Partial Isometries, Duality, and
Determinantal Point Processes

Joint work with Tomoyuki SHIRAI (Kyushu Univ.)
(https://arxiv.org/abs/1903.04945)

Makoto KATORI (Chuo Univ., Tokyo)

German-Japanese Open Conference
on Stochastic Analysis 2019
Fukuoka University, Fukuoka, Japan
3 September 2019



lan

1. Introduction to Determinantal Point Processes
2. Partial Isometry and DPPs

3. Orthonormal Functions and Correlation Kernels
4. Duality

5. DPPs on d-Dimensional Spheres

6. Concluding Remarks

v



1. Introduction to Determinantal Point
Processes (DPPs)

e Let S be a base space, which is locally compact Hausdorftf space with countable
base, and A be a Radon measure on S.

e The configuration space over S is given by the set of nonnegative-integer-valued
Radon measures;

Conf(S) = Zd’fs xj €8, £&(A) < oo for all bounded set A C S

Conf(S) is equipped with the topological Borel o-fields with respect to the vague
topology, we say Sn,n E N := {1,2,...} converges to £ in the vague topology, if
[ f(x)én(dr) — [q f( dx), Vf € C.(S), where C.(S) is the set of all continuous
real-valued functlons w1th compact support.

e A point process on S is a Conf(S)-valued random variable = = Z(-,w) on a proba-
bility space (2, F,P). If Z({z}) € {0,1} for any point x € S, then the point process
is said to be simple.



Assume that A;,j=1,...,m, m € N are disjoint bounded sets in S.

By definition,

(1]

(A;) = number of points included in A;,j =1,...,m.

For kj € No := {0,1,...},j = 1,...,m satisfying > " k; = n € Ny, we consider the
following product of combinatorial numbers,

m E(AJ)) B T E(AJ)!
[l ( ki ) [] ki (E(A)) — k)

j=1 j=1

If its expectation is written as
m
E(Aj)) 1 /
b . o (1, e )AE (day - - dan),
jl;[l ( k; Bl el AR s ent ( n) AT n)

where \®" denotes the n-product measure of A\, then p"(x1,...,2,) is called the
n-point correlation function with respect to the background measure .



e Determinantal point process (DPP) is defined as follows [Sos00,ST03].

Definition 1.1 A simple point process = on (S, \) is said to be a determinantal point process
(DPP) with correlation kernel K =S x S — C if it has correlation functions {p"},>1, and
they are given by

pl(x, ... xn) = det [K(xj,xp)] foreveryn eN, and xy,...,x, € S.
1<5,k<n

The triplet (=, K, A(dx)) denotes the DPP, = € Conf(S), specified by the correlation kernel
K with respect to the measure A(dx).

[Sos00] A. Soshnikov, Determinantal random point fields, Russian Math. Sur-
veys 55 (2000) 923—975.

[ST03] T. Shirai and Y. Takahashi, Random point fields associated with certain
Fredholm determinants I: fermion, Poisson and boson point process, J. Funct.
Anal. 205 (2003) 414—463.



e If the integral operator I on L?(S,)\) with kernel K is of rank N € N, then the
number of points is N a.s. If N < oo (resp. N = ), we call the system a finite
DPP (resp. and infinite DPP).

e The density of points with respect to the background measure \(dzx) is given by
plx) = p'(x) = K(z,2).

e The DPP is negatively correlated as shown by

2 AN e K(CE,.I) K(CE,:EI)
po(x,2) = det K2 x) K2, 2

= K(z,0)K (2" 2') = |K(2,2")] < p(x)p(a”), w2’ €5,

provided that K is Hermitian.
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(Computer simulation by T. Matsui (Chuo U.))



Let L?(S,)\) be an L?-space.

For operators A,B on L*(S,)\), we write A > O if (Af, flr2sx) = 0 for any f €
L*(S,)\), and A> B if A—B> 0.

For a compact subset A C S, the projection from L?(S,)\) to the space of all
functions vanishing outside A A-a.e. is denoted by Pp. P, is the operation of
multiplication of the indicator function 1, of the set A; 1,(z) = 1 if x € A, and
1o(x) = 0 otherwise.

