Fast Neutrino-Flavor Conversions in Core-Collapse Supernovae

C03: Applications of Boltzmann Simulations

Shoichi YAMADA Waseda University

Progress in CCSN Modeling

- ✓ In the last decade, most of the world major groups modeling core-collapse supernovae (CCSNe) numerically have proceeded to 3D in space.
 - neutrino transport with the truncated moment method with some closure relation imposed by hand

Progress in CCSN Modeling

- ✓ We have stuck to the Boltzmann solver for ν transport.
 - 2 spatial dimensions under axisymmetry
 - currently pushing for full GR and 3D

Neutrino number densities (left) and flux factors (right)

10

2D

Iwakami et al. '19

$$Nr \times N_{\theta} \times N_{\phi} \times N_{\nu e} \times N_{\nu \theta} \times N_{\nu \phi}$$
$$= 256 \times 48 \times 96 \times 16 \times 6 \times 6$$

Introduction

√ The Boltzmann solver enables us to study neutrino distributions in momentum space in detail.

✓ It will help us calibrate the closure relation.

Introduction

- ✓ Neutrino distributions in momentum space are non-axisymmetric in general even in 2D in space.
- √ The principal axes are not aligned with coordinates.

The Boltzmann solver puts us also in a unique position in the study of neutrino oscillations in CCSNe.

The fast conversion mode feeds on the angular distribution difference between ν_e and $\bar{\nu}_e$.

Nagakura et al. '19

Fast Neutrino-Flavor Conversion

absorption It feeds on the difference in angular distributions of ν_e and $\bar{\nu}_e$.

Crossing in ν Angular Distributions

The fast flavor conversion is
 a nonlinear phenomenon but
 its onset can be studied linearly.

Density Matrix (in 2-flavor approx.)

$$\rho = \frac{f_{\nu_e} + f_{\nu_x}}{2} + \frac{f_{\nu_e} - f_{\nu_x}}{2} \begin{pmatrix} s_{\mathbf{p}} & S_{\mathbf{p}} \\ S_{\mathbf{p}}^* & -s_{\mathbf{p}} \end{pmatrix}$$

EOM for the small off-diagonal component

$$i(\partial_t + \mathbf{v} \cdot \nabla_\mathbf{r}) S_\mathbf{v} = v^\mu (\Lambda_\mu + \Phi_\mu) S_\mathbf{v} - \int d\Upsilon' v^\mu v'_\mu G_{\mathbf{v}'} S_{\mathbf{v}'}$$

Dispersion Relation (DR)

$$D(\omega, \mathbf{k}) = 0$$

The angular distributions are the important ingredient for the fast flavor conversion.

$$G_{\mathbf{v}} = \sqrt{2}G_F \int_0^\infty \frac{dEE^2}{2\pi^2} \left[f_{\nu_e}(E, \mathbf{v}) - f_{\bar{\nu}_e}(E, \mathbf{v}) \right]$$

Crossing in ν Angular Distributions

DR depends on the direction of **k**.

√ The sign change of G_v, or the crossing in angular distributions, seems indeed to be the indication of the fast flavor conversion.

$$G_{\mathbf{v}} = \sqrt{2}G_F \int_0^\infty \frac{dEE^2}{2\pi^2} [f_{\nu_e}(E, \mathbf{v}) - f_{\bar{\nu}_e}(E, \mathbf{v})]$$

We will hence look for the crossing first.

We have spotted three possible cases.

\checkmark Insie ν sphere

Delfan Azari et al. '19

Angular Distributions of $\nu_{\rm e} \not\sim \overline{\nu}_{\rm e}$

√ Pre-Shock Region

Morinaga et al. '19

√ Post-Shock Region

Nagakura et al. '19

Spatio-Temporal Instability in (3+1)-Dimensional Spacetime

- √ The fast flavor conversion may be described as a temporal growth of a wave packet of perturbation.
- ✓ It is given by the asymptotic behavior of the Green

function:
$$D(i\partial_t, -i\partial_x)S(t, x) = 0$$
 $D(i\partial_t, -i\partial_x)G(t, x) = \delta(t)\delta(x)$

▶ There are two types of instability:

√ Its linear stability analysis has been conducted so far only in (1+1)-dimensional spacetime.

Spatio-Temporal Instability in (3+1)-Dimensional Spacetime

- √ The classical theory of Briggs, which is based on the pinching criterion and is developed in (1+1)-D, is difficult to extend to (3+1)-D.
 - We need to look for pinching by solving DR in the complex space of (ω, \mathbf{k}) , which is all but impossible for a realistic DR.

Capozzi et al. '17

Spatio-Temporal Instability in (3+1)-Dimensional Spacetime

Morinaga & Yamada '19

- ✓ We propose a new method based on the Lefschetz thimble, which is a generalization of the steepest descent method to complex manifolds.
 - We have only to look for critical points that intersect the original integral path via the dual thimble.
 - The integral along the steepest descent path can be performed analytically.

