The quest to detect Gravitational Waves from Core-Collapse Supernovae

arXiv:1908.03584 [astro-ph.HE] (submitted to PRD)

Marek Szczepańczyk (for the LIGO Scientific Collaboration and the Virgo Collaboration)

4M-COCOS Fukuoka, 2019.10.23

Outline

- Targeted SNe and on-source window calculation
- Available data and methodology
- Results:
 - Loudest events
 - Detection efficiencies
 - Model exclusion statements
 - GW energy constraints

Targeted CCSNe

- Observing Runs:
 - O1: Sep 2015 Jan 2016
 - O2: Nov 2016 Aug 2017
- Surveys: ASAS-SN, DLT40, Gaia, ASRAS, TNS, OSC, CBAT

Selection criteria:

- Distance less than ~20 Mpc
- On-source window well identified (order of maximum few days)
- Sufficient amount of coincident data
- 9 CCSNe considered and 5 passed the selection criteria: SN 2015as, SN 2016B, SN 2016X, SN 2017eaw and SN 2017gax.
- 4 CCSNe did not pass selection criteria:
 - SN 2016C (type-IIP, 20.1 Mpc) and SN 2017ein (type-Ic, 11.2 Mpc) not enough GW data was available
 - SN 2017aym (Gaia17aks, type-IIP, 26.4 Mpc) and SN 2017bzb (type-II, 13.9 Mpc) no on-source window could be sufficiently constrained

Targeted CCSNe

- SN 2015as: type-IIb, 19.2 Mpc, progenitor star is either main sequence 15 $\rm M_{\odot}$ star or Wolf-Rayet 20 $\rm M_{\odot}$ star, ejecta 1.1-2.2 $\rm M_{\odot}$
- **SN 2016B**: type-IIP, 18.6 Mpc, red supergiant
- SN 2016X: type-IIP, 15.2 Mpc, >19 M_{\odot} red supergiant, radius 930 R_{\odot}
- SN 2017eaw: type-IIP, 6.7 Mpc, 13 M_{\odot} red supergiant, radius 4000 R_{\odot}
- SN 2017gax: type-Ib/c, 19.7 Mpc, little is known about the progenitor star

On-source window calculations

- **On-source window period** $[t_1, t_2]$ when we expect to find the GW transient
- t_{disc} discovery time, upper bound of t_2
- t_{Null} last observation of a host galaxy without a supernova present
- $\Delta t_{_{\rm SB}}$ time between the moment of explosion and shock breakout (few hours to few days)
- Calculations:
 - Early observation method applied when t_{disc} t_{Null} is of order a few days, the supernova type is known, and the progenitor star is inferred (SN 2015as, SN 2016B, SN 2016X and SN 2017gax)
 - **Expanding photosphere method** otherwise, multi-band photometry is used to extrapolate backwards in time (SN 2017eaw).

$$t_1 \qquad t_{Null} \qquad t_{disc} \qquad t_{disc}$$

Available data

Rur	n Detectors	Run Period	Duty Factors	Coin. Duty Factor
01	$_{\rm H1,L1}$	2015.09.12 – 2016.01.19	49.5% (H1), 42.4% (L1)	31.4% (H1L1)
O2	$_{ m H1,L1}$	2016.11.30 - 2017.08.25	65.4% (H1), $63.6%$ (L1)	49.0% (H1L1)
O2	$_{\rm H1,L1,V1}$	$2017.08.01 {-} 2017.08.25$	77.7% (H1), $79.2%$ (L1), $85.1%$ (V1)	62.0% (H1L1V1)

O1-O2 GW CCSN Search

Detectors sensitivities

- Periods of poor data quality are excluded
- L1 and H1 detector improvements between O1-O2 and S5-S6:
 - around 3-5 times more sensitive between 100 Hz and 300 Hz
 - around 10 times more sensitive around 1 kHz
- V1 was excluded from the analysis, H1L1V1 network is less sensitive than H1L1 network

Methodology

- Search pipeline Coherent WaveBurst (Klimenko et al 2016)
 - Constrained maximum likelihood
 - **Ranking statistics**: $\rho \propto \sqrt{E_c}$, where E_c is the normalized coherent energy obtained by cross-correlating the reconstructed waveforms in each detector
 - Correlation coefficient, *cc*, measures degree of similarity of the waveforms between the detectors (real GW, cc~1, search cut cc>0.8)