We say that the bounded Hermitian operator A on L?(S,)\) is said to be of locally
trace class, if the restriction of A to each compact subset A, A\ := Py APy, is of
trace class; Tr Ay, < .

The totality of locally trace class operators on L?(S,)\) is denoted by 7| ,.(S, \).



Theorem 1.2 (So0s00,ST03) Assume that K € Zj10.(S,A\) and O < K < I. Then there
exists a unique DPP on S such that the correlation function is gien by

Pl (a1, ... ) = 15%2”[}{(%,:6;{)], neN, x1,...,2, €8.

[Sos00] A. Soshnikov, Determinantal random point fields, Russian Math. Sur-
veys 55 (2000) 923-975.

[ST03] T. Shirai and Y. Takahashi, Random point fields associated with certain
Fredholm determinants I: fermion, Poisson and boson point process, J. Funct.

Anal. 205 (2003) 414—-463.



e In the present talk, we consider the case that
Kf=f forall fec(ker )t c L*(S,\),
where (ker )+ denotes the orthogonal complement of the kernel of K.

e That is, K is an orthogonal projection.

e By definition,

0, if f € ker K.

Hence, it is obvious that the condition O < L < [ is satisfied.

of {f, if fe (ker k)L

10



The purpose of the present talk is to propose a useful method to provide orthogo-
nal projections K and DPPs whose correlation kernels are given by the Hermitian
integral kernels K (z,2'), 2,2’ € S of K.

I show that our method gives duality relations between pairs of DPPs.

As examples of DPPs constructed by this method, I discuss the DPPs on higher-
dimensional spaces S%, d € N, and their bulk scaling limit.

At the end of my talk, I will show open problems.

11



2. Partial Isometry and DPPs

e First we recall the notion of partial isometries between Hilbert spaces.

e Let Hy ¢ = 1,2 be separable Hilbert spaces with inner products (-,-)y,. For a
bounded linear operator W : H; — H», the adjoint of VV is defined as the operator
W*: Hy — Hi, such that

<Wf7 g>H2 = (fa W*g>H1 for all f € Hy and g < Hs.
A linear operator W is called an isometry if

HWf||Hz:||fHH1 for alleHl'

e For )V its kernel is denoted as ker W and the orthogonal complement of ker WV is
written as (ker W)=,

e A linear operator )V is called a partial isometry, if

WAy = 11fllm, for all fe& (ker W)=

12



e For the partial isometry W, (ker W)' is called the initial space and the range of
W, ranW, is called the final space.

e By the definition, [|[W[||3, = W W[, = (L WW[)u,.

e This implies the following.

Lemma 2.1 The bounded linear operator W (resp. W*) is a partial isometry if and only if
WW (resp. WW* ) is the identity on (ker W)L (resp. (kerWW*)*).

13



e For the partial isometry W, (ker W)' is called the initial space and the range of
W, ranW, is called the final space.

e By the definition, [|[W[||3, = W W[ a, = (f.WW[)u,.

e This implies the following.

Lemma 2.1 The bounded linear operator W (resp. W*) is a partial isometry if and only if
WW (resp. WW* ) is the identity on (ker W)L (resp. (kerWW*)*).

14



We put the first assumption.

Assumption 1 Both W and W?* are partial isometries.

Under Assumption 1, the operator W*W (resp. WW?¥) is the projection onto the
initial space of W (resp. the final space of W).

Now we assume that [, and Hy are realized as L°-spaces, L*(S1, A1) and L?(S5, \»),
respectively.

We consider the case in which JV admits an integral kernel W : S5 x §; — C such
that

WI(y) = g W(y.2)f(x)Mi(dz), € L* (St \),

and then

(W g)(z) = . W (y,2)g(y)Xa(dy), g€ L*(S2, A2).

15



e We put the second assumption.

Assumption 2 W*W € 7 1,.(51, A1) and WW* € T 1,c(52, A2).

e We have

WW[)(x) = i Kg, (,2") f(2")\(da'), [ € L*(S1, M),

WW*g)(y) = K, (. )9 ) Ma(dy'), g€ L*(S2. A2).

with the integral kernels,

KSl (33,33,) = S W(:(/,I)W(y, x,))\Q(dy) = (W('JQ;J)?W('am»LQ(SQ,)\Q)J
2

K82 (yvy,) = S W(yam)W(y,am))\l(dm) - <W(ya ')a W(y,a ')>L2(Sl,)\1)'
1

e We see that Kg, (2/,x) = Kg,(x,2') and Kg,(v,y) = Ks,(y,9').

