Recent progress in multi-wavelength observations of core-collapse supernovae

Takashi Moriya National Astronomical Observatory of Japan

Observational properties of core-collapse SNe

- hydrogen-rich SNe (Type II)
- stripped-envelope (no or little hydrogen) SNe (Type IIb, Ib, Ic, Ic-BL)

Standard luminosity source of core-collapse SNe

thermal energy from the initial shock

٠

- significant for extended progenitors (mostly H-rich progenitors)
- nuclear decay of ⁵⁶Ni synthesized during the explosion

Hydrogen-rich SNe

Dhungana et al. (2017)

⁵⁶Ni mass of hydrogen-rich SNe

Estimating explosion properties

$$log(E_{51}) = -0.728 + 2.148 log(L_{42}) - 0.280 log(M_{Ni}) + 2.091 log(t_{p,2}) - 1.632 log(R_{500}), log(M_{10}) = -0.947 + 1.474 log(L_{42}) - 0.518 log(M_{Ni}) + 3.867 log(t_{p,2}) - 1.120 log(R_{500}),$$

Goldberg et al. (2019)

Velocity evolution

$log(v_{Ph,15}) = 3.90 - 0.22 log(M_{10}) + 0.43 log(E_{51}) - 0.13 log(R_{500})$

Goldberg et al. (2019)

Early phase affected by circumstellar interaction

Credit: Förster et al. Nature Astronomy 2018, modified

Förster, Moriya et al. (2018)

Early phase affected by circumstellar interaction

Time (Modified Julian Date)

Time (Modified Julian Date

Förster, Moriya et al. (2018)

Velocity evolution with dense CSM

Radius from the progenitor direct imaging

Smartt (2015)

Stripped-envelope SNe

Taddia et al. (2018)

Stripped-envelope SN ejecta properties

• ejecta properties

$$t_{\rm rise} \propto \kappa^{0.5} M_{\rm ej}^{3/4} E_{\rm ej}^{-1/4}$$

 $v_{\rm ej} \propto E_{\rm ej}^{1/2} M_{\rm ej}^{-1/2}$

- ⁵⁶Ni mass
 - light curve evolution
 - peak luminosity
 - tail luminosity

Explosion properties of stripped-envelope SNe

Taddia et al. (2018)

⁵⁶Ni mass estimates from core-collapse SNe

⁵⁶Ni mass estimates from core-collapse SNe

SN distribution (N)	Mean (M_{\odot})	Standard deviation (M_{\odot})	Median (M_{\odot})	Max (M_{\odot})	Min (M_{\odot})
SN II (115)	0.044	0.044	0.032	0.360	0.001
SE-SN (143)	0.293	0.295	0.184	2.400	0.030
SN IIb (27)	0.124	0.061	0.102	0.280	0.030
SN Ib (33)	0.199	0.146	0.163	0.920	0.030
SN Ic (48)	0.198	0.139	0.155	0.840	0.030
SN IcBL (32)	0.507	0.410	0.369	2.400	0.070

Anderson (2019)

Ejecta mass of stripped-envelope SNe

Why is ⁵⁶Ni mass different?

- initial progenitor mass range and core mass are similar in hydrogenrich SNe and stripped-envelope SNe
- difference related to binary evolution?

Anderson (2019)

Radio & X-ray to constrain the outermost layers

Weiler et al. (2002)

Radio & X-ray to constrain the outermost layers

intrinsic difference between SNe Ic-BL w/ and w/o a GRB?

Superluminous SNe

- more than ~ 10 times brighter than other core-collapse SNe
 - often emit more than 10⁵¹ erg just by radiation

Late-phase spectra: similar to SNe with GRBs

Jerkstrand et al. (2017)

How do they become superluminous?

- large production of ⁵⁶Ni for SLSNe?
 - more than 5 Msun of ⁵⁶Ni required
 - light curve decline is often consistent with the ⁵⁶Co decay
 - rapidly declining SLSNe are inconsistent another model required

Measuring the ⁵⁶Ni mass through NIR

- a (PISN) model with large ⁵⁶Ni mass
 - unblended Fe lines at NIR

Jerkstrand et al. (2016)

Magnetars

- efficient release of rotational energy of neutron stars (NSs)
 - rotational energy

$$E_{\rm rot} = \frac{1}{2} I_{\rm NS} \Omega^2 \simeq 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ erg}$$

SLSNe emit ~ 1e51 erg -> a few ms

Magnetars

- efficient release of rotational energy of neutron stars (NSs)
 - rotational energy

$$E_{\rm rot} = \frac{1}{2} I_{\rm NS} \Omega^2 \simeq 2 \times 10^{52} \left(\frac{P}{1 \text{ ms}}\right)^{-2} \text{ erg}$$

- SLSNe emit ~ 1e51 erg -> a few ms
- magnetic field
 - spin down caused by poloidal fields

$$t_m = \frac{6I_{\rm NS}c^3}{B_{\rm dipole}^2 R_{\rm NS}^6 \Omega^2} \simeq 5 \left(\frac{B_{\rm dipole}}{10^{14} \ G}\right)^{-2} \left(\frac{P}{1 \ {\rm ms}}\right)^2 \ {\rm days}$$

SLSN timescales: ~ 10 - 100 days → ~ 1e14 - 1e13 G

magnetar

Radio constraints on the magnetar model

- X-ray brightening by "ionization breakout" predicted
 - · does not match to observations we have so far

Radio constraints on the magnetar model

- 1 SLSN in 10 SLSNe was detected in radio
 - the origin and association of the radio flux are not clear

Summary

- ⁵⁶Ni mass difference in hydrogen-rich and stripped-envelope SNe
 - they likely come from the same mass range
 - why ⁵⁶Ni mass has difference?
- X-ray & radio probes outermost layers in SN ejecta
 - SNe Ic-BL w/o GRBs may be intrinsically different from those w/ GRBs
- superluminous SNe
 - the amount of ⁵⁶Ni needs to be determined by NIR spectra
 - no clear signatures of the proposed central power sources are found in X-rays and radio