2019/10/21 4M-COCOS @Fukuoka University

Status report of group C01

Neutrino and Gravitational Wave Signatures of Core-Collapse Supernovae

Tomoya Takiwaki

(National Astronomical Observatory of Japan)

Purpose of CO1

Goal:

Deciphering mechanism of core-collapse supernovae via gravitational waves

Sub-goals:

 Theoretical investigation by 3D simulations

This talk

2. Proposing new data-analysis methods

3. Burst search using LIGO-VIRGO and KAGRA Kazuhiro Hayama will talk about it on 23rd

Collaboration among theory, data-analysis and experiments should be important.

Core Members of CO1

Theory

PI: Kei Kotake (Fukuoka University)

CI: (This talk) Tomoya Takiwaki (NAOJ)

PD: (Talk on 24th) Shota Shibagaki (Fukuoka University)

Data-Analysis

CI: Nobuyuki Kanda (Osaka City University)

CI: (Talk on 23rd) Kazuhiro Hayama (Fukuoka University)

PD: Man Leong Chan (Fukuoka University)

Hajime Kawahara (University of Tokyo)

Subscription

Project Research

Gravitational wave from Supernova

The mechanism of the explosion is uncertain.

Supernova: the death of the star

GW propagates through the star. GW provides the direct info. of the explosion mechanism.

Parameter Plane & Explosion Mechanism

Explosion Mechanism for non-rotating model

11

Convective activity is imprinted in GW

Quadrupole Formula: (Mueller, E. +2012)

$$h \sim \frac{G}{c^4} \int dV \rho \left(2v_i v_j - x_i \partial_j \Phi - x_j \partial_i \Phi \right)$$

Amplitude Density velocity Gravitational Potential

Convective activity is imprinted in GW

These formulae provide good estimation of the mode.

From the frequency of GW, we can know the evolution of radius of PNS.

Parameter Plane & Explosion Mechanism 1. Convection MHD, jet, MRI 2. SASI INSTRACTOR 3. Low-T/W Low-T/W SASI: Standing **Accretion Shock** Instability Convection SASI BH

3D simulation

Kuroda et al. 2016

Due to SASI, the shock oscillate at ~100Hz. After that, PNS begins to oscillate at the same frequency. From GW signals (~200Hz), we can get evidence of SASI

Detectability

SASI Modulation imprinted in v-signal

The results are consistent with Tamborra+ 2013,2014, Walk+ 2018

From Fourier Spectrum

Parameter Plane & Explosion Mechanism

Explosion Mechanism for rotating model

Low T/W instability

When the rotation energy exceeds a threshold. Perturbation of low mode (m=1 or m=2) become unstable. The threshold value depends on rate of differential rotation. In this case, typically ~6% of gravitational binding energy.

typical frequencies. Polarization analysis of LIGO-VIRGO-KAGRA network can help us to distinguish those.

29

Neutrino Observation

Fourier analysis of neutrino signal also provides an interesting probe to identify the explosion mechanism.

The results are consistent with Tamborra+ 2013,2014, Walk+ 2018

Joint observation of Hyper Kamiokande and IceCube will give indispensable opportunity to identify the explosion mechanism.

Direction dependence in Rotating model

Earth

Weak or No Neutrino Variability Strong GW Variability Circular polarization

Rotating Neutron Star Strong Neutrino Variability Moderate GW Variability Liner polarization

Jet-like Explosion and low frequency GW

Takiwaki+2009, 2011 discussed low-frequency GW signal from jet-like Explosion of strongly magnetized corecollapse.

Summary

Supernova explosion mechanism has diversity. GW would be powerful tool to identity it.

Convection: Ramp-up ~200-1000Hz in GW SASI: ~150Hz, S/N~10 of GW and 75Hz v Rotation: ~300Hz, S/N~100 of GW and 150Hz v

For detailed analysis, joint observation of LIGO-VIRGO-KAGRA and Hyper-K, IceCube would be indispensable.