16



e The main theorem is the following.

Theorem 2.2 Under Assumptions 1 and 2, associated with W*W and WW?*, there exists a

unique pair of DPPs; (21, Kg,, A\i(dx)) on St and (22, Ks,, Aa(dy)) on Sa. The correlation
kernels Ks,, 0 = 1,2 are Hermitian and given by

K81 (.CC,.CC’) - B W(y,LE)W(y, ilf’))\g(dy) - (W('7$,)7W('agj))LQ(Sz})\g)a
2

KSQ (ya y,) - < W(:U: Qf)W(y’, m))\l(dx) - (W(y7 ')a W(yla '))Lg(sl,)\l)'
1

17



3. Orthonormal Functions and Correlation
Kernels

In addition to L?(S;, \;), ¢ = 1,2, we introduce L*(I',v) as a parameter space for
functions in L?(S;, A\¢),¢ =1,2.

Assume that there are two families of measurable functions {¢(x,v) : 2 € S1,y € I'}
and {U2(y,7) : y € S2,7 € I'} such that two bounded operators U; : L*(S;, \¢) —
L*(I,v) given by

FO) = W)= | Uwn)f@he(de). (=12
are well-defined. Then, their adjoints U : L*(I',v) — L*(S;, \¢),{ = 1,2 are given by
UF)O) = [ el FG)
Now we define W : L?(S1, A\;) — L?(S2,\o) by W = Uil . i.e.,
VN = [ valy ) Fwidn)

18



e We can see the following.

Lemma 3.1 If
UU; = It forl=1,2,

then both W and YW* are partial 1sometries.

Proof It suffices to show that W*)V is an orthogonal projection, or equivalently,
it suffices to show (W*W)? = W*W since W*W is self-adjoint.
By the assumption, we see that

WW = (LU ) USUy = U (UsUUy = UTU, .

Hence, (W'W)? = UjUUTU; = UTU; = W,

By symmetry, the assertion for W* also follows. g

19



We note from the proof that W*W = U{U; and WIW* = U5Uy so that Uy, { = 1,2 are

partial isometries.

Assumption 3 We assume that Ul = It for ( =1,2.

Assumption 3 can be rephrased as the following orthonormality relations:

<w€('77)7 wg('7fyl)>L2(Sg,)\g)y(d7) - 6(7 - fy’)d'.}/? 77")/, S Fu (= 17 2.

We will use these relations below.

The following is immediately obtained as a corollary of Theorem 2.2.

Corollary 3.2 Let W = USU, as in the above. We assume Assumption 3 in addition
to Assumption 2. Then, there exist a unique pair of DPPs; (21, Kg,, A\1(dx)) on S1 and
(22, Ks,, Aa(dy)) on Sy. Here the correlation kernels Kg,,{ = 1,2 are given by

K, (z,2") :/151(93;7)%(26’77)”(61’7) = (U1 (2, ), 1 (@) 200
Ksy(y.9) / oy, )2 DV (d) = (Wl ) 02t N p2r-

20




Now we consider a simplified version of the preceding setting.
Let I - SQ and v = )\2|[‘.

We define Us : L?(So, \2) — L*(I',v) as the restriction onto I, and then its adjoint
U; is given by (U5 F)(y) = F(y) for y € I', and by 0 for y € Sy \ I.

It is obvious that b5 = It and hence U is a partial isometry.

For I' C S5, we assume that there is a family of measurable functions {V(z,y) :
x € 5'1,y € I'} such that a bounded operator U/, : L*(S;,\;) — L*(T',v) given by

(U f)(y f i (2, ) f(2)\(dz), (v €T) is well-defined.

Assumption 3° We assume that (/iU = Ir. This can be rephrased as

(W () 1oy ) 2so o Aeldy) = 6(y — o')dy,  y.y' €T.

Now we define W : L?(S1, A1) — L?(S2, \2) by W = U3l as before.

It follows from Assumption 3’ that W is a partial isometry. Corollary 3.2 is
reduced to the following.

