Publications:

Torres-Forné et al 2018a,b, 2019, Astone et al 2018

Understanding GWs from CCSNe
Pablo Cerdá-Durán
University of Valencia

4M-COCOS, Fukuoka, 23 Oct. 2019



GW emission in CCSN 
Collapse of the core of massive stars (8-100 M☉)

´ Non-rotating progenitors (>99%) (Li et al 2011, Chapman et al 2007)

´ Observable within ~10 kpc (Gossan et al 2015, Powell & Müller 2018)

´ Rare events (~1/ 30 year in our galaxy) (Adams et al 2013)
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GW emission in CCSN 

PNS phase (before explosion):

´ Duration: ~ 0.1 – 1 s

´ PNS mass grows: ~0.5 M☉ à 1.4 – 2 M☉

´ PNS shrinks: ~30 km à ~10 km

´ PNS cools down
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´ The “hammer”: convection, SASI

´ The “bell”: proto-neutron star

´ The “ring”:  PNS normal modes



GW emission from PNS oscillations
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Figure 11. This figure shows the GW signal (upper panels), the corresponding spectrograms (middle panels), and the spectrograms with a selection of modes
overplotted (lower panels) for models s20 (left) and 35OC (right). Solid lines and dashed lines are used to indicate that the calculations were made using GP

and Gα , respectively. Note that for model s20 those two lines overlap.

with a higher frequency. The main features can be explained by the
2g1 mode and the 2p1 mode. The f mode and all p modes up to
order 5 are also clearly visible, albeit with lower amplitudes. We
note in particular that our computation of the l = 0 mode is able
to reproduce the characteristic feature of this mode close to black
hole formation, namely that its frequency goes to zero at the onset of
instability (Cerdá-Durán et al. 2013), as predicted by Chandrasekhar
(1964).

In addition to estimating the effect of the definition of G in our
mode comparison, we also test its effect on the expression for the

Brunt–Väisälä frequency. In this work we first perform an angular
average of the simulation data and then we compute the Brunt–
Väisälä frequency as N2 = GB, G and B being the radial component
of the vectors Gi and Bi . Alternatively one can compute N2 = GiBi ,
on the 2D grid of the simulation, and then perform the angular
average to obtain 1D profiles of N2. For the fast-rotating case, the
second procedure takes into account the non-radial components of
Gi and Bi , which are otherwise neglected in the first procedure.
We have computed the eigenmodes using both definitions and the
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q Highly stochastic

Müller et al 2013

Torres-Forné et al 2019

Powell et al 2019

Kawahara et al 2018

q Time evolving 
frequencies         
(g-modes, SASI)



PNS asteroseismology

´ Which modes are 
observed?à mode 
identification

´ How do mode frequencies 
depend of PNS properties? 
à universal relations

´ Can we improve 
detectability? à Machine 
learning methods

f (M,R,…)

?
?

Torres-Forné et al 2019



Mode identification



Proto-neutron star oscillations

Multi-dimensional 
numerical simulation

Obergaulinger et al 2013
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Figure 11. This figure shows the GW signal (upper panels), the corresponding spectrograms (middle panels), and the spectrograms with a selection of modes
overplotted (lower panels) for models s20 (left) and 35OC (right). Solid lines and dashed lines are used to indicate that the calculations were made using GP

and Gα , respectively. Note that for model s20 those two lines overlap.
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waveform spectrogram

Torres-Forné et al 2019

1D angular 
average

l=2 eigenmodes

Torres-Forné et al 2018
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Proto-neutron star oscillations

Simplified background (TOV, polynomials…)
Reisenegger & Goldreich 1992
Ferrari et al 2003, 2004
Passamonti et al 2005
Krüger et al 2015
Camelio et al 2017
Sotani et al 2017

Background from simulations
Torres-Forné et al 2018, 2019a,b
Morozova et al 2018, Radice et al 2019
Sotani et al 2019a,b
Westernacher-Schneider 2019

GREAT = General Relativistic Eigenmode Analysis Tool
https://www.uv.es/cerdupa/codes/GREAT/

Linear perturbations of a spherical background à eigenvalue problem

Our contribution:
• Background from simulations
• GR formalism including space-time 

perturbations (lapse and conformal 
factor)

• Global treatment (PNS + shock)

Torres-Forné et al 2018a,b, 2019



Non-classified modes

s20, SFHo EOS 



Modes classified according to the number of nodes

s20, SFHo EOS 

Other groups use this 
classification

´ Morozova et al 2018

´ Sotani et al 2017,2019



Modes classified according to the number of nodes

Sotani et al 2019 Morozova et al 2018



Modes classified according 
to the number of nodes



Matching classification

Torres-Forné et a 2018b



Classified modes

Torres-Forné et a 2018b

p-modes

g-modes
f-mode

s20, SFHo EOS 



Comparison with GWs

2g22g3

2f
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Boundary conditions
At the shock location 

´ TF et al 2018, 2019a,b

´ Shock is a sonic point

´ Well defined boundary

´ f-mode at 100-500 Hz

At the PNS surface

´ Morozova et al 2018, Radice
et al 2019, Sotani et al 
2019a,b, Westernacher-
Schneider 2019)

´ DP=0 at fixed density

´ Neglects sound waves 
outside PNS

´ Depends on threshold 
density

´ f-mode at higher frequencies 

Morozova at el 2018

Sotani et al 2019a

p-mode  

dominant
g-mode  

r=1011 g/cm3

r=1011 g/cm3



´Most of the GW signal in CCSN can be modelled 
as PNS oscillations

´ It is possible to identify PNS modes in GW data 

Asteroseismology



Universal relations and inference



1D CCSN simulations

Aenus-ALCAR code

• “M1” neutrino transport: algebraic 
Eddington factor method with M1
closure (Just et al 2015).

