On logarithmic Sobolev inequalities With a result and several questions on the Heisenberg group

Ronan Herry

Bonn

Japanese-German conference on stochastic analysis Fukuoka, September 2019

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Today's plan

- A brief history of logarithmic Sobolev inequalities.
- ▶ The historical proof of Gross for the Gaussian measure.
- Logarithmic Sobolev inequalities on the Heisenberg group.

Bibliography

- L. Gross. "Logarithmic Sobolev inequalities". In: *Amer. J. Math.* (1975).
- D. Bakry & M. Émery. "Diffusions hypercontractives". In: Séminaire de probabilités, XIX, 1983/84 (1985).
- C. Ané et al. *Sur les inégalités de Sobolev logarithmiques.* Société Mathématique de France, Paris, 2000.
- M. Ledoux. "The geometry of Markov diffusion generators". In: *Ann. Fac. Sci. Toulouse Math. (6)* (2000).

D. Bakry, I. Gentil & M. Ledoux. Analysis and geometry of Markov diffusion operators. Springer, Cham, 2014.

M. Bonnefont, D. Chafaï & R. Herry. "On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group". In: Ann. Fac. Sci. Toulouse Math. (6) (2019+).

Setting

Homogeneous Markov processes $P_t f(x) = \int f(y) p_t(x, dy) = \mathbb{E}(f(X_t)|X_0 = x).$

Reversibility

There exists a probability measure μ such that $\mu(fP_tg) = \mu(gP_tf)$.

Feller property $|P_t f - f|_{L^2(\mu)} \to 0$ as $t \to 0$.

Properties

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Semigroup $P_{t+s} = P_t P_s$.

Contraction $|P_t|_{L^p(\mu)\to L^p(\mu)} \leq 1$ for $p \in [1,\infty]$.

Hypercontractivity?

Can we strengthen the contractivity property?

E.g. does it hold $|P_t|_{L^2(\mu) \to L^4(\mu)} \leq 1$ for some t > 0?

Generators, carré du champ, and energies

Theorem (Yoshida) $Lf = \lim_{t\to 0} \frac{P_t f - f}{t}$ unbounded $L^2(\mu) \to L^2(\mu)$. L has a dense domain D in $L^2(\mu)$, $P_t(D) \subset D$. $P_t f$ solves the abstract heat equation $\partial_t P_t f = LP_t f = P_t L f$.

Carré du champ $2\Gamma(f,g) = L(fg) - fLg - gLf$ bilinear symmetric positive.

Dirichlet energy $\mathcal{E}(f,g) = \mu(\Gamma(f,g)) = -\mu(fLg) = -\mu(gLf).$

Iterated carré du champ $2\Gamma_2(f,g) = L(\Gamma(f,g)) - \Gamma(f,Lg) - \Gamma(g,Lf).$

Logarithmic Sobolev inequalities and hypercontractivity

Logarithmic Sobolev inequality There exists $\rho > 0$ such that for all f $\operatorname{Ent}_{\mu}(f^2) := \mu(f^2 \log f^2) - \mu(f^2) \log \mu(f^2) \leq \frac{2}{\rho} \mathcal{E}(f, f).$

Theorem (Gross 1975; Bakry & Émery 1985)

The invariant measure of a reversible Markov semigroup satisfies a logarithmic Sobolev inequality if and only if it is hypercontractive. More precisely, the Markov semi-group satisfies the logarithmic Sobolev inequality with constant ρ if and only if for all $t \ge 0$: $|P_t|_{L^2(\mu) \to L^{q(t)}(\mu)} \le 1$, with $q(t) = 1 + e^{\rho t}$.