Corollary 3.3 Let W = UU; as in the above. We assume Assumption 3™ in addition to
Assumption 2. Then there exists a unique DPP, (Z, K, 1) on S1 with the correlation kernel

~

KSl (JC, JC’) — /le({l?, y)wl(ajlv y))\2(dy) = <7751($7 ')? lbl (xlv '))LQ(F;)\Z)' 21




4. Duality
4.1 Duality relations

e For f € C.(5), the Laplace transform of the probability measure P for a point

process = is defined as
Vif]=E {exp (/Sf(af)E(da:))] :

e For the DPP, (=, K, \(dz)), this is given by the Fredholm determinant on L?(S,\),

T

fs det [K (g, a0)] [T — /@) A% (dx).

n 1§j,k‘§n
(=1

_l)n
Det [I — (1 —e)K]:=1 (
L?(g,)\)[ (1= eh)K] +n§ n!

Lemma 4.1 Between two DPPs, (21, Kg,, A\1(dx)) on S1 and (a2, Kg,, Aa(dy)) on Sa, given
by Theorem 2.2, the following equality holds with an arbitrary parameter o € C,

Det |1 Kg.|= Det [[ Ka,l.
LQ(Si)\l)[ + aKg, | L2(S§,)\2)[ + aks,]

22



e For Ay C Sy, 0 =1,2, let

~—

W= Py, WPy, Ko = WPy,w, KLY = Wwpy, W

e They admit the following integral kernels,

e~

Wiy, 2) = 1a, ()WY, )1, (),

A
K5 (x.a") = W e doly)
2
A -
KM (y,y) = W W 2 (o)
1

e Using Lemma 4.1, the following is proved.

Proposition 4.2 Let (E%Ag),Ké?Q),)\l(das)) and (EéAl), é{:l),)\g(dy)) be DPPs associated

with the kernels Kgl\‘?) and Ké{z\l) given as above, respectively. Then

PEM (A =m)=PEM (Ay) =m), Vme N,

23



e For Ay C Sy, 0 =1,2, let

~—

W= Py, WPy, Ko = WPy,w, KLY = Wwpy, W

e They admit the following integral kernels,

e~

Wiy, 2) = 1a, ()WY, )1, (),

A
K5 (x.a") = W e doly)
2
A -
KM (y,y) = W W 2 (o)
1

e Using Lemma 4.1, the following is proved.

Proposition 4.2 Let (E%Ag),Ké?Q),)\l(das)) and (EéAl), é{:l),)\g(dy)) be DPPs associated

with the kernels Kgl\‘?) and Ké{z\l) given as above, respectively. Then

/\(Al)

PEM AN =m) =PEM (Ay) =m), VmeN.

24



4.2 Example

We consider an application of Corollary 3.3 (the simplified version).

Let Sl = C and SQ = NO with Al(diﬁ) = )\N(O,l;(C)(d-/E)'

I
Consider the normal complex Gaussian measure, Ay .c)(dz) = —e " Pdy, 2 e C.
o 7T

We put

n

pn(1) = NeTh

Note that {p,(r)},cn, forms a complete orthonormal system of the Bargmann—
Fock space, which is the space of square-integrable analytic functions on C with
respect to An,1,0);3

n € Np.

(L,On; SDTTL>L2(C,)\N(011;C)) - 6nm; n,m € NO-

If we assume that I' = S, = Ny and apply Corollary 3.3, we obtain the DPP on C
in which the correlation kernel with respect to Ay 1.c) is given by

o _
xx!)" T
KBF(IJQCI) - Z 9911(55)3071(39,) - Z ( TL') =" ; xaxl e C.
neNy n=0 )

This is the reproducing kernel in the Bargmann—Fock space and obtained DPP is
identified with the Ginibre ensemble (in the bulk scaling limit) (Z, Kciuibre, AN(0,1:0)(d2))-

25



e Now we show an application of the duality relation.

e Let Ay be a disk (i.e., two-dimensional ballith radius r € (0,00) centered at
the origin in S| = C ~ R? and Ay = S> = N.

e We obtain

!/ !/
— KGinibre(xa x )7 T, T € C?

r 27
B2 / 1 —s2 _n+n'+1 / i6(n'—n)
Ky’ = n nt (T)A oy (dr) = —— dse df e
) = [ B nore ) = —mm [dse = [Cane
2

r 2n+1,—s2 T N, —1U

S (& u-e

= 20,/ / —'ds = O / ' du, n,n € Ny.
0 n! 0 n!

e Define

r? ule U o0 ?,,Q.lfe—‘?"z
An (1) = du = , neNy, re(0,00).
0 n! k!
k=n-+1

where the second equality is due to Eq.(4.1) in [Shil5].

