Microscopic description of inclusive neutrino-nucleus reactions

Multi-dimensional Modeling and Multi-Messenger observation from Core-Collapse Supernovae (4M-COCOS) Fukuoka University, Fukuoka, Japan 2019.10.21-24

Wataru Horiuchi (Hokkaido Univ.)

Project members: K. Yoshida (Kyoto Univ.) T. Sato (RCNP, Osaka Univ.)

Contents

- A microscopic description of electro-weak nuclear responses for light nuclei
 - Ab initio few-body calculations: Correlated Gaussian method
 - Application to nuclear photoabsorption reaction
 - Application to neutrino-nucleus reactions

Progress report

Toward unified description of neutrino-nucleus reactions for a wide range of mass number and energy and momentum transfer

Electroweak nuclear reactions

- Nuclear reaction involving light elements
 - Fuel of a star
 - Origin of heavier elements
- Electromagnetic response (photon)
 - Radiative capture $X(a,\gamma)Y$
 - \Leftrightarrow Photoabsorption(dissociation) reaction X(γ ,b)Y
 - Electron scattering X(e,e')Y
- "Weak" response (weak bosons)
 - Beta decay $X \rightarrow Y+e+v$, Electron capture $X+e \rightarrow Y+v$
 - Neutrino-nucleus reaction X(v,v')Y, X(v,ev')Y

Electroweak excitations of light nuclei

- Photoabsorption reaction of ⁴He
 - Electric dipole excitation
 - Recent measurements
 - Peak ~27MeV

S. Nakayama et al., PRC 76, 021305 (2007).

• Peak ~30 MeV

T. Shima et al., PRC 72, 044004 (2005).

Taken from S. Nakayama et al. PRC 76, 021305 (2007).

- Excitation of light nuclei induced by the weak interaction
 - Neutrino-nucleus reaction (Gamow-Teller, Spin-dipole, etc.)
 - → important for the supernova explosion scenario neutrino heating, shock-wave revival, neutrino oscillations, etc.

Neutrino-nucleus cross section is too small to measure

Reliable theoretical model is desired

Electroweak response functions

- Response (strength) function
 - Resonant and continuum structure
 - The ground state properties and interactions

 $S(E) = \mathcal{S}_{f\mu} |\langle \Psi_f | \mathcal{O}_{\lambda\mu} | \Psi_0 \rangle |^2 \delta(E_f - E_0 - E)$

- Evaluate S(E) with ab initio theoretical model
 - Nucleon (proton and neutron) degrees of freedom
 - Realistic nuclear force (NN scattering, ²H properties)
 - No specific model assumption

Hamiltonian and nuclear forces

Hamiltonian

$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} v_{ijk}$$
$$v_{12} = V_c(r) + V_{Coul}(r) P_{1\pi} P_{2\pi} + V_t(r) S_{12} + V_b(r) L \cdot S$$

- Argonne v8 type interactions (AV8', G3RS); "bare" interaction central, tensor, spin-orbit
- Three-nucleon force (3NF) E. Hiyama et al. PRC70, 031001(R) (2002) \rightarrow reproduce binding energies of ³H, ⁴He

Variational calculation for many-body system

- Many-body wave function Ψ has all information of the system
- Solve many-body Schoedinger equation
 ⇔ Eigenvalue problem with Hamiltonian matrix
 HΨ = FΨ
- Variational principle $\langle \Psi | H | \Psi \rangle = E \ge E_0$ ("Exact" energy) (Equal holds if Ψ is the "exact" solution)
- Expand the wave function in the explicitly correlated Gaussian functions $\Psi = \sum_{k} c_{k} \exp\{-\sum_{i,i} \beta_{ii}^{k} (r_{i} - r_{i})^{2}\}$

1

- Parameter β_{ii} explicitly describe correlations among particles
- Optimal parameters are selected stochastically

Stochastic Variational Method K. Varga and Y. Suzuki, PRC52, 2885 (1995).

- 1. Randomly generate candidates
- 2. Calculate energy for each candidate
- 3. Select the basis which gives the lowest energy among them
- 4. Increase the basis size
- 5. Return to 1. and repeat the procedure until energy is converged
 - \rightarrow accurate solution can be obtained with a small basis size

Energy convergence of ⁴He

Electro-weak operators (Long-wave-length approximation)

• Photoabsorption reaction (operator: r)

 $\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$

Electric dipole strength function

- Neutrino-nucleus reaction
 - Charged current ${}^{4}\text{He} \rightarrow {}^{4}\text{Li} \text{ or } {}^{4}\text{H}$

Isovector transition, (IV \pm ; τ_{\pm})

- Gamow-Teller $\sigma \tau_{\pm}$
- Spin-dipole $[r \times \sigma]_{\lambda\mu} \tau_{\pm}$
- (∇ σ) τ_±
- Neutral current ${}^{4}\text{He} \rightarrow {}^{4}\text{He}^{*}$
 - Isovector (IV0; τ_{0}) and Isoscalar (IS) transition

Total photoabsorption cross section

Photoabsorption cross section

$$\sigma_{\gamma}(E_{\gamma}) = \frac{4\pi^2}{\hbar c} E_{\gamma} \frac{1}{3} S(E_{\gamma})$$

Interaction: AV8'+3NF, G3RS+3NF 3NF: E. Hiyama et al., PRC70, 031001(2004).

