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An experimental observation

Pinning of a ferroelectric domain wall

increasing applied field —
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From: T.). Yang et. al,, Direct Observation of Pinning and Bowing of a
Single Ferroelectric Domain Wall, PRL, 1999



Forced mean curvature flow

Consider an interface moving by forced mean curvature flow:

Vo (X) = k(x) +f(x), xel cR™.

v,,: Normal velocity of the
interface

k: Mean curvature of the
interface

f : Force

Can formally be thought of as a viscous gradient flow from an energy
functional

H" () +/ f(x)dx, T =0dE.
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The interface as the graph of a function

r={(xy)sty=ux}
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Vv, (X) = k(x) +f(x), xel cR™
IF(t) ={(x,y) st y=u(xt)}, u: R" = R, then this is equivalent to
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Formal approximation for small gradient:
ue(x, t) = Au(x, t) + f(x, u(x, t))

This describes the time evolution of a nearly flat interface subject to
line tension in a quenched environment. 4



What are we interested in?

Split up the forcing into a heterogeneous part and an external,
constant, load F so that

f(va) = —f(X,)/) +F,

and get
ue(x, t) = Au(x,t) — f(x, u(x,t)) + F.
Question E
What is the macroscopic behavior of the ’ ; ]
solution u depending on F? e
L

- Hysteresis: There exists a stationary
solution up to a critical F©

- Ballistic movement:

% :@—monst>0.

- Critical behavior: |V| = |[F — F¢|*

Average interface velocity
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External force



The periodic case

u(x, t) = Au(x, t) — f(x, u(x, t)) + F

u: T"xRT™ =R, fe C(T"xR,R), f(x,y) =f(x,y+1), / f=0
JT1x[0,1]

Theorem (Dirr-Yip)
- There exists F© > 0 s.t. the evolution equation admits a
stationary solution for all F < F°.
- For F > F¢ there exists a unique time-space periodic (‘pulsating
wave’) solution (i.e., u(x, t+T) = u(x, t) +1).
- If critical stationary solutions (i.e., stationary solutions at F = F€)
are non-degenerate, then [V = 1 = |F — F<['/* 4 o(|F — F["/?)

Existence of pulsating wave solutions can also be shown for
MCF-graph case, forcing small in C' (Dirr-Karali-Yip).



Random environment

u(x, t,w) = Au(x, t,w) — f(x, u(x, t,w),w) + F,
u: R” ><R+><Q—>R ffR"XRxQ—R, u(x,0)=0.

Poisson process to scatter obstacles

06y w) = > frl@)p(X = Xe(w),y = Ye(w)), ¢ € C°(R" x R, [0,00)),

keN

e(6y) = 0 [0Vl > 11y 06 Y) =TT 0O < Toy Ve > 11



Existence of a stationary solution

Do solutions of the evolution equation become pinned by the
obstacles for sufficiently small driving force, even though there are
arbitrarily large areas with arbitrarily weak obstacles?



Existence of a stationary solution

Do solutions of the evolution equation become pinned by the
obstacles for sufficiently small driving force, even though there are
arbitrarily large areas with arbitrarily weak obstacles?
Theorem (Dirr-D.-Scheutzow)
Let (xx, yr) be distributed according to a n + 1-d Poisson process on
R with intensity A, f be strictly positive and independent of
(Xk, Vk). Then there exists F* > 0 and v: R" x Q — R, v > 0 so that,
as., forall F < F~,

0 > Av(X,w) — f(x, v(X,w),w) + F.

This implies that v is a supersolution to the stationary equation, and
thus provides a barrier that a solution starting with zero initial
condition can not penetrate by the comparison principle.

Related results: pinning with +-Obstacles, localized
rate-independent dissipation, mean curvature.



A percolation problem

let Z=2" x N.

We consider site percolation on Z: let p € (0,1).

Each site is declared good with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow)

There exists p. < 1such that if p > p¢, then a random non-negative discrete
1-Lipschitz function w: Z" — N exists a.s. with (x,w(x)) good for all x € Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x; from a
to bsothatx; —xj_1 € {£en} U{—enp1£e:j=1,...,n}. Admissible if
going up only to closed sites.

Which sites on the positive side are reachable from anywhere below?
" ", K
|
DL .
|
| |
I J || |




A percolation problem

let Z=2" x N.

We consider site percolation on Z: let p € (0,1).