Search bandwidth: 16-2048 Hz

- Search classes:
 - class C1 transients of a few cycles (e.g. blips)
 - class C2 other noise transients
- Loudest event statistics
- **Background estimation**, events significance: $FAP = 1 \exp(-T_{coinc} \times FAR)$

(False Alarm Probability and Rate (FAP and FAR), T_{coinc} – coincident duty factor)

• **Search sensitivity**: cWB adds (injects) to data CCSN waveforms, performs analysis and fraction of detected events we call *detection efficiency*

O1-O2 GW CCSN Search

CCSN waveforms

	Waveform	Waveform		$h_{ m rss}$	$f_{\rm peak}$	$E_{\rm GW}$	Polarizations
	Family		Identifier	$[10^{-22}\sqrt{s}@10 \text{ kpc}]$	[Hz]	$[10^{-9}M_{\odot}c^2]$	
•	Müller [91] 3D Convection and SASI		mul1-L15-3	1.655	150	3.741×10^{-2}	+, ×
↑			mul2-N20-2	3.852	176	4.370×10^{-2}	$+, \times$
Neutrino-driven			mul3-W15-4	1.093	204	3.247×10^{-2}	$+, \times$
1 .	Ott [92] 3D Convection	n and SASI	$ott1\hbox{-}s27 fheat1p05$	0.238	1019	7.342×10^{-1}	$+, \times$
explosions			yak1-B12-WH07	3.092	760	3.411	+
	Yakunin [93] 2D Convection and SASI		yak2-B15-WH07	14.16	932	7.966	+
V			yak3-B20-WH07	3.244	638	4.185	+
			yak4-B25-WH07	18.05	1030	14.21	+
	Scheidegger [94] Rotating Core-Collapse Dimmelmeier [95] Rotating Core-Collapse		schl-RIEICA _L	0.129	1155	1.509×10^{-1}	$+, \times$
MHD-driven			sch2-R3EIAC _L	5.144	466	2.249×10^{-2}	+, ×
			$\frac{\text{scn3-R4EIF}C_L}{\text{dim}1 \text{ a15A2}005\text{la}}$	0.790	<u> </u>	4.023×10	
explosions			dim1-s15A2O05ls $dim2 a15A2O00la$	1.052	754	(.089 27 880	+
*			dim2-s15A2O09ls	2 690	$\frac{754}{237}$	1 380	+
				2.000	201	1.000	
		Ib1-M0.2L	60R10f400t100	1.480	800	2.984×10^{-4}	$+, \times$
T	Long-lasting	1b2-M0.2L60R10f400t1000		4.682	800	2.979×10^{-3}	$+, \times$
		1b3-M0.2L60R10f800t100		5.920	1600	1.902×10^{-2}	$+, \times$
Extromo omiggion	Bar Mode $[100]$	lb4-M1.0L60R10f400t100		7.398	800	7.459×10^{-3}	+, imes
Extreme emission		1b5-M1.0L60R10f400t1000		23.411	800	7.448×10^{-2}	+, imes
models		1b6-M1.0L	60R10f800t25	14.777	1601	1.184×10^{-1}	+, imes
		piro1-M5.0 η 0.3		2.550	2035	6.773×10^{-4}	+, imes
	Torus Fragmentation piro2-M5Instability [101]piro3-M1	piro2-M5.0 η 0.6		9.936	1987	1.027×10^{-2}	+, imes
		piro3-M10	$.0\eta 0.3$	7.208	2033	4.988×10^{-3}	+, imes
		piro4-M10.0 η 0.6		28.084	2041	7.450×10^{-2}	$+, \times$
		sg1-235Hz	Q8d9linear		235		+
Ad has monoforma	sine-Gaussian [31]	sg2-1304HzQ8d9linear			1304		+
Au-moc wavelorms		sg3-235Hz	Q8d9elliptical		235		$+, \times$
·		sg4-1304HzQ8d9elliptical			1304		$+, \times$

Results – Loudest Events

- The non negligible values of the FAP indicate that all the loudest events appear compatible with the noise background.
- Results of the search (loudest event statistics):
 - Detection efficiencies
 - GW energy constraints
 - Extreme emission model exclusion statements

Supernova	Class	ho	FAR [Hz]	FAP
SN 2015as	C2	5.8	2.9×10^{-5}	0.716
SN 2016B	C1	5.6	1.1×10^{-5}	0.732
SN 2016X	C1	6.2	1.4×10^{-5}	0.398
SN 2017eaw	C1	6.6	1.3×10^{-6}	0.076
SN 2017 gax	C2	5.5	9.7×10^{-5}	1.000

O1-O2 GW CCSN Search

Results – Detection Efficiencies

- We accept events more significant than the loudest events
- Example plot: SN 2017eaw (6.7 Mpc)
- Detection ranges for SN 2017gax (19.7 Mpc):
 - 5 kpc (neutrino-driven explosions),
 - 54 kpc (MHD-driven explosions)
- Detection ranges improvement correspond to detectors improvement between S5-S6 and O1-O2 runs.