The continuum J^πT=1⁻1 state is expanded in several thousand of basis states including explicit decay to two and three-body channels.

Comparison with the measurements \rightarrow good agreement above 30 MeV Disagree at the low energy with the data by Shima et al.

T. Shima et al., new measurement

IV0	
$m_0(p,\lambda)$	\mathbf{SR}
4.59	4.59
9.35	9.36
18.36	18.38

- Relatively small decay widths of 0⁻0, 2⁻0 (0.84, 2.01 MeV)
- Resonant structure ⇔ Strength function

Neutrino-nucleus cross sections

Neutrino-nucleus reaction (Gamow-Teller, Dipole, Spin-dipole, etc.) → important for the supernova explosion scenario Neutrino-nucleus cross section is too small to measure

Reliable theoretical evaluation is desired

0

Inclusive neutrino-⁴He reactions

$$\begin{split} \nu_e + {}^{4}\text{He} &\to e^- + 3p + n, \ e^- + 2p + d, \ e^- + p + {}^{3}\text{He} \\ \bar{\nu}_e + {}^{4}\text{He} &\to e^+ + p + 3n, \ e^+ + 2n + d, \ e^+ + n + {}^{3}\text{H} \\ \nu + {}^{4}\text{He} &\to \nu + 2p + 2n, \ \nu + p + n + d, \ \nu + n + {}^{3}\text{He}, \\ \nu + p + {}^{3}\text{H}, \ \nu + 2d \end{split}$$

Summary and outlook

- Four-body calculations for electroweak strength functions of ⁴He
 - Explicitly correlated basis reinforced with complex scaling method
 - Based on the realistic nuclear force
 - No speciffic model assumption
 - Unified description of bound and unbound states
- Dipole type (E1, SD) electroweak strength functions
 - Non-energy-weighted sum rules are fully satisfied
 - Consistent agreement with experimental values
 - Photoabsorption reaction WH, Y. Suzuki, K. Arai, Phys. Rev. C 85, 054002(2012)
 - SD strength function and spectrum WH, Y. Suzuki, Phys. Rev. C 87, 034001 (2013)
 - Neutrino-nucleus reaction S.X. Nakamura et al., Rep. Prog. Phys. 80, 056301 (2017)
- Work in progress towards

Unified description of inclusive neutrino-nucleus reactions for a wide range of mass number, energy and momentum transfer

Progress report

Extension to lepton-nucleus scattering

⁴He (e,e') ⁴He* (J^πT=0⁺0, E_R =20.1±0.05 MeV, Γ=270±50 keV)

→ isoscalar monopole transition Is $\mathcal{M}(q) = \frac{1}{2} \sum_{i=1}^{A} j_0(qr_i) \quad q: \text{momentum transfer [fm^{-1}]}$ $S(q, E) = S_{\text{res}}(q, E) + S_{\text{bg}}(q, E)$ $F_{\text{el}}(q) = \frac{G_E^p(q)}{Z} \langle \Psi_0 | \mathcal{M}(q) | \Psi_0 \rangle$ $|F_{\text{inel}}(q)|^2 = \left(\frac{G_E^p(q)}{Z}\right)^2 \int dE S_{\text{res}}(q, E)$

Theory reproduces E. Hiyama et al. PRC70, 031001(R) (2002)

Isoscalar monopole strength functions

 $q^2=1.0 [fm^{-2}]$ $q^2=2.0 [fm^{-2}]$

 $q^2=3.0$ [fm⁻²]

26

28

30

q²=4.0 [fm⁻²]

0.01

0.008

0.006

0.004

0.002

18

20

22

24

Description with high-q

Extension to various energy and momentum transfer regions desired

However, for describing high-momentum transfer reaction, high-angular momentum states contribute

 Develop an efficient method and operators for neutrino-nucleus reactions without explicit angular momentum decomposition