Each site is declared good with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow)

There exists p. < 1such that if p > p¢, then a random non-negative discrete
1-Lipschitz function w: Z" — N exists a.s. with (x,w(x)) good for all x € Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x; from a
to bsothatx; —xj_1 € {£en} U{—enp1£e:j=1,...,n}. Admissible if
going up only to closed sites.

Which sites on the positive side are reachable from anywhere below?
" ", K
|
IELEE .
|
| |
I J || |




A percolation problem

let Z=2" x N.

We consider site percolation on Z: let p € (0,1).

Each site is declared good with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow)

There exists p. < 1such that if p > p¢, then a random non-negative discrete
1-Lipschitz function w: Z" — N exists a.s. with (x,w(x)) good for all x € Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x; from a
to bsothatx; —xj_1 € {£en} U{—enp1£e:j=1,...,n}. Admissible if
going up only to closed sites.

Which sites on the positive side are reachable from anywhere below?
", K
|
IELEE .
|
| |
-I- J || |




A percolation problem

let Z=2" x N.

We consider site percolation on Z: let p € (0,1).

Each site is declared good with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow)

There exists p. < 1such that if p > p¢, then a random non-negative discrete
1-Lipschitz function w: Z" — N exists a.s. with (x,w(x)) good for all x € Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x; from a
to bsothatx; —xj_1 € {£en} U{—enp1£e:j=1,...,n}. Admissible if
going up only to closed sites.

Which sites on the positive side are reachable from anywhere below?
R |
|
", 1
1] L |
| N | [ N |
III [ IJI I! [ | u |




A percolation problem

let Z=2" x N.

We consider site percolation on Z: let p € (0,1).

Each site is declared good with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow)

There exists p. < 1such that if p > p¢, then a random non-negative discrete
1-Lipschitz function w: Z" — N exists a.s. with (x,w(x)) good for all x € Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x; from a
to bsothatx; —xj_1 € {£en} U{—enp1£e:j=1,...,n}. Admissible if
going up only to closed sites.

Which sites on the positive side are reachable from anywhere below?

[ | |
i -
III I: EEEE [ | [ |

.*HI




A percolation problem

let Z=2" x N.

We consider site percolation on Z: let p € (0,1).

Each site is declared good with probability p, independent for all sites.
Theorem (Dirr-D.-Grimmett-Holroyd-Scheutzow)

There exists p. < 1such that if p > p¢, then a random non-negative discrete
1-Lipschitz function w: Z" — N exists a.s. with (x,w(x)) good for all x € Z".

Idea:

Blocking argument. Define A-path: Finite sequence of distinct sites x; from a
to bsothatx; —xj_1 € {£en} U{—enp1£e:j=1,...,n}. Admissible if
going up only to closed sites.

Which sites on the positive side are reachable from anywhere below?




Proof of Lipschitz-Percolation Theorem

- DefineG:={be Z:
there ex. path to b from some a € 2" x {...,—1,0}}.

- We have P(he, 1 € G) < C(cq)", thus there are only finitely many
sites in G above each x € Z".

- Define w(x) := min{t > 0: (x,t) ¢ G}.

- Properties of w follow from the definition of admissible paths.



Proof of the pinning theorem

h ]

- We rescale such that a cuboid of size [" x h contains an obstacle (X, y&)
of strength fo with probability p > pc.
- Explicit construction of the supersolution
- Inside of the obstacles: Av,, = F; < %0 Vip = 0 0n 9By, (Xk).
- Outside: ming{Vout(X — X¢)}, where Avoye = —F, on B, (0) \ By, (0),
Vout = 0 0N 9By, (0), VVou - v = 0 on 9B;,(0)
- Glue together using vge with non-vanishing gradient only on the
gaps, otherwise Vgye = V.
- Scaling: . h
CF > F(h™/"+d)" and F > '
- Also for MCF, taking care of the nonlinearity when considering the
addition of vgye.
17
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Second Model: evolution of contact lines

Experiment

Rough Surface

Gk




Second model: evolution of contact lines (cont.)

Experiments

meniscus

Aus: S. Moulinet et. al.,, Roughness and dynamics of a contact line of
a viscous fluid on a disordered substrate, Eur. Phys. J. E, 2002

A

Aus: A. Prevost et. al,, Dynamics of a helium-4 meniscus on a strongly

disordered cesium substrate, Phys. Rev. B 2002 5



Second model: evolution of contact lines (cont.)