The logarithmic Sobolev inequality for the Ornstein-Uhlenbeck semigroup

Dynamic Invariant measure Semigroup Generator Carré du champ Iterated carré du champ

 $dX_{t} = \sqrt{2}dB_{t} - X_{t}dt.$ $\gamma(dx) = e^{-x^{2}/2} (2\pi)^{-1/2} dx.$ $P_{t}f(x) = \int f(e^{-t} x + \sqrt{1 - e^{-2t}}y)\gamma(dy).$ Lf = f'' - xf'. $\Gamma(f,g) = f'g'.$ $\Gamma_{2}(f,g) = f'g' + f''g''.$

Theorem (Gross 1975)

This semigroup satisfies a logarithmic Sobolev inequality, hence it is hypercontractive. More precisely, $Ent_{\gamma}(f^2) \leq 2\gamma((f')^2)$.

Idea of the proof of Gross

Prove the logarithmic Sobolev inequality for the Markov dynamic on the two-points space with invariant measure ν = ¹/₂(δ₁ + δ₋₁):

$$\operatorname{Ent}_{\nu}(f^2) \leq \frac{1}{2}(f(1) - f(-1))^2 = 2\mathcal{E}(f, f).$$

Show that logarithmic Sobolev inequalities behave well with respect to tensorization:

$$\operatorname{Ent}_{\nu^n}(f^2) \leq \sum_{i=1}^n \mathbb{E}_{\nu^n} \operatorname{Ent}_{\nu_i}(f^2) \leq \frac{1}{2} \sum_{i=1}^n \mathbb{E}_{\nu^n}(f_i(1) - f_i(-1))^2.$$

Apply this inequality for ν^n to $f \circ S_n$, with $S_n = \frac{1}{n} \sum_{i=1}^n x_i$, pass to the limit $n \to \infty$ and use the central limit theorem.

The logarithmic Sobolev inequality for weighted manifolds

Dynamic Invariant measure Generator Carré du champ Iterated carré du champ $dX_t = \sqrt{2}dB_t - \nabla V(X_t)dt.$ $\gamma_V(dx) = e^{-V(x)} \operatorname{vol}(dx).$ $Lf = \Delta f - \nabla V \cdot \nabla f.$ $\Gamma(f,g) = \nabla f \cdot \nabla g.$ $\Gamma_2(f,g) =$ $(\operatorname{Ric} + \nabla^2 V)(\nabla f, \nabla g) + \nabla^2 f \cdot \nabla^2 g.$

Theorem (Bakry & Émery 1985)

The invariant measure of this reversible semigroup satisfies a logarithmic Sobolev inequality if $\operatorname{Ric} + \nabla^2 V \ge K > 0$.

Later on, Bakry showed this is an equivalence.

The Heisenberg group

Lie algebra $\mathfrak{H} = \operatorname{span}\{X, Y, Z\}$ where [X, Y] = Z. Associated Lie group $\mathbb{H} = \mathbb{R}^3$ with group law $(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{1}{2}(xy' - x'y))$. \mathbb{H} encodes the increment in \mathbb{R}^2 and computes the generated area. Left-invariant basis of the tangent space $X = \partial_x - \frac{y}{2}\partial_z, Y = \partial_y + \frac{x}{2}\partial_z, Z = \partial_z$.

Sub-Riemannian structure of the Heisenberg group

Horizontal paths $h = (x, y, z): [0, 1] \rightarrow \mathbb{H}, \dot{h} \in \text{span}\{X, Y\}, L(h) = (\int_0^1 \dot{x}^2 + \dot{y}^2)^{1/2}.$ Theorem (Chow) \mathbb{H} is path connected with horizontal paths. Carnot-Carathéodory distance $d(h_0, h_1) = \inf\{L(h)|h \text{ horizontal }, h(0) = h_0, h(1) = h_1\}.$ Topologically $\mathbb{H} = \mathbb{R}^3$ and the Haar measure is the 3-d Lebesgue measure. The metric (Hausdorff) dimension is 4.