[Shil5] T. Shirai, Ginibre-type point processes and their asymptotic behavior, J.
Math. Soc. Jpn. 67 (2015) 763—787.

26



e Now we show an application of the duality relation.

e Let Ay be a disk (i.e., two-dimensional ballith radius r € (0,00) centered at
the origin in S| = C ~ R? and Ay = S> = N.

e We obtain

!/ !/
— KGinibre(xa x )7 T, T € C?

r 27
B2 / 1 —s2 _n+n'+1 / i6(n'—n)
Ky’ = n nt (T)A oy (dr) = —— dse df e
) = [ B nore ) = —mm [dse = [Cane
2

r 2n+1,—s2 T N, —1U

S (& u-e

= 20,/ / —'ds = O / ' du, _n,n € Ny.
0 n! 0 n!

e Define

r? ule U o0 ?,,Q.lfe—‘?"z
An (1) = du = , neNy, re(0,00).
0 n! k!
k=n-+1

where the second equality is due to Eq.(4.1) in [Shil5].

[Shil5] T. Shirai, Ginibre-type point processes and their asymptotic behavior, J.
Math. Soc. Jpn. 67 (2015) 763—787.
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That is, if we write the Gamma distribution with parameters (a,b) as I'(a,b) and
the Poisson distribution with parameter ¢ as Po(c),

An(r) :=P(S, < ?“2) =P(Y,2>n+1),
provided S, ~ I'(n +1,1) and Y,2 ~ Po(r?).

2 .
Then DPP (EQ,K&) is the product measure ), M?SE??UHI under the natural

identification between {0,1}° and the power set of Ny, where ug’emoum denotes the
Bernoulli measure of probability p € [0, 1].

Proposition 4.2 gives the duality relation

P(ZEqinibre(B?) = m) = P(22(Ng) =m), Vm € Ny,

where Zq;,i1re denotes the Ginibre DPP.

(r

If we introduce a series of random variables X, ) € {0,1},n € Ny, which are mutu-

(7) Bernoulli

ally independent and X, ' ~ Fx () o M E Ny, then the above implies the equiva-
lence in probability law

—_ law) _ law r
:*Ginibre(Bg) (:) EQ(NO) (:) Z X'r(z )a r e (O? OO)
neNg

28



5. DPPs on d-Dimensional Spheres
5.1 Harmonic Ensembles

e We consider a unit sphere in R%t! denoted by S? in which we use the polar
coordinates for x = (1), ... 2@+ c g4,
1) = sin B, -sin by sin 6y,
2 =ginf,---sinb, cosb,_1, a=2,....d,

29D = cosly,  with 6, € [0,27), 0, €[0.7], a=2,....d

e The standard measure on S? is given by the Lebesgue area measure expressed as
dog(x) = sin®™ 1 Oysin?204_1 - - - sinG2db, - - - dy,  x € S

The total measure of S¢ is calculated as

L ol
wi =) = Far D)

29



e We write the space of harmonic polynomials of degree k € Ny, H;, restricted on
S? as
y(d,k) = {h‘Sd C}LE/H;C}, k € Np.

We can see that

(d+2k—-1)(d+k—-2)! 2
(d—1)k! ~(d—1)!

