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1 Introduction

U ⇢ Rd: Lipschitz domain, diam(U) = 1, d(·, ·): inner distance on U . (E , W 1,2(U)):

Dirichlet form on L2(U, dx) given by

E(u, v) =

Z

U
ru(x) · A(x)rv(x) dx +

Z

U

Z

U

(u(x)� u(y))(v(x)� v(y))

d(x, y)d+↵
c(x, y) dx dy,

where ��1I 6 A(x) 6 �I and C�1 6 c(x, y) = c(y, x) 6 C (uniformly elliptic).

Diffusion plus jumps.

Question: Investigate the behavior of the corresponding process.
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ii) Regularity of the solution of the heat equation) through Harnack-type inequalities
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Dirichlet form on L2(U, dx) given by

E(u, v) =
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U
ru(x) · A(x)rv(x) dx +

Z

U

Z

U

(u(x)� u(y))(v(x)� v(y))

d(x, y)d+↵
c(x, y) dx dy,

where ��1I 6 A(x) 6 �I and C�1 6 c(x, y) = c(y, x) 6 C (uniformly elliptic).

Question: Investigate the behavior of behavior of the corresponding process.

Previous work : Song-Vondracek ’07: � + �↵/2 (i.e. U = Rd, A(x) ⌘ I , c(x, y) ⌘ 1),

mixture of BM and symmetric ↵-stable processes: computing the convolution!

Chen-K ’10: General diffusions with jumps U = Rd:

E(f, f) =

Z

Rd
rf (x) · A(x)rf (x) dx +

Z

Rd

Z

Rd

(f (x)� f(y))2

|x� y|d+↵
c(x, y) dx dy.



Our question is more general. Diffusion with jumps on a metric meas. space.

(M,d, µ): Ahlfors d-regular set. Consider a diffusion with jumps whose DF is given by

E(u, v) = E(c)(u, v) +

Z

M

Z

M

(u(x)� u(y))(v(x)� v(y))

d(x, y)d+↵
c(x, y) µ(dx) µ(dy),

where E(c)(·, ·) is a local regular DF that enjoys sub-Gaussian estimates with the walk

dimension � > 2 and 0 < ↵ < �, (example: Sierpinski gasket).

Question: Investigate the behavior of the corresponding process.



1.1 Framework

Symmetric Dirichlet form

Let (M,d, µ) be a metric measure space (diam(M) = 1 for simplicity).

Consider a regular Dirichlet form (E ,F) on L2(M ; µ) as follows:

E(f, g) =E (c)(f, g) +

ZZ

M⇥M
(f (x)� f(y))(g(x)� g(y)) J(dx, dy)

= : E (c)(f, g) + E (j)(f, g),

(E (c),F): strongly local part of (E ,F), J(·, ·): sym. Radon meas. M ⇥M \ diag.

Exf(Xt) = Ptf(x) =

Z
p(t, x, y)f (y) µ(dy), x 2 M, f 2 L1(M ; µ).



1.2 Aim

• Stable characterizations of (upper bounds and) two-sided estimates on heat kernel

(HKE) for sym. DFs including both local and non-local terms on MMSs.

• Stable characterizations of parabolic Harnack inequalities (PHI).

• To understand relations between HKE and PHI.
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For the case of � + �↵/2: Convolution!

• Two sided HKE as in the above figure.

• PHI(�) holds with �(r) = r2 ^ r↵, i.e. PHI(2) for r 6 1 and PHI(↵) for r > 1.

In a word, our results say that these are stable under perturbations .



2 Background

Stability of HKE

1. (Local) * Gaussian HKE (, VD+PI(2))

Grigor’yan (’91), Saloff-Coste (’92), Sturm (’96), Delmotte (’99).

