Pathwise coupling on spaces with variable Ricci bounds $a_{rXiv:1906.09186}$

Mathias Braun braun@iam.uni-bonn.de

With Karen Habermann and Karl-Theodor Sturm

Institute for Applied Mathematics Rheinische Friedrich-Wilhelms-Universität Bonn

Japanese-German Open Conference on Stochastic Analysis University of Fukuoka September 5, 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Riemannian case

2 Synthetic lower Ricci curvature bounds for singular spaces

3 Results in the variable curvature context

Ricci lower bounds and Brownian motion

Let (M, g) be a complete, connected Riemannian manifold. Brownian motion on M: any Markov process $(B_t)_{t>0}$ with continuous paths s.t.

$$\begin{split} M^{f}[B]_{t} &:= f(B_{t}) - f(B_{0}) - \frac{1}{2} \int_{0}^{t} \Delta f(B_{s}) \, \mathrm{d}s, \qquad t \in [0, \zeta_{B}], \\ & \text{ is a local } \mathscr{F}_{\bullet}^{B}\text{-martingale for every } f \in \mathrm{C}^{\infty}(\mathrm{M}) \end{split}$$

 $\operatorname{Ric}_{\mathrm{M}} \geq K$, $K \in \mathbb{R}$, implies

 \bullet stochastic completeness, ${\rm C}_0\text{-property,}$ gradient estimates for the heat semigroup $({\sf P}_t)_{t>0}$ with

$$\mathsf{P}_t f(x) := \mathbf{E}_x[f(B_{2t})], \qquad f \in L^2(\mathsf{M}, \mathrm{vol}_g),$$

• contraction estimates for the dual semigroup $(H_t)_{t>0}$ with

$$\langle \phi \mid \mathsf{H}_t \mu \rangle := \langle \mathsf{P}_t \phi \mid \mu \rangle, \qquad \phi \in \mathrm{C}_\mathrm{b}(\mathrm{M}), \ \mu \in \mathscr{P}(\mathrm{M}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• spectral gap estimates for K > 0.

Question

What does the behavior of Brownian processes tell us about ${
m Ric}_{
m M}$, and vice versa?

Coupling of Brownian motions, constant case

[Kendall '86], [Cranston '91], [Wang '97], [von Renesse '04], [Veysseire '11] et al.: estimates for couplings of Brownian motions on M under $\operatorname{Ric}_M \geq K$.

Theorem [von Renesse, Sturm '05], [Arnaudon, Coulibaly, Thalmaier '11]

Given $K \in \mathbb{R}$, we have $\operatorname{Ric}_M \geq K$ if and only if for every $\mu \in \mathscr{P}(M \times M)$ there exists a coupling $(B_t^1, B_t^2)_{t>0}$ of Brownian motions on M starting in μ which a.s. satisfies

$$d(B_t^1, B_t^2) \le e^{-K(t-s)/2} d(B_s^1, B_s^2) \text{ for every } s \le t.$$
 (*)

Basic argumentation:

$$\begin{array}{ll} (\star) & \Longleftrightarrow & W_p(\mathsf{H}_t\mu_1,\mathsf{H}_t\mu_2) \leq \mathrm{e}^{-Kt}\,W_p(\mu_1,\mu_2) & \qquad \text{Integration} \\ & & \quad \text{for every } \mu_1,\mu_2 \in \mathscr{P}(\mathsf{M}), \ p \in [1,\infty] \\ & \Leftrightarrow & \quad |\nabla\mathsf{P}_tf|^q \leq \mathrm{e}^{-qKt}\,\mathsf{P}_t(|\nabla f|^q) & \qquad \text{Duality} \\ & & \quad \text{for every } f \in W^{1,2}(\mathsf{M}), \ q \in [1,\infty) \\ & \Leftrightarrow & \quad \operatorname{Ric}_{\mathsf{M}} \geq K & \qquad \text{Bakry-Émery} \end{array}$$

Questions

- What are appropriate replacements of these results when $\operatorname{Ric}_{M}(x) \geq k(x)$?
- How about generalizing these results to nonsmooth situations?

