Uncertain stellar evolution: convection, rotation, magnetic field

Koh Takahashi

Max-Planck-Institut für Gravitationsphysik (AEI)

für Gravitationsphysik Albert-Einstein-Institut

Outline

\odot Theory of stellar evolution

Stars are the fundamental component of the universe. What are **the robust predictions** and **the uncertainties** involved in the theory?

Because of the long timescale, 1D modeling is inevitable. Then, how can we include the effects of Oconvection

- \bigcirc stellar rotation

stellar wind Massive stars lose significant fraction of mass.binarity High frequency of binary/multiple stellar systems

 \bigcirc stellar magnetism ?

\bigcirc Where are uncertainties?

Stellar evolution is described by a set of partial differential equations:

 $\frac{\partial r}{\partial M} = \frac{1}{4\pi r^2 \rho}$ $\frac{\partial p}{\partial M} = -\frac{GM}{4\pi r^4} + \frac{1}{4\pi r^2} \frac{\partial v}{\partial t}$ $\frac{\partial e}{\partial t} = -p \frac{\partial (1/\rho)}{\partial t} - \frac{\partial (L_{\text{rad}} + L_{\text{conv}})}{\partial M} + \epsilon$ $L_{\rm rad} = \frac{4aT^4/3}{p} \frac{4\pi cGM}{\kappa} \frac{d\ln T}{d\ln p}$ $\frac{\partial Y_i}{\partial t} = \dot{Y}_{i,\text{reac}} + \frac{\partial}{\partial M} \left((4\pi r^2 \rho)^2 D \frac{\partial Y_i}{\partial M} \right)$ independent variables: ρ, T, Y_i, r, L microphysics: $p, e, \kappa, \epsilon, \dot{Y}_{i, \text{reac}}(\rho, T, Y_i)$ macrophysics: $L_{\rm conv}, D$: Convection

Rotating pop III 40 Msol model: KT+14

○ Convection

A region becomes convective when the radiative energy transport is not efficient enough to carry the whole energy flux. (Schwartzschild/Ledoux criterion & Mixing length theory)

\rightarrow reasonably good (~a few %) estimate for the structure of the Sun.

○ **Prediction**

The numbers and durations of shell convective burning episodes are important for determining the final progenitor structure.

 \odot What determines properties of shell convections?

The important assumptions: "Inside a convective region, the entropy is constant." as well as the chemical abundances "The released energy is compensated by the v cooling."

→ extension/recession(, and the lifetime) of a convective region should be solely determined by the net heating/cooling in the region.

 \odot What determines properties of shell convections?

Changing the mixing coefficient D has negligible effects on the convective properties.

KT+ in prep.

OMissing dynamical physics

Obs.: the size of a H burning convective core is larger than the model prediction. -main sequence width (Maeder 1976, Schaller et al. 1992, etc.) -measurements by asteroseismology (e.g., Aerts et al. 2018)

→ convective boundary mixing (CBM)

-convective overshoot (e.g. Freytag et al. 1996)-matter entrainment (e.g. Woodward et al. 2015)

 \bigcirc effect of CBM

KT+ in prep.

Progenitor structure is affected by a large CBM parameter.

-extension enhanced

-convective merger between O & Ne/C shells

\bigcirc Indication of active core convection

Obs.: SNe IIn indicate that strong mass ejections happen ~10 yr before the SN happens (e.g., Smith et al. 2007).

→ Merger of convective regions may explain the energetic nuclear burning triggering the mass ejection (Quataert & Shiode 2012, Smith & Arnett 2014).

Obs.: CCSNe explode with $E_{exp} \sim 10^{51}$ erg.

→ Multi-D velocity & density fluctuations formed by convective turbulence can help the CCSN explosion (Couch & Ott 2013, Müller et al. 2015, Takahashi et al. 2016).

Smith et al. 2008

\odot Multi-D hydrodynamical simulations

Multi-D simulation \Leftrightarrow 1D evolution calculation \rightarrow find an alternative treatment of L_{conv}, D_{conv}, and D_{CBM}. (Arnett & Meakin 2011, Jones et al. 2017, Arnett et al. 2018a, b,,,)

Yoshida, Kotake, Takiwaki, KT et al. 2019

For the CCSN progenitor structure → produce more realistic initial conditions. (Müller et al. 2016, 18, Yadav et al. 2019, Yoshida et al. 2019,,,)

→ Yoshida-san's talk.