Lefschetz Thimble Method

E. Witten (2010)

$$\int_{\mathcal{C}} d^{d}\mathbf{k} \, e^{S(\mathbf{k})} f(\mathbf{k}) = \int_{\sum_{\sigma} \langle \mathcal{C}, \mathcal{K}_{\sigma} \rangle \mathcal{J}_{\sigma}} d^{d}\mathbf{k} \, e^{S(\mathbf{k})} f(\mathbf{k})$$

Intersection # of \mathcal{C} and \mathcal{K}_{σ}

 $\overline{k_{\sigma}}$: critical point $(\partial_{k}S(k_{\sigma})=\mathbf{0})$

 \mathcal{J}_{σ} : Lefschetz thimble (the steepest descent path of $\operatorname{Re} S(m{k})$ from $m{k}_{\sigma}$

 \mathcal{K}_{σ} : Dual thimble (the steepest ascent path of $\operatorname{Re} S(m{k})$ from $m{k}_{\sigma}$

Ex. Airy function
$$\int_{\mathbb{R}} S(k,x) = i\left(\frac{k^3}{3} + xk\right)$$

$$Ai(x) = \int_{\mathbb{R}} \frac{dk}{2\pi} e^{S(k,x)}$$

$$= \int_{\mathcal{J}_+} \frac{dk}{2\pi} e^{S(k,x)}$$

$$\sim \frac{\exp\left(-\frac{2}{3}x^{3/2}\right)}{2\sqrt{\pi}x^{1/4}} \quad \left(\begin{array}{c} x \propto e^{0.5i} \\ |x| \to \infty \end{array}\right)$$

Formulation

Linearized Eq.
$$\mathbf{D}(i\partial) \mathbf{S}(x) = \mathbf{0}$$

Green fn. $\mathbf{D}(i\partial)\mathbf{G}(x)=\delta^{(d+1)}(x)\mathbf{I}_N$

$$\mathbf{G}(t, \boldsymbol{x} + \boldsymbol{u}t) = \int_{\mathcal{M}} \frac{d^{d+1}k}{(2\pi)^{d+1}} e^{-ik\cdot ut} e^{i\boldsymbol{k}\cdot\boldsymbol{x}} \mathbf{D}(k)^{-1}$$

Residue form theory

 \mathcal{M} : Laplace-Fourier contour

$$\mathbf{G}(t, \boldsymbol{x} + \boldsymbol{u}t) = \frac{\theta(t)}{(2\pi)^d i} \int_{\mathcal{C}} d^d \boldsymbol{k} \frac{e^{-ik \cdot ut} e^{i\boldsymbol{k} \cdot \boldsymbol{x}}}{\partial_0 \Delta(k)} \operatorname{adj} \mathbf{D}(k)$$

Lefschetz thimble method

$$\Delta(k) \equiv \det \mathbf{D}(k)$$

$$\mathbf{G}(t, \boldsymbol{x} + \boldsymbol{u}t) \sim \frac{1}{(2\pi i t)^{d/2} i} \sum_{\sigma} \langle \mathcal{C}, \mathcal{K}_{\sigma} \rangle \frac{e^{-ik_{\sigma} \cdot ut} e^{i\boldsymbol{k}_{\sigma} \cdot \boldsymbol{x}}}{\sqrt{H_{\sigma}} \partial_{0} \Delta(k_{\sigma})} \operatorname{adj} \mathbf{D}(k_{\sigma})$$

$$H_{\sigma} \equiv \det \left[\frac{(\partial_i - u_i \partial_0)(\partial_j - u_j \partial_0) \Delta}{\partial_0 \Delta} \right]_{k-k}$$

We solve Eq. for Dual thimble \mathcal{K}_{σ} .

$$\frac{dK^{\alpha}(s)}{ds} = iu_{\beta} \left[\delta^{\beta\alpha} - \delta^{\beta\gamma} \frac{\partial_{\gamma} \Delta \overline{\partial_{\delta} \Delta}}{\|\partial \Delta\|^{2}} \delta^{\delta\alpha} \right]_{k=K(s)}$$

Boundary Condition: $\lim_{s \to -\infty} K(s) = k_{\sigma}$

Maximum Growth Rate

$$\mathbf{G}(t, \boldsymbol{x} + \boldsymbol{u}t) \sim \frac{1}{(2\pi i t)^{d/2} i} \sum_{\sigma} \langle \mathcal{C}, \mathcal{K}_{\sigma} \rangle \frac{e^{-ik_{\sigma} \cdot ut} e^{i\boldsymbol{k}_{\sigma} \cdot \boldsymbol{x}}}{\sqrt{H_{\sigma}} \partial_{0} \Delta(k_{\sigma})} \operatorname{adj} \mathbf{D}(k_{\sigma})$$

- ✓ Growth Rates of Instability: $\text{Im}(k_{\sigma} \cdot u)$
 - \blacktriangleright valid for all u
 - absolutely unstable if $Im(k_{\sigma} \cdot u) > 0$ for v = 0
 - convectively stable if $Im(k_{\sigma} \cdot u) > 0$ for $\mathbf{v} \neq \mathbf{0}$

√ The maximum growth rate is obtained for

$$v_{\max} = \left(-\frac{\partial_i \Delta}{\partial_0 \Delta}\right) = \frac{\partial \omega_\sigma}{\partial k_\sigma}$$
: group velocity

as in (1+1)-D case but for (3+1)-D.