🕕 The Riemannian case

Synthetic lower Ricci curvature bounds for singular spaces

3 Results in the variable curvature context

Synthetic Ricci lower bounds via optimal transport

Fix a metric measure space (X, d, \mathfrak{m}) , i.e. a complete and separable metric space (X, d) endowed with a locally finite Borel measure \mathfrak{m} , and a lower semicontinuous function $k: X \to \mathbb{R}$. The relative entropy on $\mathscr{P}(X)$ is

$$\operatorname{Ent}_{\mathfrak{m}}(\nu) := \int_{X} \frac{\mathrm{d}\nu}{\mathrm{d}\mathfrak{m}} \log \frac{\mathrm{d}\nu}{\mathrm{d}\mathfrak{m}} \, \mathrm{d}\mathfrak{m} \quad \text{if } \nu \ll \mathfrak{m}, \qquad \operatorname{Ent}_{\mathfrak{m}}(\nu) := \infty \quad \text{else.}$$

Definition [Sturm '15], motivated by [Sturm '06], [Lott, Villani '09]

We say that (X, d, \mathfrak{m}) satisfies $CD(k, \infty)$ if for all $\mu_0, \mu_1 \in \mathscr{P}_2(X) \cap Dom(Ent_{\mathfrak{m}})$, there exists $\pi \in \mathscr{P}(Geo(X))$ constituting a W_2 -geodesic $((e_t)_{\sharp}\pi)_{t\in[0,1]}$ connecting μ_0 to μ_1 s.t., for every $t \in [0, 1]$,

$$\operatorname{Ent}_{\mathfrak{m}}((\mathbf{e}_{t})_{\sharp}\boldsymbol{\pi}) \leq (1-t)\operatorname{Ent}_{\mathfrak{m}}(\mu_{0}) + t\operatorname{Ent}_{\mathfrak{m}}(\mu_{1}) \\ - \iint_{0}^{1} k(\gamma_{s})\operatorname{g}(s,t)\operatorname{d}(\gamma_{0},\gamma_{1})^{2}\operatorname{d} s\operatorname{d} \boldsymbol{\pi}(\gamma).$$

Theorem [von Renesse, Sturm '05]

For a complete, connected Riemannian manifold (M, g) and $\psi \in C^2(M)$, $(M, d_g, e^{-\psi} \operatorname{vol}_g)$ satisfies $CD(K, \infty)$ with $K \in \mathbb{R}$ if and only if $\operatorname{Ric}_M + \operatorname{Hess} \psi \geq K$.

(日)

Mass transport from μ_0 to μ_1 according to the geodesic plan π supported on the solid lines...

...and the (convex) graph of the entropy along the geodesic $(e_t)_{\sharp}\pi$ for the above mass transport.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 のへの

To rule out Finsler structures, let

Definition [Ambrosio, Gigli, Savaré '14]

A $CD(K,\infty)$ space is termed to satisfy $RCD(K,\infty)$ if \mathscr{E} is a quadratic form.

Theorem [Ambrosio, Gigli, Savaré '14]

If (X, d, \mathfrak{m}) is an $\operatorname{RCD}(K, \infty)$ space, \mathscr{E} is a strongly local, quasi-regular Dirichlet form. Given any $\mu \in \mathscr{P}(X)$, uniquely in law there exists a conservative Markov process $(B_t)_{t\geq 0}$ with continuous sample paths and initial distribution μ , which is associated to \mathscr{E} [Brownian motion]. 🕕 The Riemannian case