Experiments

helium meniscus

non wetted cesium |

From: E. Rolley et. al, Roughness of the Contact Line on a Disordered
Substrate, Phys. Rev. Lett., 1998 13



Second model: fracture in heterogeneous media

Experiment

Aus: ). Schmittbuhl et. al,, Interfacial Crack Pinning: Effect of Nonlocal

Interactions, Phys. Rev. Lett. 1995
14



Second model: fracture in heterogeneous media (cont.)

Experimental observation

Aus: ). Schmittbuhl et. al,, Interfacial Crack Pinning: Effect of Nonlocal
Interactions, Phys. Rev. Lett. 1995



Second model: A formal derivation

F

y Energy
Ey = min/ —141/1+ |VU|* dxdz

o ons 2o/ RXRy
5 1
€ ~ min/ — |VU)? dxdz
e X onUziiO RXR+2
E 1
& = i[u],z_“/z

u(x) \

&
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Second model: A formal derivation

g Force acting on the surface

+ Variation of 1[u]?,, vields —(—A)"?u

- Constant external forcing and rough
surface lead to additional force f(x, y)

Viscous Evolution
ut(X7 t) = 7(*A)1/2U(X, t) +f(X7 U(X, t))

Rough Surface

u(x) \

16




Second model: Non-local issues

The non-locality of the fractional Laplacian introduces new issues

_(_A)QU(X)ZA Mdy

TS

- Piecewise constructoion is no longer possible

- Growth of the lifting function vgye is linear in the case of
Lipschitz percolation. We again need the stronger percolation
result.

\ Wit
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Second model: Percolation

Theorem: Flat percolation clusters (D.-Scheutzow, 2015)
Consider again site percolation on Z with parameter p. Let
H: Ny — Ny be a non-decreasing function satisfying

i) H(0) =0
i) H(1) > 1
i) liminf,_, o % >0,

Then there exists py = pu(n) € (0,1) such that for any p € (py, 1] and
almost any realization of the site percolation model we can find a
(random) function w : Z" — N such that

i) w(x) —w(y)] < H(||x —y]) forall x,y € 2"

i) (x,w(x)) is open for every x € Z".



Depinning, pinning sites on lattice

ug = Au — f(x,u(x, t),w) + F
with f(x,y,w) = fij(w)e(x — i,y —)), i,j€Z, fjiid.
Can we exclude pinning for unbounded obstacles, if the probability

of finding a large obstacle is sufficiently small and the driving force
is sufficiently high?

19
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Ur = Au — f(x,u(x, t),w) + F
with f(x,y,w) = fij(w)e(x — i,y —)), i,j€Z, fjiid.

Can we exclude pinning for unbounded obstacles, if the probability
of finding a large obstacle is sufficiently small and the driving force
is sufficiently high?

Theorem (Dirr-Coville-Luckhaus)

Let f;j be iid random variables so that 3 := Eexp{ oo} < oo for some
A > 0. Then there exists F** > 0 so that a.s. no stationary solution

v > 0 for the evolution equation at F > F** exists.

Proof by asserting that every possible stationary solution with

Dirichlet boundary conditions u(—L) = 0,u(L) = 0 becomes large as

L — oo. (The pinning sites are not strong enough to keep the

solution flat.) 19



Depinning, pinning sites on lattice

Theorem (Ballistic propagation, D.-Scheutzow)

Let u(x,t,w) be a solution of the evolution equation for n =1 with fj
Iid so that 8 := Eexp{Afoo} < oo for some A > 0. Then there exists
V51 [0,00) — [0, 00), non-decreasing, not identiacally zero,
depending only on X und 3, such that

e 1

EE/ u(E ) de > V(F) forallt>0 and limsup 1u(0,t) > V(F) ass
0 t—oo

and an analogous result holds for the lattice differential equation

with discrete Laplacian on Z".

Idea: Discretize and look at the random variables

Yy 1= Zexp{/\ Z (W, — w;) —uz (AwWi—J_C/'(th)‘FF)}

i€Qp i€Qp
rEQy
[li=rll;=1

with the first sum taken over admissible discrete paths, p > A, Qg

boxes of side-length k. »



Summary of the results

Obstacles scattered by Poisson process, any strength

Average interface velocity

External force



Summary of the results (cont.)

Some special cases and obstacles with exponential tails

Average interface velocity

/

External force




Many open questions
- Homogenization in the general setting, i.e., 1E(u(0,t)) — V?

- Exclusion of an intermediate sub-ballistic regime (c/f
Bodineau-Teixeira)?

- More general random fields.
- Power-law depinning behavior.

- Infinite Pinning.

Thank you for your attention.
CERHOMNESISETVWE UL,
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