Effects of nuclear saturation properties on the equation of state for hot nuclear matter in core-collapse supernovae

<u>H. Togashi</u> (Kyushu Univ.)

The aim of this study

To investigate systematically the effects of

nuclear saturation properties

on the mechanism of core-collapse supernovae

Multi-dimensional Modeling and Multi-Messenger observation from CCSNe @ Fukuoka, Oct. 21, 2019

1. Introduction

Nuclear equation of state (EOS) :

characterized by the empirical saturation parameters

The effects of saturation properties on the neutron-star structures has been studied with various nuclear theories.

(e.g. K. Oyamatsu & K. Iida PRC 75 (2007) 015801, S. Gandolfi et al., PRC 85 (2012) 032801)

Nuclear EOSs for Core-Collapse Supernovae

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

Model	Nuclear	Degrees	M_{\max}	$R_{1.4M_{\odot}}$	Ξ	publ.	References
	Interaction	of Freedom	(M _☉)	(km)		avail.	
H&W	SKa	$n, p, \alpha, \{(A_i, Z_i)\}$	2.21^a	13.9 a		n	El Eid and Hillebrandt (1980); Hillebrandt et al. (1984)
LS180	LS180	$n, p, \alpha, (A, Z)$	1.84	12.2	0.27	у	Lattimer and Swesty (1991)
LS220	LS220	$n, p, \alpha, (A, Z)$	2.06	12.7	0.28	У	Lattimer and Swesty (1991)
LS375	LS375	$n, p, \alpha, (A, Z)$	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	$n, p, \alpha, (A, Z)$	2.23	14.5	0.26	У	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	У	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.74	12.6	0.23	У	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.79	14.8	0.31	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.42	13.2	0.30	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.95	12.7	0.25	У	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
SFHx	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	у	Steiner et al. (2013a)
SHT(NL3)	NL3	$n, p, \alpha, \{(A_i, Z_i)\}$	2.78	14.9	0.31	у	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

Nuclear EOSs for Core-Collapse Supernovae

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

Model	Nuclear	Degrees	M_{\max}	$R_{1.4M_{\odot}}$	Ξ	publ.	References
	Interaction	Fffaating intone	- 4 -				
H&W	SKa	Effective intera	cuor	12 (DR	kyrı	ne); Hillebrandt <i>et al.</i> (1984)
LS180	LS180	n, p, lpha, (A, Z)	1.84	12.2	0.27	у	Lattimer and Swesty (1991)
LS220	LS220	n,p,lpha,(A,Z)	2.06	12.7	0.28	У	Lattimer and Swesty (1991)
LS375	LS375	n,p,lpha,(A,Z)	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	n,p,lpha,(A,Z)	2.23	14.5	0.26	у	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	у	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.74	12.6	0.23	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.79	14.8	0.31	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.42	13.2	0.30	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.95	12.7	0.25	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
SFHx	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	у	Steiner et al. (2013a)
SHT(NL3)	NL3	$n, p, \alpha, \{(A_i, Z_i)\}$	2.78	14.9	0.31	у	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

Microscopic EOS with bare nuclear potentials

Uniform EOS: cluster variational method with AV18 + UIX potentials

Non-uniform EOS: Thomas-Fermi method (Single nucleus approximation)

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA961 (2017) 78)

- Extended to Nuclear statistical equilibrium (NSE) model

(S. Furusawa, HT, H. Nagakura, K. Sumiyoshi, S. Yamada, H. Suzuki, M. Takano, J. Phys. G 44 (2017) 094001)

Nuclear EOSs for Core-Collapse Supernovae

(M. Oertel et al., Rev. Mod. Phys. 89 (2017) 015007)