○ Summary

1D treatment (MLT) is not so bad.

CBM is the most significant, but highly uncertain.

3D convection may have a key importance for the CCSN explosion.

Multi-D hydro calc is powerful and indispensable.

Furthermore, interplay among rotation, B field, and convection can be important.

○ Stars rotate.

-varying evolution?-SN mechanism?-WD/NS/BH rotation rates?

\odot Expected effects of stellar rotation

Deformation Mass-loss rate enhancements

→ Due to the centrifugal force, a fast spinning star is expected to have an elongated shape and an enhanced wind mass-loss rate.

Chemical mixing due to rotation induced instabilities

Obs.:

-surface N enhancement

-the size of a H burning convective core

→ Several instabilities, such as Eddington-Sweet circulation Goldreich-Schubert-Fricke instability and shear instability, are proposed, which account for the additional chemical mixing.

Interferometry of α -Leo (Regulus), V_{rot} ~ 300 km s⁻¹, M = 3.8 M_{sol}: Che et al. 2011

$\odot\, 1D$ description of a rotating stellar structure

(Endal & Sofia 1976, Pinsonneault et al. 1989, Zahn 1992, Maeder & Zahn 1998)

-Deformation factors are incorporated.

$$\frac{\partial p}{\partial M} = -\frac{GM}{4\pi r^4} \mathbf{f_p} + \frac{1}{4\pi r^2} \frac{\partial v}{\partial t}$$
$$L_{\text{rad}} = \frac{4aT^4/3}{p} \frac{4\pi cGM}{\kappa} \frac{d\ln T}{d\ln p} \frac{\mathbf{f_T}}{\mathbf{f_p}}$$

-Mass loss rate is enhanced.

 $\dot{M}(v_{\rm rot}) = \dot{M}(0) \times f_{\dot{M}_{\rm rot}}$

-Mixing coefficient is modified.

 $D = D_{\rm cv} + D_{\rm ES} + D_{\rm GSF} + D_{\rm SH} + D_{\rm SS} + D_{\rm DS} + \dots$

→ the estimates of Ds are extremely uncertain!

(semi-)empirical way of the estimate

-construct a phenomenological model

-calibration with observation assuming N enhancement is due to rot. mixing.

Streamline of the Eddington-Sweet circulation Maynet & Maeder 2002

\bigcirc Chemically homogeneous evolution

Fast enough rotation may allow the star to evolve chemically homogeneously.

 $\bigcirc \textbf{Changing nucleosynthesis in the early universe}^{1.4} \underbrace{1.6}_{M_1} \underbrace{1.8}_{M_2} \underbrace{2.0}_{M_1} \underbrace{2.2}_{M_2} \underbrace{2.0}_{M_1} \underbrace{2.2}_{M_2} \underbrace{2.2}_{M_1} \underbrace{1.6}_{M_2} \underbrace{1.8}_{M_2} \underbrace{2.0}_{M_1} \underbrace{2.2}_{M_2} \underbrace{2.2}_{M_$

Nucleosynthesis at the H & He burning shells is boosted to yield C, N, O, Na, Mg, AI, as well as s-process elements.

(Meynet et al. 2010, KT+14, Frischknecht et al. 2016, Choplin et al. 2016, 2017)

1000 8 7.8 Box 2 Box 4 100 7.6 Box 3 12 + log [N/H] 7.4 7.2 10 7 6.8 Box 1(a)50 100 150 200 250 300 350 0 v sini [km/s] $\begin{array}{l} M \leq 10 \; M_{sun} \\ 10 < M \leq 12 \; M_{sun} \end{array}$ $\begin{array}{l} 12 < M \leq 15 \ M_{sun} \\ 15 < M \leq 20 \ M_{sun} \end{array}$ $M > 20 M_{sun}$ ٠ binary •

\bigcirc Rotation induced mixing, or not.

N enhancement vs v sini compared with theoretical models for LMC B/O type stars: Brott et al. 2011, Rivero González et al. 2012

-[N/H] correlates with v sin i (3).

