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Observational properties of core-collapse SNe

• hydrogen-rich SNe (Type II) 
• stripped-envelope (no or little hydrogen) SNe (Type IIb, Ib, Ic, Ic-BL)

Shivvers et al. (2017)



Standard luminosity source of core-collapse SNe

• thermal energy from the initial shock 
• significant for extended progenitors (mostly H-rich progenitors) 

• nuclear decay of 56Ni synthesized during the explosion

γ γ MPA



Hydrogen-rich SNe

Dhungana et al. (2017)



56Ni mass of hydrogen-rich SNe

Anderson (2019)



Estimating explosion properties

Goldberg et al. (2019)



Velocity evolution

Goldberg et al. (2019)



Early phase affected by circumstellar interaction

Förster, Moriya et al. (2018)
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Förster, Moriya et al. (2018)

Early phase affected by circumstellar interaction



Velocity evolution with dense CSM

G
oldberg et al. (2019)

M
oriya et al. (2018)



Radius from the progenitor direct imaging

Smartt (2015)

Martinez et al. (2019)



Stripped-envelope SNe

Taddia et al. (2018)



• ejecta properties 

• 56Ni mass 
• light curve evolution 

• peak luminosity 
• tail luminosity

Stripped-envelope SN ejecta properties

Taddia et al. (2018)



Explosion properties of stripped-envelope SNe

Taddia et al. (2018)



56Ni mass estimates from core-collapse SNe

Anderson (2019)



56Ni mass estimates from core-collapse SNe

Anderson (2019)



Ejecta mass of stripped-envelope SNe

Taddia et al. (2018)



Why is 56Ni mass different?

• initial progenitor mass range and core mass are similar in hydrogen-
rich SNe and stripped-envelope SNe 

• difference related to binary evolution?

Anderson (2019)



Radio & X-ray to constrain the outermost layers

Weiler et al. (2002)



• intrinsic difference between SNe Ic-BL w/ and w/o a GRB?

Radio & X-ray to constrain the outermost layers

Margutti et al. (2014)



Superluminous SNe

• more than ~ 10 times brighter than other core-collapse SNe 
• often emit more than 1051 erg just by radiation

Pastorello et al. (2010)

superluminous 
supernovae
SNe associated 
with long GRB



Late-phase spectra: similar to SNe with GRBs

Jerkstrand et al. (2017)



Nicholl et al. (2016)

How do they become superluminous?

• large production of 56Ni for SLSNe? 
• more than 5 Msun of 56Ni required 
• light curve decline is often consistent with the 56Co decay 
• rapidly declining SLSNe are inconsistent — another model required



Measuring the 56Ni mass through NIR

Jerkstrand et al. (2016)

• a (PISN) model with large 56Ni mass 
• unblended Fe lines at NIR



Magnetars
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• efficient release of rotational energy of neutron stars (NSs) 
• rotational energy 

• SLSNe emit ~ 1e51 erg -> a few ms
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• efficient release of rotational energy of neutron stars (NSs) 
• rotational energy 

• SLSNe emit ~ 1e51 erg -> a few ms 
• magnetic field 

• spin down caused by poloidal fields  

• SLSN timescales: ~ 10 - 100 days → ~ 1e14 - 1e13 G
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Radio constraints on the magnetar model

• X-ray brightening by “ionization breakout” predicted 
• does not match to observations we have so far

Metzger et al. (2013)

Margutti et al. (2017)



Radio constraints on the magnetar model

• 1 SLSN in 10 SLSNe was detected in radio 
• the origin and association of the radio flux are not clear

Law et al. (2019)



Summary

• 56Ni mass difference in hydrogen-rich and stripped-envelope SNe 
• they likely come from the same mass range 
• why 56Ni mass has difference? 

• X-ray & radio probes outermost layers in SN ejecta 
• SNe Ic-BL w/o GRBs may be intrinsically different from those w/ 

GRBs 

• superluminous SNe 
• the amount of 56Ni needs to be determined by NIR spectra 
• no clear signatures of the proposed central power sources are 

found in X-rays and radio