* Sub-Gaussian HKE c1t
�

df
dw exp(�c2(d(x, y)dw/t)1/(dw�1) (, VD+PI(dw)+CSA(dw))

Barlow-Bass, Barlow-Bass-K, Andres-Barlow, Grigor’yan-Hu-Lau
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* Sub-Gaussian HKE c1t
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df
dw exp(�c2(d(x, y)dw/t)1/(dw�1) (, VD+PI(dw)+CSA(dw))

Barlow-Bass, Barlow-Bass-K, Andres-Barlow, Grigor’yan-Hu-Lau

2. (Non-local) * 0 < ↵ < 2 and Ahlfors d-regular: Chen-K(’03)

p(t, x, y) ⇣
✓

t�d/↵ ^ t

d(x, y)d+↵

◆
, J(x, y) ⇣ 1

d(x, y)d+↵

* General MMS (VD+RVD) Chen-K-Wang (Mem. AMS, to appear)

HK(�j) , J�j + CSJ(�j)

C.f. Grigor’yan-Hu-Hu (’18); Murugan-Saloff-Coste (’18)



3 Main results

Let (M,d, µ) be a metric measure space (diam(M) = 1 for simplicity).

• Consider a regular Dirichlet form (E ,F) on L2(M ; µ) as follows:

E(f, g) =E (c)(f, g) +

ZZ

M⇥M
(f (x)� f(y))(g(x)� g(y)) J(dx, dy)

= : E (c)(f, g) + E (j)(f, g),

(E (c),F): strongly local part of (E ,F), J(·, ·): sym. Radon meas. M ⇥M \ diag.

• Two scaling functions �c and �j:

�c(r) 6 �j(r) for all r 2 (0, 1], and �c(r) > �j(r) for all r 2 [1,1).

• Note: convolution does not make sense on general MMS.



• MMS (M,d, µ). Let V (x, r) = µ(B(x, r)) for all x 2 M and r > 0.

• VD and RVD

c1

⇣R

r

⌘d1
6

V (x,R)

V (x, r)
6 c2

⇣R

r

⌘d2
, x 2 M, 0 < r < R. (3.1)

• Scaling function �j: 0 < 9�j,1 6 �j,2 s.t.

c3

⇣R

r

⌘�j,1
6

�j(R)

�j(r)
6 c4

⇣R

r

⌘�j,2
, 0 < r < R. (3.2)

• J�j :

J(x, y) ⇣ 1

V (x, d(x, y))�j(d(x, y))
.



Heat kernel estimates

• HK(�c, �j):

p(t, x, y) ⇣ 1

V (x, ��1
c (t))

^ 1

V (x, ��1
j (t))

^
⇣
p(c)(t, x, y) + p(j)(t, x, y)

⌘
,

where

p(c)(t, x, y) =
1

V (x, ��1
c (t))

exp

✓
� sup

s>0

⇢
d(x, y)

s
� t

�c(s)

�◆

and

p(j)(t, x, y) =
1

V (x, ��1
j (t))

^ t

V (x, d(x, y))�j(d(x, y))
.

• HK�(�c, �j): the lower bound is replaced by
 

1

V (x, ��1
c (t))

^ 1

V (x, ��1
j (t))

^ p(j)(t, x, y)

!

.
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1

• HK(�c, �j):

p(t, x, y) ⇣ 1

V (x, ��1
c (t))

^ 1

V (x, ��1
j (t))

^
⇣
p(c)(t, x, y) + p(j)(t, x, y)

⌘
.



Main result: heat kernel estimates

Theorem 3.1 (Chen-K-Wang,’19) Suppose that (M,d, µ) satisfies V D and RV D, and

that �c, �j satisfy (3.2). Then the following are equivalent:

(1) HK�(�c, �j).

(2) PI(�), J�j and CS(�),

where

�(r) := �c(r) ^ �j(r) =

8
>><

>>:

�c(r), r 2 (0, 1],

�j(r), r 2 [1,1).

If (M,d, µ) is connected and geodesic, then they are equivalent to:

(4) HK(�c, �j).



• CS(�): 9C0 2 (0, 1], C1, C2 > 0 s.t. 0 < 8r 6 R, a.e. x0 2 M and any f 2 F ,

9 a cut-off function ' 2 Fb for B(x0, R) ⇢ B(x0, R + r) s.t.
Z

B(x0,R+(1+C0)r)
f 2 d�(', ')

6C1

✓Z

B(x0,R+r)
'2 d�c(f, f) +

Z

B(x0,R+r)⇥B(x0,R+(1+C0)r)
'2(x)(f (x)� f(y))2 J(dx, dy)

◆

+
C2

�(r)

Z

B(x0,R+(1+C0)r)
f 2 dµ.

Remark: Under J�j,6, CS(�) always holds if �j,2 < 2 in J�j .