2 Synthetic lower Ricci curvature bounds for singular spaces

8 Results in the variable curvature context

Let (X, d, \mathfrak{m}) be an $RCD(K, \infty)$ space, $K \in \mathbb{R}$, and $k \colon X \to \mathbb{R}$ a lower semicontinuous function, bounded from below by K. Define

$$\underline{k}(x,y) := \lim_{\varepsilon \to 0} \inf \left\{ \int_0^1 k(\gamma_s) \, \mathrm{d}s : \gamma \in \operatorname{Geo}(\mathbf{X}), \ \gamma_0 \in B_\varepsilon(x), \ \gamma_1 \in B_\varepsilon(y) \right\}.$$

Theorem [Br., Habermann, Sturm '19]

The metric measure space $({\rm X},{\rm d},{\mathfrak m})$ satisfies ${\rm CD}(k,\infty)$ if and only if for every $\mu\in {\mathscr P}({\rm X}\times{\rm X})$ there exists a coupling $(B^1_t,B^2_t)_{t\geq 0}$ of Brownian motions on ${\rm X}$ which starts in μ s.t. a.s.,

$$\mathsf{d}(B^1_t,B^2_t) \leq \mathrm{e}^{-\int_s^t \underline{k}(B^1_r,B^2_r)/2\,\mathrm{d}r}\,\mathsf{d}(B^1_s,B^2_s) \quad \text{for every }s\leq t$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Already known before for constant k by [Sturm '15]. Problem: variable estimate requires control over whole paths, not only over endpoints.

For $\mu_1, \mu_2 \in \mathscr{P}_p(\mathbf{X})$ and $p \in [1, \infty)$, replace

$$e^{Kt} W_p(\mathsf{H}_t \mu_1, \mathsf{H}_t \mu_2) \le e^{Ks} W_p(\mathsf{H}_s \mu_1, \mathsf{H}_s \mu_2) \quad \text{for every } s \le t$$

by nonincreasingness of

$$W_p^k(\mu_1,\mu_2,t) := \inf \, \mathbf{E} \left[e^{\int_0^{2t} p\underline{k}(B_r^1,B_r^2)/2 \, \mathrm{d}r} \, \mathsf{d}^p(B_{2t}^1,B_{2t}^2) \right]^{1/p}$$

The infimum is taken over all couplings $(B_t^1, B_t^2)_{t\geq 0}$ of Brownian motions on X with initial distributions μ_1 and μ_2 , respectively.

Duality

Replace
$$e^{-qKt} \mathsf{P}_t(|\nabla f|^q)$$
 by $\mathsf{P}_t^{qk}(|\nabla f|^q)$, where Brownian motion on X
 $\mathsf{P}_t^{\kappa}g(x) := \mathbf{E}_x \left[e^{-\int_0^{2t} \kappa(B_s)/2 \, \mathrm{d}s} g(B_{2t}) \right], \qquad g \in L^2(\mathbf{X}, \mathfrak{m}),$

i.e. $(\mathsf{P}^{qk}_t)_{t\geq 0}$ corresponds to the Schrödinger semigroup associated to

$$\mathscr{E}^{qk}(f) := 2\,\mathscr{E}(f) + q \int_{\mathbf{X}} k\,f^2\,\mathrm{d}\mathfrak{m}.$$

Theorem [Br., Habermann, Sturm '19]

Given $({\rm X},{\rm d},\mathfrak{m})$ as above and $p,q\in(1,\infty)$ with 1/p+1/q=1, the following are equivalent:

• for every $f \in \text{Dom}(\mathscr{E})$ and $t \ge 0$, we have

$$|\nabla \mathsf{P}_t f|^q \leq \mathsf{P}_t^{qk}(|\nabla f|^q) \quad \mathfrak{m}\text{-a.e.},$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• for every $\mu_1, \mu_2 \in \mathscr{P}_p(\mathbf{X})$, $W_p^k(\mu_1, \mu_2, t)$ is nonincreasing in $t \ge 0$.

Already proved in the constant case in [Kuwada '10] [Kuwada's duality].

