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Introduction

CCSN explosion mechanism:
the neutrino heating mechanism

- Explosive death of massive star

'he central proto-neutron star emits neutrinos.

"he shock Is re-energized by the neutrino heating.

Shock PNS
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Introduction

Basic equations

Acceleration terms to track the PNS

: PNS kick may be found (Nagakura in prep.)
-Boltzmann equation
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Introduction

Our models
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Nuclear EOS
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HON

Shock evolution

- Entropy and absolute value of velocity




HON

Timescale ratio

Shock revives when the timescale ration exceeds 1:

Tadv/ Theat with Tadv — M gain/ M, Theat — gain/ anin
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AH+ In prep.
All quantities are similar except for M,



HON

Difference In turbulence

- All quantities are similar except for M,
- Stronger turbulence in LS model
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HON

Difference In turbulence

- All quantities are similar except for M,
- Stronger turbulence in LS model
Larger convection growth rate (Brunt-Vaisala freqg.)
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HON

Difference in composition

Nuclear composition of
accretion flow Is
different: larger and
more heavy nuclei in LS.

» More energy loss by
nuclear photodissociation

» Shock I1s weakened
rapidly and steep entropy
gradient is formed

» Stronger prompt
convection X 13
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Rotation
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Rotation

Rotation

-Both positive and negative effects on shock revival
-Neutrino distributions are distorted

- (Thanks to the Boltzmann solver,) The accuracy of
approximation is checked.

-Imposed rotation:

Q) = 1 rad/s O
1 + (/103 cm)?

Shock\

Cen




Rotation

Entropy distribution

. Time evolution until ~200 ms after bounce.

—
-
——
.,
-
2k
B ¥
L
-
—
.‘.

-
YK
-

.-

——

>
L
=
.
——
.
S~
'.‘V
RE




Rotation

Shock evolution

-Postbounce evolution until ~200 ms
- The difference between rotating & non-rotating model
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Rotation

Istribution
- Distribution functions at ~10 ms after bounce.
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Rotation

Neutrino ang. distribution

- Distribution functions at ~10 ms after bounce.
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Rotation

Eddington factor

-Eddington tensor at ~10 ms after bounce
-spatial distribution of eigenvalues
.~20% difference in M1-closure scheme
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Rotation

Eddington factor

-Eddington tensor at ~10 ms after bounce
-Comparison between Boltzmann- and M 1-Edd. factors

-Prolateness of distribution
-M1: estimated from

deviation
outward

)
=
s
=
5]
o0
<)

lateral 1

Relative
difference

100
radius r [km]

Inward
AH+(2019)



Rotation

Eddington factor

-Eddington tensor at ~10 ms after bounce

-Comparison between Boltzmann- and M1-Edd. factors

-Information which distinguish these situations may
Improve the approximation
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PNS kick
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PNS kick

Entropy distribution
-PNS moves from its initial position.
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PNS kick

Proper motion of PNS after 100 ms

Simu
PP-30km ——
PP-400km ——

Nagakura+(2019)

-PNS kick after To = 100 ms Is observed.



PNS kick

PNS kick mechanism (at late phase):
gravitational tug boat?

Gravitational tug boat
mechanism:
-Anisotropic explosion
!
-slower side Is closer
to the PNS and more
dense
!
-PNS Is attracted to
this side

Scheck+(20006)



PNS kick

PNS kick mehanism (at early phase):
gravity? pressure? neutrino force?

200 | e pres. -What kind of force is

Gravity
Neu trno

important?

-Velocity originated from
each force (time
Integrated acceleration)

-Inside 30 km: thermal
pressure exceeds gravity

-Inside 400 km: neutrino
force Is dominant

Nagakura+(2019)



PNS kick

Radiation force of neutrinos
may play a role

-Force applied inside 30
Km (thermal pressure +
gravity) reproduces the
PNS kick.

-Force inside 400 km
(neutrino force) also
reproduces the PNS
Kick.

Simu

PP-30km ——
PP-400km ——

-Neutrino force may play
an important role.

Nagakura+(2019)



Progenitor
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Progenitor

Shock evolution of
different progenitor models with LS EOS

lwakami+ In prep.

-Only 11.2 M® model shows shock revival beginning
with the rapid drop of mass accretion rate
- The others do not explode even when the mass

accretion rates drop.




Progenitor

Higher neutrino heating rate
for non-explosive models
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lwakami+ In prep.

-SIince the mass accretion onto the PNS for non-explosive
models is high, neutrino luminosities are large.

-Non-explosive models are dense inside the shock — gain mass
IS large.

-Neutrino heating rate is high for non-explosive models.



Progenitor

Higher neutrino heating rate
for non-explosive models
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lwakami+ In prep.

-SIince the mass accretion onto the PNS for non-explosive
models is high, neutrino luminosities are large.

-Non-explosive models are dense inside the shock — gain mass
IS large.

-Neutrino heating rate is high for non-explosive models.



Progenitor

Advection timescale Is long
for the explosive model

100 200 300

t [ms]

lwakami+ In prep.

- The heating timescale does not differ so much, but
the advection timescale differs significantly due to the
mass accretion rate

- Timescale ratio only for 11.2 M® model exceeds unity.



Progenitor

Similar properties for FT models
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lwakami+ In prep.

-Results using the FT EOS are similar.
-Longer simulations are required to judge whether
the FT models explode or not.



Future

Future prospects: 3D simulations
and general relativistic simulations
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Future

Future prospects: 3D simulations
and general relativistic simulations
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Future

Future prospects: 3D simulations
and general relativistic simulations
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Future

Future prospects: 3D simulations
and general relativistic simulations
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Summary

Rotation deforms
v distributions

Many models are
under investigation
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Composition may Y may be not n_egligible
be important or PNS kic