PHI(�)

Let Q := (0, 4T )⇥B(x0, 2R). For Q ⇢ M , u(t, x) : M ! R+ is caloric on Q, if
@u

@t
(t, x) = Lu(t, x), 8t 2 Q.

We say PHI(�) (parabolic Harnack inequality) holds, if 9C1 > 0 s.t. 8u = u(t, x)

caloric and > 0 onM with T = �(R), then

sup
Q�

u 6 C1inf
Q+

u.

PHR: Important consequence of PHI.

Proposition 3.2 Assume PHI(�). Then, 8u bounded and caloric in Q(x0, �(r), r),

|u(t0, x0)� u(t00, x00)| 6 C

✓
��1(|t0 � t00|) + d(x0, x00)

r

◆�

sup
Q(x0,�(r),r)

u

for dt⇥ µ-a.e. (t0, x0), (t00, x00) 2 Q(x0, ��(r), �r).

• The De Giorgi-Nash-Moser theory in PDE.



Main result: parabolic Harnack inequalities

Theorem 3.3 (Chen-K-Wang,’19) Suppose that (M,d, µ) satisfies V D and RV D,

and that �c, �j satisfy (3.2). Then

PHI(�) , PI(�) + J�,6 + CS(�) + UJS , PHR(�) + J�,6 + E� + UJS

, EHR + J�,6 + E� + UJS

In particular, HK�(�c, �j) () PHI(�) + J�j .

• E�: 9c1 > 1 s.t. 8r > 0, µ-a.a. x 2 M ,

c�1
1 �(r) 6 Ex[⌧B(x,r)] 6 c1�(r),

where define the exit time ⌧A = inf{t > 0 : Xt 2 Ac} for A ⇢ M .

• UJS (Barlow-Bass-K (’09)): for a.e. x, y 2 M ,

J(x, y) 6
c

V (x, r)

Z

B(x,r)
J(z, y) µ(dz), r 6

1

2
d(x, y).



Example 3.4 (PHI(�) alone does not imply J�j) Let M = Rd, and

J(x, y) ⇣

8
>><

>>:

1
|x�y|d+↵ |x� y| 6 1;

1
|x�y|d+� |x� y| > 1,

where ↵, � 2 (0, 2). ̶ Diffusion part is just Brownian motion.

Then, PHI(�) holds with �(r) = r� ^ r2 for all r > 0. (Note that � does not depend

on the choice of ↵ 2 (0, 2).) Since PHI(�) holds regardless of the choice of ↵ 2 (0, 2),

PHI(�) alone does not imply the bound of the jumping kernel.



4 HKE for general symmetric pure jump Dirichlet forms

We also have studied stability of HKE and PHI for general symmetric pure jump Dirichlet

forms. Let us illustrate this by an example.

Suppose (M,d, µ) has a nice diffusion having HK(dw) with dw > 2.

Let 0 < ↵ < dw and � > dw. Consider a regular DF on (E ,F):

E(u, u) =

Z

M⇥M
(u(x)� u(y))2J(x, y)µ(dx)µ(dy),

where

J(x, y) ⇣

8
>><

>>:

1
V (x,d(x,y))d(x,y)↵ d(x, y) 6 1,

1
V (x,d(x,y))d(x,y)� d(x, y) > 1.



The heat kernel of (E ,F) satisfies

p(t, x, y) ⇣

8
>><

>>:

p(j)(t, x, y), t 6 1

1
V (x,t1/dw)

^
�
p(j)(t, x, y) + p(c)(t, x, y)

�
, t > 1,

• C.f. Diffusions with jumps:

p(t, x, y) ⇣ 1

V (x, ��1
c (t))

^ 1

V (x, ��1
j (t))

^
⇣
p(c)(t, x, y) + p(j)(t, x, y)

⌘
.

• J. Bae, J. Kang, P. Kim and J. Lee, arXiv:1904.10189



1

1

1

1

Diffusion+Jumps Pure jumps with lighter poly. tails

We have more general stability theory for pure jump processes with

J(x, y) ⇣ 1

V (x, d(x, y))�j(d(x, y))
.

̶ For example, when dw = 2 and �j(r) = r↵ _ r2 with ↵ 2 (0, 2), we can take

�c(r) := r21{06r61} +
r2

log(1 + r)
1{r>1}, �(r) = r↵ _ r2

log(1 + r)
.



Thank you!