Application to 2-beam model

$$\mathscr{G}_{\boldsymbol{v}} = 4\pi \left[\mathscr{G}_1 \delta(\boldsymbol{v} - \boldsymbol{v}_1) + \mathscr{G}_2 \delta(\boldsymbol{v} - \boldsymbol{v}_2) \right]$$

$$\begin{cases} \mathscr{G}_{i} > 0 & \text{for } \nu_{e} \\ \mathscr{G}_{i} < 0 & \text{for } \bar{\nu}_{e} \end{cases}$$

The result is qualitatively changed!

For (3+1)-dimensions: Mappin and a '19

 $\mathscr{G}_1\mathscr{G}_2 > \mathscr{G}_1\mathscr{G}_2 \gg 0$

Fast Flavor Conversion Ahead of Shock Wave

✓ We found the sign change in ELN for the ingoing ν 's outside the stalled shock at $t_{pb} \ge 100$ ms in our 1D simulations.

✓ We found it also in the 1D models of the MPA group that Tamborra et al. '17 employed in their survey.

Morinaga et al. '19

✓ It turns out that the crossing is induced by coherent back-scatterings of neutrinos on heavy nuclei.

Bulb Model outgoing component

$$\mathscr{G}_{\nu}^{\text{bulb}}(\mu) = 2 \,\text{cm}^{-1} \left(\frac{50 \,\text{km}}{R_{\nu}}\right)^{2} \left(\frac{L_{\nu}}{10^{52} \,\text{erg/s}}\right) \left(\frac{10 \,\text{MeV}}{\bar{E}_{\nu}}\right)$$

$$\times \Theta\left(\mu - \sqrt{1 - (R_{\nu}/r)^{2}}\right)$$

ingoing component

$$\mathcal{G}_{\nu}^{\text{scat}}(\mu) \simeq 2 \times 10^{-4} \,\text{cm}^{-1} \, \frac{4 + \alpha_{\nu}}{(3 + \alpha_{\nu})(3 + \beta)} \left(\frac{A}{56}\right) \\ \times \left(\frac{\rho_{\text{sh}}}{10^7 \,\text{g/cm}^3}\right) \left(\frac{R_{\text{sh}}}{200 \,\text{km}}\right)^{\beta} \left(\frac{200 \,\text{km}}{r}\right)^{1+\beta} \\ \times \left(\frac{L_{\nu}}{10^{52} \,\text{erg/s}}\right) \left(\frac{\bar{E}_{\nu}}{10 \,\text{MeV}}\right) \left[(\mu + 1) + \frac{1}{4} \left(\frac{R_{\nu}}{r}\right)^2\right]$$

√ When the coherent scattering is turned off in the simulation, then the ELN crossing disappears.

✓ Interestingly, the group velocity is always positive irrespective of the phase velocity and hence the flavor conversion may have an observational impact.

Fast Flavor Conversion in the Post-Shock Region

✓ We found the ELN crossing inside the shock wave at $t_{pb} \ge 200 \text{ms}$ in one of our latest 2D simulations for 11.2M model.

We shift the coordinates using a GR-feature of our code. Nagakura et al. '16

✓ In this model, PNS starts to move southward at around the same time.

- Interplays between PNS motions and asymmetric neutrino emissions in operation
 - Breaking of up-down symmetry in matter distributions by PNS motions
 - 2. Appearing of sustained lateral circular matter motion in the envelope of PNS
 - 3. Sustained asymmetries in the Ye distribution and neutrino emissions

Locations of Fast Flavor Conversion in the Post-Shock Region

The domains of possible fast flavor conversion are expanding with time in the direction of the stronger shock expansion.

ELN Crossings in the Post-Shock Region

- $\sqrt[4]{\nu_e}$ is dominant in the outward direction at r ~ 50km, since it is more forward-peaked.
- It is dominant in the inward direction at r ≥ 100km, since it is emitted or scattered more frequently.
- √ It is dominant in the non-radial direction at r ~ 75km.

Linear Growth rates of Fast Flavor Conversion in the Post-Shock Region

Fast Flavor Conversion inside the Neutrino Sphere

✓ We found the ELN crossing inside the neutrino sphere (r ~15-20km) at $t_{pb} \ge 200$ ms in one of our 2D simulations for 11.2M model.

Summary

- ✓ We have been developing the radiationhydrodynamics code that solves the Boltzmann equations as they are in multi-spatial dimensions.
 - we currently pushing for full GR, 3D and better microphysics
- The existence of the fast conversion is one thing and its implication for CCSNe is quite another!

 And the latter will be the next focus.
 In core-collapse supernovae.
 - ELN crossing in angular distributions is crucial.
 - ✓ We have found 3 possibilities, which are worth further investigations.
 - pre- and post-shock regions, inside ν sphere