+ N enhancement is stronger for more massive stars

→ comparable with theoretical prediction

Meanwhile, there are other populations. -slowly rotating N enhanced stars (2) -fast rotating N normal stars (1).

 \rightarrow In addition to rotational mixing, other enrichment processes will be decisive.

-However, a star can be represented by numbers of parameters... (e.g., Aerts et al. 2014)

Number of simulated stars per bin

$\odot\operatorname{\mathbf{Spin}}$ rate of red giant cores

- -RG cores spin up (Beck+12, Mosser+14)
- -The rotation periods are far less than predictions (>~100).
- -Efficient AM transfer is required. (Cantiello et al. 2014, Eggenberger et al. 2017)

→ Possibly the magnetic stress? Or internal gravity wave?

○ Summary

- -1D treatment (MLT) is not so bad.
- -CBM is significant, but highly uncertain.
- -3D convection may have a key importance for the CCSN explosion.
- -Multi-D hydro calc is powerful and indispensable.
- Furthermore, interplay among rotation, B field, and convection would be important.

Rotation induced mixing is crucial, if exists.

Additional mixing due to other mechanisms would be decisive as well.

Efficient mechanism(s) of angular momentum transfer exists.

Omagnetic field of Ap/Bp stars

- -Chemically peculiar A/B type stars with enhancements in Sr, Cr, Eu, etc.
- -~10% of all A/B type stars

-Strong surface magnetic fields are detected from nearly all of the Ap stars.

(Badcock 1947,58; Landstreet 1992)

Field geometry of the B0 star τ Sco

(Donati et al. 2006)

Obs: The surface magnetic field in a radiative star is in a stable structure.

- -large scale structure ~dipole, quadrupole
- -stability with a long timescale ~10 yr
- -Massive O type stars also show similar field properties.
 - → progenitor of **magnetars/magnetized WDs** ?
 - → origin of **slowly-rotating N-enhanced stars/efficient AM transport** ?

$\odot \mbox{Observations}$ indicating magnetic field evolution

Rapid decline in the early MS phase?: Landstreet+08

Fraction decrease in OB stars: Fossati et al. 2016

→ indication of magnetic dissipation?

C Expected effects of stellar magnetism

Internal AM transfer

by the magnetic stress

Magnetic stress is one of the leading idea to explain the slow RG core rotation.

Wind-magnetic field interaction

-wind confinement leading to form a rigidly rotating magnetosphere-magnetic breaking

\bigcirc Requirement for the global theory

Most 'magnetic' stellar evolution calculations so far apply **local & time-independent theories** for the description of the magnetic fields.

Tayler-Spruit dynamo: -Maeder & Meynet 2003,04,05 -Heger et al. 2005 -Denissenkov & Pinsoneault 2007 -Fuller et al. 2019 Convection inhibition: -Petermann et al. 2015 Magnetic breaking:

-Meynet et al. 2011

Wind confinement: -Petit et al. 2017 -Georgy et al. 2017

-Keszthelyi et al. 2019

→ Global & time-dependent prescription is demanded cf. Potter et al. 2012 for progenitor evolution calculation.

Field evolution obtained by our code

$\odot \mathbf{A}$ novel modeling of the magneto-rotating stellar evolution

KT & Langer, in prep

Field configuration:

$$B_{tor} = B_{\phi}(r,\theta)e_{\phi},$$

$$B_{\phi}(r,\theta) = B(r)\sin 2\theta.$$

$$B_{pol} = \nabla \times A_{tor},$$

$$A_{\phi}(r,\theta) \equiv A(r)\sin\theta,$$

$$B_{r}(r,\theta) = \frac{2A}{r}\cos\theta$$

$$B_{\theta}(r,\theta) = -\frac{\sin\theta}{r}\frac{\partial(Ar)}{\partial r}$$

Flux eq. + induction eq.:

$$\frac{\mathrm{d}\Phi_C}{\mathrm{d}t} = \int_C (\nabla \times (\boldsymbol{U} \times \boldsymbol{B}) - \nabla \times (\eta \nabla \times \boldsymbol{B}) + \nabla \times (\alpha \boldsymbol{B})) \cdot \mathrm{d}\boldsymbol{S}$$