• 3 neutrino flavours + multigroup

• Newtonian / Pseudo-relativistic 
gravity (Marek et al 2006) 

CoCoNuT code

• “FMT” neutrino transport: 
stationary neutrino solution with 
a closure. (Müller el at 2015)

• 3 neutrino flavours + multigroup

• GR in the  XCFC approximation 
(Cordero-Carrión et al 2009)

Progenitor models
• Woosley et al 2002
• 11.2 - 75 M☉ (ZAMS), solar metallicity + u20 model

Equation of state
• 6 EOS: LS220, HShen, SFHo, BBH-L and Hshen-L.



Fundamental relations: g-modes
´ 2D simulations

´ 2 codes

´ 6 EOS

´ 8 progenitors

g-modes scale with 
PNS surface gravity

PNS definition: r>1011 g/cm3

f (2g2) = b x  + c x2 + d x3

x=MPNS/RPNS2

R2=0.967
s=76 Hz

TF et al 2019



Fundamental relations: f and p-modes
f and p-modes scale 

with sqrt. of mean 
density inside the 

shock 

PNS definition: r>1011 g/cm3

f (2f) = b x  + c x2

x2=Mshock/Rshock3

R2=0.967
s=45 Hz

TF et al 2019



Inference (inverse problem)

observation

Time

M
PN

S 
/ 

R P
N

S2

Inferred PNS 
properties

Fundamental 
relations



Improving detectability



Can we use this to help with GW 
detection? 

3982 A. Torres-Forné et al.

Figure 11. This figure shows the GW signal (upper panels), the corresponding spectrograms (middle panels), and the spectrograms with a selection of modes
overplotted (lower panels) for models s20 (left) and 35OC (right). Solid lines and dashed lines are used to indicate that the calculations were made using GP

and Gα , respectively. Note that for model s20 those two lines overlap.

with a higher frequency. The main features can be explained by the
2g1 mode and the 2p1 mode. The f mode and all p modes up to
order 5 are also clearly visible, albeit with lower amplitudes. We
note in particular that our computation of the l = 0 mode is able
to reproduce the characteristic feature of this mode close to black
hole formation, namely that its frequency goes to zero at the onset of
instability (Cerdá-Durán et al. 2013), as predicted by Chandrasekhar
(1964).

In addition to estimating the effect of the definition of G in our
mode comparison, we also test its effect on the expression for the

Brunt–Väisälä frequency. In this work we first perform an angular
average of the simulation data and then we compute the Brunt–
Väisälä frequency as N2 = GB, G and B being the radial component
of the vectors Gi and Bi . Alternatively one can compute N2 = GiBi ,
on the 2D grid of the simulation, and then perform the angular
average to obtain 1D profiles of N2. For the fast-rotating case, the
second procedure takes into account the non-radial components of
Gi and Bi , which are otherwise neglected in the first procedure.
We have computed the eigenmodes using both definitions and the
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MPA



SNe GW detection in LIGO/Virgo 

´ Current methods: unmodelled burst searches 
´ Can we improve these by adding information about the SN signal (g-modes)?

Train a convolutional neural network 
(CNN) to recognize GW patterns



SNe GW detection in LIGO/Virgo 

´ Train CNN with SN-like waveforms à phenomenological templates

´ Modify coherent waveburst pipeline (CWB, Klimenko et al 2008, 
2016) to include the CNN

´ Compare results with original CWB



Parametrized phenomenological 
templates

Astone et al 2018

• Mimics PNS modes

• Model: damped harmonic oscillator

• 7 free parameters (ccphenv2) 

• Stochastic excitation: different realizations 
possible

Automatic generation of templates to 
train CNN (800 in this work)



CWB

CNN

CWB

SIGNAL / NOISE

SIGNAL / NOISE

waveform

+ Detector 
Gaussian 

noise

time-freq. likelihood
Pipeline



Detection efficiency

Astone et al 2018

• 10000 signal images & 10000 
noise images

• Improved efficiency over CWB

• Proof-of-concept: more realistic 
setup needed.

It is possible to improve detectability using CNN and phenomenological templates



Conclusions

´Asteroseismology
´It is possible to identify PNS eigenmodes in GW 

signals from neutrino-driven CCSN.
´Observation of eigenmode frequencies allow to 

infer the properties of the PNS.
´Detection

´Machine learning could improve detectability of 
GWs from CCSNe.



Thank you