Space-grid representation of the correlated Gaussian basis

 $g(\mathbf{s}; A, \mathbf{x}) = \exp(-\frac{1}{2}\tilde{\mathbf{x}}A\mathbf{x} + \tilde{\mathbf{s}}\mathbf{x})$

s is represented on a space-grid

"Standard" angular momentum projection

$$F_{(L_1L_2)LM}(u_1, u_2, A, \mathbf{x}) = \frac{B_{L_1}B_{L_2}}{L_1!L_2!} \iint d\mathbf{e}_1 d\mathbf{e}_2 \left[Y_{L_1}(\mathbf{e}_1)Y_{L_2}(\mathbf{e}_2) \right]_{LM} \\ \times \frac{\partial^{L_1+L_2}}{\partial\lambda_1^{L_1} \partial\lambda_2^{L_2}} g(\lambda_1\mathbf{e}_1u_1 + \lambda_2\mathbf{e}_2u_2; A, \mathbf{x}) \Big|_{\lambda_1 = \lambda_2 = 0},$$

Applications to neutrino-nucleus reactions in wide momentum and energy transfers at quasi-elastic regions

Progress of our project in collaboration with T. Sato and K. Yoshida

- Develop electro-weak operators for neutrino-nucleus scattering (T. Sato)
 - Expression without angular momentum expansion for electron- and neutrinonucleus reactions (completed)
 - Correct treatment of the electron Coulomb wave function (completed)
 - Behrens formula have been revised

H. Behrens and W. Bühring, *Electron Radial Wave Functions and Nuclear Beta-Decay* (Clarendon, Oxford, 1982).

- *Ab initio* calculations for light nuclei (WH)
 - Photoabsorption of ⁶Li (completed) S. Satsuka and WH, Phys. Rev. C 100, 024334 (2019)
 - Formulation for new CG basis (completed)
 - Test calculation with electron-nucleus scattering (in progress)
 - Develop a code for neutrino-nucleus scattering (in progress)
- Weak transitions in medium- to heavy-mass nuclei with nuclear density functional theory (K. Yoshida)
 - Weak transitions for medium mass nuclei (completed)

K. Yoshida, Phys. Rev. C 100, 024316 (2019)

- Beta decay with the exact electron wave function (in progress)
- Develop a code for neutrino-nucleus scattering (in progress)

Correlated basis approach: global vector representation

Correlated Gaussian combined with two global vectors Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

$$\phi_{(L_1L_2)LM_L}^{\pi}(A, u_1, u_2) = \exp(-\tilde{\boldsymbol{x}}A\boldsymbol{x})[\mathcal{Y}_{L_1}(\tilde{u}_1\boldsymbol{x})\mathcal{Y}_{L_2}(\tilde{u}_2\boldsymbol{x})]_{LM_L}$$

x: any relative coordinates (cf. Jacobi)

 $\mathcal{Y}_{\ell}(\boldsymbol{r}) = r^{\ell} Y_{\ell}(\hat{\boldsymbol{r}})$

$$\tilde{x}Ax = \sum_{i,j=1}^{N-1} A_{ij}x_i \cdot x_j$$

$$\tilde{u}_i x = \sum_{k=1}^{N-1} (u_i)_k x_k$$

"bare" interaction can be used

Some advantages

- Formulation for *N* particle system
- Analytical expression for matrix elements
- The functional form does not change under any coordinate transformations

 $oldsymbol{y} = Toldsymbol{x} \implies \widetilde{oldsymbol{y}}Boldsymbol{y} = \widetilde{oldsymbol{x}}\widetilde{T}BToldsymbol{x}$ $\widetilde{v}oldsymbol{y} = \widetilde{\widetilde{T}v}oldsymbol{x}$

Variational parameters A, $u \rightarrow$ Stochastic variational method

K. Varga and Y. Suzuki, PRC52, 2885 (1995).

Dipole type operators and spectrum

Electric dipole (E1) $J^{\pi}T=0^+0 \rightarrow 1^-1$

Photo nuclear reaction, radiative capture, etc

$$\mathcal{M}_{1\mu} = \sum_{i=1}^{4} \frac{e}{2} (1 - \tau_{3_i}) (\mathbf{r}_i - \mathbf{x}_4)_{\mu}$$

Spin-dipole (SD) $J^{\pi}T=0^+0 \rightarrow \lambda^-0, \lambda^-1$

Beta decay, Neutrino nucleus reaction, etc.

$$\mathcal{O}_{\lambda\mu}^{p} = \sum_{i=1} \left[(\boldsymbol{r}_{i} - \boldsymbol{x}_{4}) \times \boldsymbol{\sigma}_{i} \right]_{\lambda\mu} T_{i}^{p}$$
$$T_{i}^{\text{IS}} = 1, \quad T_{i}^{\text{IV0}} = \tau_{z}(i), \quad T_{i}^{\text{IV\pm}} = t_{\pm}(i)$$

- ⁴He: seven negative parity states
 J^π T= 0⁻1, 1⁻1, 2⁻1, 0⁻0, 1⁻0, 2⁻0
- Degenerate levels only with central force

→Non-central force is necessary