Sub-Riemannian operators $\nabla = \begin{pmatrix} X \\ Y \end{pmatrix}; \Delta = X^2 + Y^2.$

The Ornstein-Uhlenbeck semigroup on ${\mathbb H}$

Brownian motion on Ⅲ Dynamic

Invariant measure

Generator

Carré du champ

Iterated carré du champ

 $H_t = (B_t^1, B_t^2, \frac{1}{2} \int (B_t^1 dB_t^2 - B_t^2 dB_t^1)).$ $\mathrm{d}X_t = \sqrt{2}\mathrm{d}B_t^1 - X_t\mathrm{d}t,$ $\mathrm{d}Y_t = \sqrt{2}\mathrm{d}B_t^2 - Y_t\mathrm{d}t,$ $2\mathrm{d}Z_t = X_t\mathrm{d}Y_t - Y_t\mathrm{d}X_t$ $\gamma_{\mathbb{H}} = law(H_1).$ $Lf = \Delta f - (x, y) \cdot \nabla f$. $\Gamma(f,g) = \nabla f \cdot \nabla g$ $\Gamma_2(f,g) =$ we can compute it but we do not use it.

Heuristically on \mathbb{H} , Ric = $-\infty$ so we cannot use the result of Bakry & Émery 1985 (see Michel Bonnefont's thesis).

A logarithmic Sobolev inequality on ${\mathbb H}$

Theorem (Bonnefont, Chafaï & Herry 2019+) $\operatorname{Ent}_{\gamma_{\mathbb{H}}}(f^2) \leq 2\gamma_{\mathbb{H}}(|\nabla f|^2) + \gamma_{\mathbb{H}}((Zf)^2a),$ where $a(h) = \mathbb{E}(\int_0^1 (B_t^1)^2 + (B_t^2)^2 \mathrm{d}t | H_1 = h).$

This inequality is optimal in the horizontal directions.

- Not known if optimal in the vertical direction.
- The right-hand side contains a vertical term.

Idea of proof

- Essentially the same as the classical proof of Gross 1975.
- By Gross 1975 result and tensorization γⁿ_{R³} satisfies a logarithmic Sobolev inequality.
- ▶ Push $\gamma_{\mathbb{R}^3}^n$ forward by $S_n = \frac{1}{n} \sum_{i=1}^n h_i$, where the sum is in \mathbb{H} and pass to the limit in $n \to \infty$.
- The non-commutativity produces the extra term $\gamma_{\mathbb{H}}((Zf)^2a)$.

Open questions

- Extension to other sub-Riemannian Lie groups?
- Link with some improved contractivity?
- Link with concentration of measure?
- Comparison with other sub-Riemannian inequalities on II? In particular, links with the Prékopa-Leindler inequality for the Haar (=Lebesgue) measure of Balogh, Kristály & Sipos?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④ ● ●

Prékopa-Leindler

► Essentially a functional version of CD(0, N).
► On ℝ^d, if h(tx + (1 - t)y) ≥ f(x)^t + g(y)^{1-t}:

$$\int h \geq \left(\int f\right)^t \left(\int g\right)^{1-t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④ ● ●

Same on *CD* spaces but with distortion coefficients.

 Can be used to derive the logarithmic Sobolev inequality / Bakry-Emery for log-concave measure.

Open questions 2

- Balogh et al. have a version of Prékopa-Leindler on H. Can we derive our (or an other) logarithmic Sobolev inequality for γ_H from it?
- More generally, I am interested, in what can be said about the law of the heat kernel on manifold from Prékopa-Leindler (in general, the heat kernel is not log-concave). If you know some references, please let me know!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ④ ● ●

Bibliography

- L. Gross. "Logarithmic Sobolev inequalities". In: *Amer. J. Math.* (1975).
- D. Bakry & M. Émery. "Diffusions hypercontractives". In: Séminaire de probabilités, XIX, 1983/84 (1985).
- C. Ané et al. *Sur les inégalités de Sobolev logarithmiques.* Société Mathématique de France, Paris, 2000.
- M. Ledoux. "The geometry of Markov diffusion generators". In: *Ann. Fac. Sci. Toulouse Math. (6)* (2000).

D. Bakry, I. Gentil & M. Ledoux. Analysis and geometry of Markov diffusion operators. Springer, Cham, 2014.

M. Bonnefont, D. Chafaï & R. Herry. "On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group". In: Ann. Fac. Sci. Toulouse Math. (6) (2019+).