Model	Nuclear	Degrees	M_{\max}	$R_{1.4M_{\odot}}$	Ξ	publ.	References
	Interaction	Fffaating intone	a 4 •a•				
H&W	SKa	Effective intera	cuor	12 (JK	yrı	ne); Hillebrandt <i>et al.</i> (1984)
LS180	LS180	n, p, lpha, (A, Z)	1.84	12.2	0.27	у	Lattimer and Swesty (1991)
LS220	LS220	n,p,lpha,(A,Z)	2.06	12.7	0.28	у	Lattimer and Swesty (1991)
LS375	LS375	n, p, lpha, (A, Z)	2.72	14.5	0.32	у	Lattimer and Swesty (1991)
STOS	TM1	n,p,lpha,(A,Z)	2.23	14.5	0.26	у	Shen et al. (1998); Shen et al. (1998, 2011)
FYSS	TM1	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	2.22	14.4	0.26	n	Furusawa et al. (2013b)
HS(TM1)	TM1*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.21	14.5	0.26	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(TMA)	TMA*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.02	13.9	0.25	у	Hempel and Schaffner-Bielich (2010)
HS(FSU)	FSUgold*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.74	12.6	0.23	у	Hempel and Schaffner-Bielich (2010); Hempel et al. (2012)
HS(NL3)	NL3*	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.79	14.8	0.31	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(DD2)	DD2	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.42	13.2	0.30	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
HS(IUFSU)	IUFSU*	$n,p,d,t,h,\alpha,\{(A_i,Z_i)\}$	1.95	12.7	0.25	у	Hempel and Schaffner-Bielich (2010); Fischer et al. (2014a)
SFHo	SFHo	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.06	11.9	0.30	у	Steiner et al. (2013a)
SFHx	SFHx	$n, p, d, t, h, \alpha, \{(A_i, Z_i)\}$	2.13	12.0	0.29	у	Steiner et al. (2013a)
SHT(NL3)	NL3	$n, p, \alpha, \{(A_i, Z_i)\}$	2.78	14.9	0.31	У	Shen <i>et al.</i> (2011b)
SHO(FSU)	FSUgold	$n, p, \alpha, \{(A_i, Z_i)\}$	1.75	12.8	0.23	у	Shen <i>et al.</i> (2011a)
SHO(FSU2.1)	FSUgold2.1	$n, p, \alpha, \{(A_i, Z_i)\}$	2.12	13.6	0.26	у	Shen <i>et al.</i> (2011a)

Microscopic EOS with bare nuclear potentials

Uniform EOS: cluster variational method with AV18 + UIX potentials

Non-uniform EOS: Thomas-Fermi method (Single nucleus approximation)

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA961 (2017) 78)

These EOSs are not suitable for the systematic study of supernovae in terms of the nuclear saturation properties.

Our plan for a systematic study of supernova EOSs

We extend the systematic study for cold β-stable matter (Neutron Star Crust). (K. Oyamatsu & K. Iida PRC 75 (2007) 015801)

3: Numerical simulations for core-collapse supernovae with obtained EOSs

Macroscopic EOS for uniform matter by Oyamatsu & Iida (PRC 75 (2007) 015801)

Energy per nucleon at zero temperature

 $E(n_{\rm B}, Y_{\rm p}) = E_{\rm F} + [1 - (1 - 2Y_{\rm p})^2]v_{\rm s}(n_{\rm B}) + (1 - 2Y_{\rm p})^2v_{\rm n}(n_{\rm B})$

 $-E_{\rm F}$: One-body kinetic energy per particle for the Fermi-gas

- Potential energy per particle for symmetric and neutron matter

$$v_{\rm s}(n_{\rm B}) = a_1 n_{\rm B} + \frac{a_2 n_{\rm B}^2}{1 + a_3 n_{\rm B}}$$
 $v_{\rm n}(n_{\rm B}) = b_1 n_{\rm B} + \frac{b_2 n_{\rm B}^2}{1 + b_3 n_{\rm B}}$

Parameters (a₁, a₂, a₃, b₁, b₂, b₃) are determined Thomas-Fermi calculation of isolated atomic nuclei with E reproduces the gross feature of experimental data (masses and radii).

