

STUDYING STANDING ACCRETION SHOCK INSTABILITY (SASI) FLUCTUATIONS FROM NEUTRINOS AND GRAVITATIONAL WAVE OSCILLATIONS

Authors: C. Richardson, M. Zanolin, Z. Lin, C. Lunardini, K. Kotake

6

MCAL UNI

Standing Accretion Shock Instability

- An acoustic, convective hydrodynamic instability may develop between the protoneutron star and the shock wave (SASI)
- SASI is a harmonic precession of the shock wave front around the proto-neutron star with a frequency between 80-150 Hz
- SASI produces Gravitational Waves and has an oscillatory effect on the observed neutrino flux from the Supernova

Gravitational Waves and Neutrinos

Kuroda, et al (2017)

Detection and Parameter Estimation

Neutrino

- How to establish the presence of SASI in neutrino luminosity (SASImeter), and with which confidence?
- How precisely can we measure the deterministic parameters?
- An example of an estimate for these parameters.

Gravitational Waves

• Not included in this presentation

Modeling Neutrino Fluctuations

The recorded number of neutrinos detected (IceCube, Super-K, Hyper-K...) is subject to Poisson fluctuations. This means that the luminosity is a stochastic process with a variance proportional to \sqrt{N} where the mean is given by:

$$R(t) = (A - n) \left(1 + a \operatorname{Sin}(2 \pi f_a t) \right) + n$$

- A is the DC of the signal
- a is the relative amplitude of the signal
- f is the frequency of the signal
- n is the background of the detector

Modeling the SASI

Blue is the original Yellow is a Low-Pass filter

Modeling the SASI

Statistics

The Poisson fluctuations allow us to determine the probability of obtaining a specific total power in the neutrino luminosity in both scenarios [SASI (L(P)), No-SASI($L_o(P)$)].

SASImeter

The area under the blue curve to the right of the line is the detection probability.

SASImeter

SASImeter

Receiver Operating Curves

For any point where the line is located, we get a value for both the false alarm and the detection probability.

Receiver Operating Curves HK

Receiver Operating Curves IC

Parameter Estimation

We can also evaluate how much the probability of the observed power changes assuming different values of the parameters.

Parameter Estimation

Fisher Information and The Cramer Rao Bound

Forms a matrix which shows how much a data set is influenced by a certain parameter.

Amplitude of the SASI Oscillations

(+)

+

DC component of the Neutrino Rate

Minimum Error
$$(\alpha) = \sqrt{(I_{\alpha\alpha})^{-1}}$$

Using the information in the Fisher Matrix.

you can calculate the Cramer Lower Bound

Estimated Parameters

TABLE I: Estimated parameters (which maximized the likelihood) and their correspond uncertainties (standard deviation) when there is SASI at 10, 7.07, 5.77 and 5 kpc, for Ice Cube. Numbers in the parentheses are calculated using Fisher matrix.

SASI	10 Kpc	7.07 Kpc	5.77 Kpc	5 K p c
A(1/ms)	2312.4	3284.9	4257.3	5229.7
f(Hz)	120.27	114.18	117.95	119.36
$\delta f(\text{Hz})$	37.27(0.17)	14.81(0.11)	6.62(0.078)	3.52(0.063)
a	0.045	0.045	0.046	0.047
δa	$0.01 \ (0.0091)$	0.0066(0.0053)	0.0055(0.0041)	0.0049(0.0034)
n $(1/ms)$	1340	1340	1340	1340

TABLE III: Estimated parameters (which maximized the likelihood) and their correspond uncertainties (standard deviation) when there is SASI at 10, 5, 3.33, 2 and 1 kpc, for Hyper-K. Numbers in the parentheses are calculated using Fisher matrix in the time domain, in the power domain.

SASI	10 Kpc	5 Kpc	3.33 Kpc	2Kpc	1 K p c
A(1/ms)	61.41	245.7	552.7	1535.38	6141
f(Hz)	119.18	108	109.33	116.34	119.72
$\delta f(\text{Hz})$	41.25(0.35)	29.48(0.21)	20.02(0.14)	9.91(0.08)	2.35(0.04, 0.23009)
a	0.0579	0.0496	0.049	0.049	0.049
δa	0.0227(0.023)	0.0128(0.012)	0.0087(0.0077)	0.0055(0.0047)	0.0026(0.0023, 0.00264)

Acknowledgements

- Kuroda, K., Kotake, K., Hayama, K., and Takiwaki, T. (2017). Correlated Signatures of Gravitational-Waves and Neutrino Emission in Three-Dimentional General-Relativistic Coer-Collapse Supernova Simulations.
- Lund, T., Marek, A., Lunardini, C., Janka, H.T., and Raffelt, G. (2010). Fast time variations of supernova neutrino fluxes and their detectability.
- Zanolin, M., Naftali, E., and Markis, N. Second Order Bias of a Multivariate Gaussian Maximum Likelihood Estimate with a Chain Rule for Higher Moments.