D(d, k) = dim Y1) = k1 4 o(Rh).

e Consider an orthonormal basis {Yj(d’k)}p(d’k)

i=1~ of V) with respect to doy;

(Ytrz(d,k)a Y':rr(zd,k)>L2(Sd.d0d) - / Kgdk)(x)nggk)(x)dgd(x) - 57””? n,mec NO'
; Sd

e Then, if we put KY@» (2, /) Z de Y, @R (1), o e s,

then {Ky<d=k)(x7:c’)}mw Iegd give the reproducmg kernel in Y% in the sense that

Y(a') = /S V(@) KT (0 doax), VY € Vg,

30



e Fix d € N and k € Ny. Then, if we consider the case that S; = S%, S5 = N with
A (da) = dog(x), L2(T,v) = 2({1,....D(d,k)}) C S, and 1 (z,n) = Y " (2).

e Then Corollary 3.3 determines a unique DPP on S%, in which the correlation
kernel is given by KY@» (z 2/), z, 2" € S™.

e It is obvious that the obtained DPP is rotationally invariant on S?, since the
kernel KY.r) (x,2’) depend only on the inner product z-z'. The density of points
is uniform on S? and is given with respect to oy4(dz) by

py(d,k) — Y (z,2)
B D(d, k) 2% 41

W (d— 1)lwy +of

E.

« "Ly



e Next we consider the DPP on S for fixed d € N and L € N such that the correlation
kernel is given by the following finite sum,

L-1
N(d.L
KW ))(Sd)(x,a:’) = ZK%M) (x,2),

harmonic
k=0

where the total number of points on S? is given by

L—1
2L+d—2(d+ L —2 2
N(d,L):ZD(d,k):T( L ):ELMO(Ld).
k=0 )

e The DPP (£, KV

: harmon.m(gd),dad(x)) is rotationally invariant in S? and is called the

harmonic ensemble in S with N points by Beltran et al.

[BMOC16] C. Beltran, J. Marzo and J. Ortega-Cerda, Energy and discrepancy of
rotationally invariant determinantal point processes in high dimensional spheres,
Journal of Complexity 37 (2016) 76—109.

e If we introduce the Jacobi polynomials defined as

(a+1),

plas) () = o

n

1 —
F(—n,n%—oﬁ—ﬁ#—l;oﬁ—l; 2$>,

the above kernel is written as follows,

d/2.(d—2)/2
(N(d,L)) N(d, L) Pz(,_/l'( (e - 2)

N
harmone(s) (7+ ') = wa  pUREDE ) 32




e In particular, when d =1, N(1,L) =2L —1 and

(N(L,L)) / 1 (1=(2L-1) 1+(2L_1)§ ,0—¢

_ sin{N(0 —¢")/2} dob
sin{(0 —0')/2} 2w

This verifies the identification of the 1-sphere case of the present DPP with the
Circular Unitary Ensemble (CUE) studied in random matrix theory.

e On the other hand, when d =2, N(2,L) = L? and

harmonic(SQ)( » L ) 1 F <_L +1,L+1;2; 2)

2
A
N x—a 2:
LY GV RNV, e il A
4m A

e This DPP on S? is different from the spherical ensemble studied by Caillol (1981)
and Krishnapur (2009).
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5.2 Bulk scaling limit

e Now we consider the vicinity of the north pole e¢;.1 = (0,...,0,1) on S¢ and put
6y =r/L, r€[0,00). Then the polar coordinates behave as

1
2~ %blnﬁd 1---sinfosint =: 7 (1),
a r . ~la
2@ ~ f sinfly_q1---sinf cosf,_1 =: zx( ), a=2,...,d,
1 /ry\2
(d+1) ~ 1 _ 2 (_)
X ~
2 \L
d+1 1 1
e In this case, for 2,2’ € §¢, z -2’ = ;x(“)x’(a) =1- m“ﬂf ||Rd + 0 <L2) , as L — oo,
where 7,7’ € R? and || - ||z« denotes the Euclidean norm in R?. Hence we can con-

clude that

r

1 ~ o~
_)+O<L2) with 7 := [|T — 2'||[ga, as L — oo.

! :
X T :COS(
L

e In this limit, the measure on S? behaves as

1

1
dog(x) = ﬁf,«d—l sin™? 0,y -sinbydrdfy ---dfg_; = Td

dz, T eR%
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The following limit is proved for the correlation kernel Kﬁig;ﬁi(sd)

1 ~  ~
Lemma 5.1 When -2’ = cos (%) +o0 (LQ) , with r .= || — ¥'||ga, as L — oo holds,
the limit