Results – Detection Efficiencies

- We accept events more significant than the loudest events
- Example plot: SN 2017eaw (6.7 Mpc)
- Detection ranges for SN 2017gax (19.7 Mpc): 28 Mpc
- Given non-zero detection efficiencies for extreme emission models, we exclude parameter spaces of these models.

$Results-Model\ Exclusion$

- For the first time, the gravitationalwave data enabled us to exclude parameter spaces of two extreme emission models.
- These results are consistent with the current theoretical understanding
- We combine 5 supernovae in a standard candle approach
- Reduced detection efficiency model exclusion probability $\epsilon(d)$
- Overall model exclusion probability P_{excl} :

$$P_{\text{excl}} = 1 - \prod_{i=1}^{N} (1 - \epsilon_i(d_i))$$

Sup	piro1	piro2	piro3	piro4	lb1	lb2	lb3	lb4	lb5	lb6	
Reduced Detection Efficiency ϵ [%]	SN 2015as SN 2016B SN 2016X SN 2017eaw	$ \begin{array}{c c} 0.0 \\ 0.$	$ \begin{array}{c} 0.2 \\ 0.1 \\ 0.0 \\ 26.8 \\ 0.2 \\ \end{array} $	0.0 0.0 0.0 5.2	$ 18.0 \\ 16.0 \\ 9.8 \\ 47.2 \\ 40.7 $	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$	$0.0 \\ 0.0 \\ 0.0 \\ 8.7 \\ 0.0$	8.4 5.5 3.1 39.5	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 8.0 \\ 0.0 \end{array}$
	SN 2017gax	0.0	0.2	0.0	48.7	0.0	0.0	0.0	0.0	28.6	0.0
$P_{ m excl}$ [%]		0.0	27.2	5.2	83.2	0.0	0.0	0.0	8.7	63.8	8.0

$Results-Model\ Exclusion$

• Long-Lasting Bar Mode instability:

- Creation of bars due to rapid rotation
- The deformations are preferably small: 2R<20km and L/2R<2.5, or 2R≈40km and L/2R≤1.5-3.5.
- The deformations are preferably short lived, less than 1s: 2R<20km and L/2R>3.

- Torus Fragmentation instability (Piro&Pfahl 2007):
 - Black Hole (BH) is formed in the center and fragmented clump of matter accretes into BH
 - $\bullet\,$ The clump of matter is preferably small $\rm M_{f}\,{<<}\,M_{\odot}$
 - Tori around central BH are non-fragmented or thin

Results – GW Energy Constraints

- Constraint on the GW energy emitted by a CCSN source
- Isotropic emission assumed:

$$E_{\rm GW} = \frac{\pi^2 c^3}{G} D^2 f_0^2 h_{\rm rss}^2$$

- where D distance to the CCSN, f_0 – peak frequency
- Root-mean-square:

$$h_{\rm rss} = \sqrt{\int \left\langle h_+^2(t) + h_\times^2(t) \right\rangle_{\Omega} dt}$$

• Ad-hoc sine-Gaussian waveforms with duration:

$$\tau = Q/(\sqrt{2}\pi f_0)$$

where Q=8.9 is quality factor.

Results – GW Energy Constraints

- iLIGO SN Search $E_{_{GW}}$ constraints: 5.8x10⁻² M_{\odot}c² (235Hz) and 26 M_{\odot}c² (1304 Hz)
- Typical explosion energy (~ 10^{51} erg) and typical kinetic energy of the ejecta (~ 10^{51} erg)

O1-O2 GW CCSN Search

Summary

- No significant GW candidate
- Detection ranges up to 5 kpc for neutrino-driven explosions
- Model exclusion for two extreme emission models up to 83% confidence
- $\bullet~GW$ energy constraints down to ${\sim}10^{\text{-3}}~M_{\odot}c^{2}$