Boltzmann-radiation-hydrodynamics simulations of the stellar core-collapse under axisymmetry status report of group C02 of GW-genesis II

Akira Harada (ICRR, UT)

Collaborators: Shoichi Yamada, Wakana Iwakami, Hirotada Okawa (Waseda Univ.), Hiroki Nagakura (Princeton), Shun Furusawa (Tokyo Univ. of Sci.), Hideo Matsufuru (KEK), Kohsuke Sumiyoshi (Numazu)

CCSN explosion mechanism: the neutrino heating mechanism

- Explosive death of massive star
- · The central proto-neutron star emits neutrinos.
- · The shock is re-energized by the neutrino heating.

The Boltzmann-radiation-hydrodynamics

Basic equations

Acceleration terms to track the PNS PNS kick may be found (Nagakura in prep.)

Boltzmann equation

$$\frac{\mathrm{d}x^{\alpha}}{\mathrm{d}\tau}\frac{\partial f}{\partial x^{\alpha}}\bigg|_{p^{i}} + \frac{\mathrm{d}p^{i}}{\mathrm{d}\tau}\frac{\partial f}{\partial p^{i}}\bigg|_{x^{\alpha}}$$

$$= (-p^{\alpha}\hat{u}_{\alpha})S_{\mathrm{rad}}$$

Newtonian Hydrodynamics

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0 \qquad \qquad \frac{\partial \rho Y_{\rm e}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} Y_{\rm e}) = \rho \Gamma \\ \frac{\partial \rho \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v} + P \boldsymbol{I}) &= -\rho \nabla \Phi + \boldsymbol{M}^{i} + \rho \dot{\boldsymbol{\beta}} \\ \frac{\partial \rho (e + \frac{1}{2}\boldsymbol{v}^{2})}{\partial t} + \nabla \cdot \left(\rho \boldsymbol{v} (e + \frac{1}{2}\boldsymbol{v}^{2} + \frac{P}{\rho})\right) &= -\rho \boldsymbol{v} \cdot \nabla \Phi + Q + \rho \boldsymbol{v} \cdot \dot{\boldsymbol{\beta}} \end{aligned}$$

•Newtonian Gravity $\Delta \Phi = 4\pi G \rho$

Introduction

Our models

Nuclear EOS

Shock evolution

Entropy and absolute value of velocity

EOS

Timescale ratio

Shock revives when the timescale ration exceeds 1: τ_{adv}/τ_{heat} with $\tau_{adv} = M_{gain}/\dot{M}$, $\tau_{heat} = E_{gain}/Q_{gain}$

AH+ in prep.

All quantities are similar except for M_{gain}

EOS

Difference in turbulence

- · All quantities are similar except for $M_{\rm gain}$
- Stronger turbulence in LS model

Difference in turbulence

- · All quantities are similar except for $M_{\rm gain}$
- · Stronger turbulence in LS model
- · Larger convection growth rate (Brunt-Vaisala freq.)

EOS

Difference in composition

- Nuclear composition of accretion flow is different: larger and more heavy nuclei in LS.
- More energy loss by nuclear photodissociation
- Shock is weakened rapidly and steep entropy gradient is formed
- Stronger prompt convection

AH+ in prep.

Rotation

Rotation

Both positive and negative effects on shock revival
 Neutrino distributions are distorted

- (Thanks to the Boltzmann solver,) The accuracy of approximation is checked.
- Imposed rotation:

Entropy distribution

•Time evolution until ~200 ms after bounce.

Shock evolution

Postbounce evolution until ~200 ms

The difference between rotating & non-rotating model

Rotation

Neutrino ang. distribution

Distribution functions at ~10 ms after bounce.

~60 km

~170 km

AH+(2019)

Rotation

Neutrino ang. distribution

Distribution functions at ~10 ms after bounce.

Eddington factor

Eddington tensor at ~10 ms after bounce

- spatial distribution of eigenvalues
- ~20% difference in M1-closure scheme

AH+(2019)

Eddington factor

Eddington tensor at ~10 ms after bounce

Comparison between Boltzmann- and M1-Edd. factors

 Prolateness of distribution •M1: estimated from deviation outward

inward

AH+(2019)

Eddington factor

- Eddington tensor at ~10 ms after bounce
- Comparison between Boltzmann- and M1-Edd. factors
- Information which distinguish these situations may improve the approximation

PNS kick

Entropy distribution

• PNS moves from its initial position.

Proper motion of PNS after 100 ms

• PNS kick after $T_b = 100$ ms is observed.

PNS kick mechanism (at late phase): PNS kick gravitational tug boat?

Gravitational tug boat mechanism: Anisotropic explosion slower side is closer to the PNS and more dense •PNS is attracted to this side

Scheck+(2006)

PNS kick mehanism (at early phase): PNS kick gravity? pressure? neutrino force?

Nagakura+(2019)

- •What kind of force is important?
- Velocity originated from each force (time integrated acceleration)
- Inside 30 km: thermal pressure exceeds gravity

 Inside 400 km: neutrino force is dominant

Radiation force of neutrinos

may play a role

Force applied inside 30 km (thermal pressure + gravity) reproduces the PNS kick.
Force inside 400 km (neutrino force) also reproduces the PNS kick.

 Neutrino force may play an important role.

Progenitor

Shock evolution of different progenitor models with LS EOS

lwakami+ in prep.

Only 11.2 Mo model shows shock revival beginning with the rapid drop of mass accretion rate
The others do not explode even when the mass accretion rates drop.

Higher neutrino heating rate for non-explosive models

lwakami+ in prep.

- Since the mass accretion onto the PNS for non-explosive
- models is high, neutrino luminosities are large.
- •Non-explosive models are dense inside the shock \rightarrow gain mass is large.
- •Neutrino heating rate is high for non-explosive models.

Higher neutrino heating rate for non-explosive models

lwakami+ in prep.

- •Since the mass accretion onto the PNS for non-explosive models is high, neutrino luminosities are large.
- •Non-explosive models are dense inside the shock \rightarrow gain mass is large.
- •Neutrino heating rate is high for non-explosive models.

Advection timescale is long for the explosive model

lwakami+ in prep.

- •The heating timescale does not differ so much, but the advection timescale differs significantly due to the mass accretion rate
- Timescale ratio only for 11.2 M⊙ model exceeds unity.

Similar properties for FT models

lwakami+ in prep.

- •Results using the FT EOS are similar.
- Longer simulations are required to judge whether the FT models explode or not.