For the poloidal component,

$$\frac{d(Ar)}{dt} = \eta r \frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial}{\partial r} (Ar^2) \right) + r(\alpha \mathbf{B})_{\phi} (\theta = \pi/2).$$

For the toroidal component,

$$\frac{d}{dt}\left(\frac{Br}{r^2\rho}\right) = \frac{1}{r^2\rho}\left(Ar\frac{\partial\Omega}{\partial r} + \eta r\frac{\partial}{\partial r}\left(\frac{1}{r^2}\frac{\partial}{\partial r}(Br^2)\right) + r\frac{\partial\eta}{\partial r}\frac{\partial Br}{\partial r} - \alpha r\frac{\partial}{\partial r}\left(\frac{1}{r^2}\frac{\partial}{\partial r}(Ar^2)\right) - r\frac{\partial\alpha}{\partial r}\frac{\partial Ar}{\partial r}\right)$$

○ code test

10⁶

10⁴

10⁰

10⁻²

10²⁴

B_r × R² [G cm²]

10²²

ອ ອ້ 10²

- \rightarrow The code can follow
 - -B flux conservation

Magnetic dissipation

KT & Langer, in prep

KT & Langer, in prep

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1(

Mr / M sol

\bigcirc wave solution 0.001 Dmega [rad s⁻¹] 0.0005 The basic equation can be simplified into a 0 hyperbolic equation of -0.0005 $\frac{\partial (Br^3)}{\partial t}$ $= \frac{B_{\rm r}r^4}{2}\frac{\partial\Omega}{\partial r}$: Ω effect -0.001 $\frac{\partial \Omega}{\partial t} = \frac{B_{\rm r}}{10\pi\rho r^4} \frac{\partial (Br^3)}{\partial r}$, : Magnetic stress 1e+08 which has a set of eigenvalue and eigenvector of 5e+07 $\pm c \equiv \frac{1}{\sqrt{5}} v_A$ and $\mathbf{r}^{\pm} = (1 \sqrt{5\pi\rho} r^4)^t$. B _{phi} 0 Here, $v_A \equiv B_r / \sqrt{4\pi\rho}$ is the Alfvén velocity -5e+07 -1e+08

→ Dissipating Alfvén's wave transfers angular momentum efficiently.

This phenomena can only be acquired by the global & time-dependent modeling of the magneto-rotating star.

⇒ Tayler-Spruit dynamo (Spruit 1998, 2002, Fuller et al. 2019)

Evolution of surface/core rotation periods

 \bigcirc Observables

KT & Langer, in prep

First theoretical model comparable to surface magnetic field observations

Surface B field evolution

Rotation period evolution

The surface magnetic dissipation rate correlates with the rotation rate.

→ Magnetic dissipation due to rotation induced turbulence

The rotation period correlates with the surface magnetic field strength.

→ Magnetic breaking is also important.

 \bigcirc Observables

KT & Langer, in prep

→ Magneto-rotating model expects divergent evolution even with a given single initial mass!

○ Summary

- -1D treatment (MLT) is not so bad.
- -CBM is significant, but highly uncertain.
- -3D convection may have a key importance for the CCSN explosion.
- -Multi-D hydro calc is powerful and indispensable.
- Furthermore, interplay among rotation, B field, and convection would be important.
- -Rotation induced mixing is crucial, if exists.
- -Additional mixing due to other mechanisms would be decisive as well.
- -Efficient mechanism(s) of angular momentum transfer exists.
- Magnetic effects can be influential for the evolution as well.
- Global & time-dependent theory is demanded.
- Our new model yields results comparable to many observations.
- Soon be applied for massive star evolution.

Conclusion

 \bigcirc All at once

Stellar evolution simulation needs to be complex

to account for complicated observations.

-convective boundary mixing ... wide MS width, late time activities
 -rotation induced mixing ... N enhancement
 -magnetic field ... rigidly rotating magnetosphere, internal AM transfer

Convection, rotation, and magnetic field affect and depend on each other.

→ Fit all the data at once to disentangle the complex causality relations! Evolution simulations including everything is required, and it's coming!

29

and don't forget about stellar wind & binary