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B connections to random matrix theory
B =1,2,4: EVs of Gaussian orthogonal, unitary, symplectic ensemble

B Question: Limiting behaviour as N — oo?
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Macroscopic behaviour

B convergence of empirical measure:

Pw,s a.s. we have:

].N Noo
NZ_: Heq

Peq

By s

B /iq Minimizes macroscopic energy

I(p) _//—10g|x—y|du )dp(y /| |2

B large deviation principle: [BEN AROUS —GIONNET '97]

Pw,s [MN ~ #] = exp ( - N? (I(N) - I(ﬂEq)))
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Microscopic behaviour

B blow up configuration around x:

N
Cna(x) = Z(SN(%'—CE)
i=1
with & ~ PN,B
B [VALKO-VIRAG '09]:

law(Cn.2) 257 sines (freq(2))

sineg is stationary point process

B dependence on z only through intensity of equilibrium, universal bulk behaviour

B sineg minimizes free energy Fg = £ + W with & (specific) entropy, W
renormalized energy

B large deviation principle: [LEBLE-SERFATY '17]

PN*ﬁ[/jz Cszdx“P} xGXID(—N(]:'ﬁ(P) —minﬁﬂ))
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Microscopic contribution to the energy

® consider fluctuations f& = S| 8o, — Nteq

H(@) = N*I(uea) + 2N 3" €(a1) - [ [1ogle — wiars@ass )

=1

Fn(x)

with € = —log *f1eq + 1| - |* + c effective potential

B electric interpretation: R=R x {0} € R?, log| - | Coulomb potential
%" (x) = —log *(2»5% N,ucq)( , =AY = 27r(2 0, — N,ucq)
=Fn(x / VAP = — / |Vo%"|)? Nlog oy o(n?)

regularization by smearing out charges: ¢;) = Unif(0B,(x))
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The renormalized free energy

renormalized interaction energy

B for a point configuration C on R set

E n=0 R0

W(C) = inf lim hmsup L / |E"| + logn
R2 Ap xR

—divE =27 (C —dz) , E" = truncation

B for a point process P on R (with intensity 1) set

W(P) =Ep[W(C)]
1

1
(P stationary) = hm Ep [——/ |E"|? + log 77} VR
R2m J5 . xr

B Remark: if W(C) < oo we have

W(C) ~ Wine(C) := lim —Ep // ~log |z — y|(dC — da)(dC — dy)]

R—oo R
\dlag
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Variational characterization of sineg
renormalized free energy
B for a stationary point process P (with intensity 1), 8 > 0 set
Fp(P) =E(P) + pW(P)

B Fj3is l.s.c., with compact sublevels, hence compact set of minimizers

B [LEBLE-SERFATY '17] Sineg minimizes F3

Theorem ([E.—HUESMANN—LEBLE 18+])

Sineg is the unique minimizer of Fg.

Problem: P — Fg(P) is affine w.r.t. linear interpolation

Idea: use displacement interpolation from optimal transport
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Recap on optimal transport

B Monge problem: pg, 11 € P(R"),

find optimal transport map 7', i.e. T
minimize / oz, T(z))dpu(z) /\/\ /\ﬁ Aﬂ
I =
overall T : R™ — R™ s.t. Ty po = 1 # Ted

B Brenier’s theorem: If 1o absolutely continuous w.r.t. Lebesgue there exists an
optimal map 7" and T' = V¢ for some ¢ : R — R"™ convex

B McCann’s displacement interpolation:
Set p; == [(1 —t)id+tT]#uo, t €0, 1]

Convexity of potential energies: For V() = [ Vdu with V' convex

Vi) = [V(- oo+ tT(x))duo(fv) < (1= V(o) + V(1)

Convexity of internal energies: For e.g. Ent(u) = [ log dLebdu

Ent(u:) < (1 —t)Ent(po) + tEnt (1)
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Ideas of the proof for uniqueness

Let P°, P! stationary point processes minimizing Fs

Step 1: Large box approximation
B let P'|,,, restriction of P to Ar = [-R, R],i=0,1

B screening procedure yields pp’s Pj on Ag s.t.

(1)a.s. 2R points in Ag
1 i i
(2) 5 Bnt [PRITTA,] < E(P') +¢

(3) 5 Wine (PE) < W(P') + ¢

-9 (-9



Ideas of the proof for uniqueness

Step 2: displacement interpolation
® identify Pj, with p* € P(R**?) via labeling
m displacement interpolant p* := (id + %quﬁ)#uo
yields new point process Pj: on Ar
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Ideas of the proof for uniqueness

Step 2: displacement interpolation
B identify P}, with u* € P(R*F) via labeling

m displacement interpolant p* := (id + %quﬁ)#uo
yields new point process Pj: on Ar
B convexity of entropy
Ent[P4[IT},,] = Ent[u"|Leb] + cr

(McCann) Ent [u0|Leb] + %Ent [u1|Leb] +cr

IN
N —

(E(P°) +E(PY)) +¢

IA
SIk=v

1
-
2

c P N B
R Xg X R

Coe (3 X)) Clelimxl) O = (A8, L)
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Ideas of the proof for uniqueness

B establish strict convexity of interaction energy with gain or order R

B use estimate

1(z—y)?

8 z2 + y?

—log(m;y) < - (logx—i—logy)

M\H

B estimate interaction of interpolated points

0 1 0 1
Wint(C)f.i.—lOg[ 5 T g }
i<j

1 |F0 F1‘2
Q;j_bg[ —x]] log[ Z|I‘°|2+|I‘1|2

= %W’mt(co) + %Wint(cl) - GainR(CO7cl)

IA

m stationarity yields:  Eupip0 p1) [GainR(.7.)} >g-R

B obtain R
Wint (PR) < 5 W(P°) +W(P")) —g-R



Ideas of the proof for uniqueness

Step 3: build global competitor

B partition R in boxes of size 2R, place iid copies of P2, randomize origin
= obtain stationary point process P" on R

B check that copies on different boxes do not interact too much
1
W(P") < EWim(Pﬁ) + error
B conclude contradiction

1
Fa(P") < 5 F5(P) + 5F5(P!) + error — g < Foin

Wl T2 20
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B Can one gain strict displacement convexity along this interpolation?

B Can this be exploited e.g. towards functional inequalities for point processes?
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Thank you for your attention!