Macroscopic EOS for uniform matter by Oyamatsu & Iida (PRC 75 (2007) 015801)

Energies per particles for macroscopic EOSs

Thomas-Fermi calculation for isolated atomic nuclei

Macroscopic EOS for uniform matter by Oyamatsu & Iida (PRC 75 (2007) 015801)

Energy per nucleon at zero temperature

 $E(n_{\rm B}, Y_{\rm p}) = E_{\rm F} + [1 - (1 - 2Y_{\rm p})^2]v_{\rm s}(n_{\rm B}) + (1 - 2Y_{\rm p})^2v_{\rm n}(n_{\rm B})$

 $-E_{\rm F}$: One-body kinetic energy per particle for the Fermi-gas

- Potential energy per particle for symmetric and neutron matter

$$v_{\rm s}(n_{\rm B}) = a_1 n_{\rm B} + \frac{a_2 n_{\rm B}^2}{1 + a_3 n_{\rm B}}$$
 $v_{\rm n}(n_{\rm B}) = b_1 n_{\rm B} + \frac{b_2 n_{\rm B}^2}{1 + b_3 n_{\rm B}}$

Parameters (a₁, a₂, a₃, b₁, b₂, b₃) are determined Thomas-Fermi calculation of isolated atomic nuclei with E reproduces the gross feature of experimental data (masses and radii).

Macroscopic EOS for uniform matter by Oyamatsu & Iida (PRC 75 (2007) 015801)

Free energy per nucleon at finite temperature

$$F(n_{\rm B}, Y_{\rm p}, T) = F_{\rm F} + [1 - (1 - 2Y_{\rm p})^2]v_{\rm s}(n_{\rm B}) + (1 - 2Y_{\rm p})^2v_{\rm n}(n_{\rm B})$$

- $-F_{\rm F}$: Free energy per particle for the Fermi-gas
- Potential energy per particle for symmetric and neutron matter

$$v_{\rm s}(n_{\rm B}) = a_1 n_{\rm B} + \frac{a_2 n_{\rm B}^2}{1 + a_3 n_{\rm B}}$$
 $v_{\rm n}(n_{\rm B}) = b_1 n_{\rm B} + \frac{b_2 n_{\rm B}^2}{1 + b_3 n_{\rm B}}$

Parameters (a₁, a₂, a₃, b₁, b₂, b₃) are determined Thomas-Fermi calculation of isolated atomic nuclei with E reproduces the gross feature of experimental data (masses and radii).

Nuclear EOS for non-uniform matter

We use the Thomas-Fermi method. (PTP 100 (1998) 1013, APJS 197(2011) 20)

Free energy of a Wigner-Seitz cell

$$F = \int \frac{\mathbf{Bulk \, energy}}{d\mathbf{r} f(n_{p}(r), n_{n}(r), n_{\alpha}(r))} + F_{0} \int d\mathbf{r} |\nabla(n_{p}(r) + n_{n}(r))|^{2}$$

$$+ \frac{e^{2}}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{[n_{p}(r) + 2n_{\alpha}(r) - n_{e}][n_{p}(r') + 2n_{\alpha}(r') - n_{e}]}{|\mathbf{r} - \mathbf{r}'|} + c_{bcc} \frac{(Ze)^{2}}{a}$$
Coulomb energy

Free energy density of uniform matter: $f = f_N + f_\alpha$

3. Numerical Results

Energy per particle at 0 MeV for various proton fractions $Y_{\rm p}$

Mass number of heavy nuclei in non-uniform phase

The smaller value of $L \rightarrow$ Larger mass number in neutron-rich matter

Density distributions in a Wigner-Seitz cell

Critical density for phase transition

The smaller value of $L \rightarrow$ Higher critical density in neutron-rich matter

Summary

I am constructing a new family of supernova EOSs to investigate the effects of nuclear saturation properties on the mechanism of core-collapse supernovae.

- EOS for uniform matter: parameterized macroscopic model
- EOS for non-uniform matter: Thomas-Fermi method

As the value of *L* becomes smaller,

- The critical density from non-uniform matter to uniform matter is higher.
- Masses of heavy nuclides are slightly larger in neutron-rich nuclear matter.

Future Plans

- Completion of the EOS tables for core-collapse supernova
- Application of the EOSs to supernova simulations
- Taking into account the pasta phase in the low-temperature region