Theorem [Br., Habermann, Sturm '19]

Given $({\rm X},{\rm d},\mathfrak{m})$ and k as above, $p\in(1,\infty)$ and $q\in[1,\infty),$ the following are equivalent:

- the $\mathrm{CD}(k,\infty)$ condition holds,
- the q-Bochner inequality $\Delta |\nabla f|^q/q |\nabla f|^{q-2} \langle \nabla f, \nabla \Delta f \rangle \ge k |\nabla f|^q$ holds in a weak form,
- for every $f \in \text{Dom}(\mathscr{E})$ and $t \ge 0$, we have

 $|\nabla \mathsf{P}_t f|^q \leq \mathsf{P}_t^{qk}(|\nabla f|^q)$ m-a.e.,

- for every $\mu_1, \mu_2 \in \mathscr{P}_p(\mathbf{X})$, $W_p^k(\mu_1, \mu_2, t)$ is nonincreasing in $t \ge 0$,
- for every $\mu \in \mathscr{P}(\mathbf{X} \times \mathbf{X})$ there exists a coupling $(B^1_t, B^2_t)_{t \geq 0}$ of Brownian motions on X which starts in μ s.t. a.s.,

$$\mathsf{d}(B^1_t,B^2_t) \leq \mathrm{e}^{-\int_s^t \underline{k}(B^1_r,B^2_r)/2\,\mathrm{d}r}\,\mathsf{d}(B^1_s,B^2_s) \quad \text{for every } s \leq t.$$

Moreover, any of these properties yields the other ones for arbitrary exponents $p, q \in [1, \infty)$ [self-improvement of Bochner's inequality].

🕕 The Riemannian case

2 Synthetic lower Ricci curvature bounds for singular spaces

3 Results in the variable curvature context

Open problems

- Relaxations on k, e.g. removing the lower bound? Other "forms" of k?
- Does the previous process $(B^1_t,B^2_t)_{t\geq 0}$ satisfy the Markov property?
- Study the heat flow on 1-forms in the framework of [Gigli '18]. Estimates in terms of $|P_{1,t}df| \leq P_t^k |df|$?

Thank you for your kind attention!

At Gokuku Shrine, Fukuoka

Bibliography I

- L. AMBROSIO, N. GIGLI AND G. SAVARÉ. *Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below.* Invent. Math. **195** (2014), no. 2, 289–391.
- L. AMBROSIO, N. GIGLI AND G. SAVARÉ. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163 (2014), no. 7, 1405–1490.
- M. ARNAUDON, K. A. COULIBALY AND A. THALMAIER. *Horizontal diffusion in* C¹ *path space*. Séminaire de Probabilités XLIII, 73–94, Lecture Notes in Math., 2006, Springer, Berlin, 2011.
 - M. BRAUN, K. HABERMANN AND K.-T. STURM. *Optimal transport, gradient estimates, and pathwise Brownian coupling on spaces with variable Ricci bounds.* Preprint, arXiv:1906.09186, 2019.
- N. GIGLI. Nonsmooth differential geometry an approach tailored for spaces with Ricci curvature bounded from below. Mem. Amer. Math. Soc. 251 (2018), no. 1196, v+161.
- K. KUWADA. Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. **258** (2010), no. 11, 3758–3774.
- J. LOTT AND C. VILLANI. *Ricci curvature for metric-measure spaces via optimal transport.* Ann. of Math. (2) **169** (2009), no. 3, 903–991.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- M.-K. VON RENESSE AND K.-T. STURM. *Transport inequalities, gradient estimates, entropy, and Ricci curvature.* Comm. Pure Appl. Math. **58** (2005), 923–940.
- G. SAVARÉ. Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in RCD(K,∞) metric measure spaces. Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1641–1661.
- K.-T. STURM. On the geometry of metric measure spaces. I. Acta Math. 196 (2006), no. 1, 65–131.
 - K.-T. STURM. *Metric measure spaces with variable Ricci bounds and couplings of Brownian motions.* In Festschrift Masatoshi Fukushima, 553–575, vol. 17 of Interdiscip. Math. Sci., World Sci. Publ., Hackensack, NJ, 2015.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●