. L (N@.L
k(d) (T) - Lh—I>I;o ﬁKﬁarinén)i():(Sd) ((E’ (E’)

exists and have the following expressions,

Jq9(7) 1 1
(d)(p) = 42V d/2
kA (r) (27 )d/2’ (%)d/2r(d—2)/2_/0 $7 7 J(d—2)/2(rs)ds,

where J,(2) is the Bessel function of the first kind with index v.
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This result implies that for each d € N we obtain an infinite-dimensional DPP on
R? such that it is uniform and isotropic on R? and the correlation kernel is given

by

KDz oy = ED(||lx — 2||ga), o2 R

We can give the following alternative expression for K (%,

Lemma 5.2 For d € N, the correlation kernel K% s written as

1 i(x—a')- 1 i(x—a')-
57 L sy = g | ey,

where BY denotes the unit ball centered at the origin; BY := {y € R : |y| < 1},

KD (g, 2" =

This kernel is obtained as the correlation kernel Kg, given by Corollary 3.3, if we
consider the case such that

Si =S =R N (de) = dz, \ao(dy) = v(dy) = dy, ¥1(x,y) =™, I =B C R
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e The kernels K'Y on R?,d > 1 derived as the bulk scaling limit of Kﬁiiﬂonic(sd) have
been studied by Zelditch.

e Zelditch regarded them as the Szego kernels for the reduced Euclidean motion
group.

e Here we call the DPPs associated with the correlation kernels in this form the
Euclidean family of DPPs on R? d € N.

Definition 6.1 The Euclidean family of DPP on R?,d € N is defined by (E, Kgi)chdean, d:):)
with the correlation kernel

1 Jap(lle —2||gae)
K](?fi)clid(m’xl) = d d
(2m)¥2 o — 2|2
1

-— [ 1 ile=al)y e RY
(27T)d [I;d ]B%d(y)e dy7 T, T <

[Zel55] S. Zelditch, From random polynomials to symplectic geometry, in Pro-
ceedings of ICMP 2000, arXiv:math-ph/0010012
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e We introduce the following operation.

(Dilatation) For ¢ > 0, we set co = := Zj Oc,

co K(x,x') :=K(—,—), z, 2’ € ¢S,

and co \(dz) := Ndxz/c). We define co (2, K, \(dz)) := (coZE,co K, co \(dx)).
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The result reported in the previous section is summarized as follows.

Proposition 6.2 The following is established for d € N,

M — (N Nooo (= o-(d
(2) Nl/do (':’Klr(larzfnonic(Sd)’dad(x)) % (:"K](Eu)cliwdaj)'

e For lower dimensions, the correlation kernels and the densities are given as fol-
lows,

(1) ;o sin(z —a') , _ a1
[(Euclid(x?‘/’lC ) — 7T(.CL° _ .CU/) _ Ksinc(xa L ) with PEuclid = ;’

T [ I R
KEUChd(:U? ! ) B 27TH,CU — x,HRQ with PEuclid = EJ

(3) A 1 sin H.CC — .CE’HRE ) / | . (3) B 1
K@, @) = 212||z — 2| |2 ( e — 2/ llgs O [l —2lgs | with  pp,q = 5

e This family of DPPs includes the DPP with the sinc kernel Kg,. as the lowest
dimensional case with d = 1.

e Note that, if d is odd,
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6. Concluding Remarks

With L?(S,)\) and L?(T",v), we can consider the system of biorthonormal functions,
which consists of a pair of distinct families of measurable functions {¢(x,7) : x €
S,y eTl'} and {p(x,v): 2 € S,v €I} satisfying the biorthonormality relations

W) 07N s vldy) = 6(y =+ )dy, 7,7 €T

If the integral kernel defined by

KV (2, 2!) = / WP @ (). 7 €5,
I

is of finite rank, we can construct a finite DPP on S whose correlation kernel is
given by K" following a standard method of random matrix theory.

By the above biorthonormality, it is easy to verify that K" is a projection kernel,
but it is not necessarily an orthogonal projection. This observation means that
such a DPP is not constructed by the method reported in this talk. General-
ization of the present framework in order to cover such DPPs associated with
biorthonormal systems is required.

Moreover, the dynamical extensions of DPPs called determinantal processes shall
be studied in the context of the present talk.
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Thank you very much
for your attention.

e M. Katori, T. Shirai,
Partial isometries, duality, and determinantal point processes,
arXiv: math.PR/1903.04945.
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