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Usually, SLE is defined via the ODE

dgt(z)

dt
=

2

gt(z)− ξ(t)
, g0(z) = z.

H replace−−−→ D = H \
⋃N
j=1Cj (parallel slit half-plane)

γ(0, t]
replace−−−→ Ft (unbounded H-hull)

𝛾 𝑡

𝜅𝐵𝑡

𝑔𝑡
ℍ

∞ ∞

For the conformal mapping gt : D \ Ft → Dt (t ≥ 0),

dgt(z)

dt
= −2π

∫
R

ΨDt(gt(z), ξ) νt(dξ), g0(z) = z.
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Plan of my talk

1 Motivations from probability theory

Multiple SLE and its “hydrodynamic limit”

DLA and related models

2 Motivations from complex analysis

Classical Loewner theory

3 Extension to multiply connected domains

Komatu–Loewner equation and Brownian motion with darning

My results and proof

4 Concluding remarks
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(Chordal) SLEκ:
dgt(z)

dt
=

2

gt(z)−
√
κBt

Multiple(-paths) SLEκ:
dgn,t(z)

dt
=

1

n

n∑
k=1

2

gn,t(z)− Vk(t)

dVk(t) =

√
κ

n
dBk(t) +

1

n

∑
l6=k

4

Vk(t)− Vl(t)
dt

gn,t(z) defines the conf. map. gn,t : H \
⋃n
k=1 γk(0, t]→ H.

[e.g. Bauer, Bernard & Kytölä (’05), Kozdron & Lawler (’07)]

𝛾 𝑡

𝜅𝐵𝑡

𝑔𝑡
ℍ

∞ ∞
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𝛾1 𝑡
𝛾2 𝑡 𝛾3 𝑡

𝛾4 𝑡

𝑉1 0

𝑛 = 4

𝑉2 0 𝑉3 0 𝑉4 0

𝑔𝑛,𝑡

𝑉1 𝑡 𝑉2 𝑡 𝑉3 𝑡 𝑉4 𝑡
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Hydrodynamic limit of multiple SLE

dVk(t) =

√
κ

n
dBk(t) +

1

n

∑
l6=k

4

Vk(t)− Vl(t)
dt

(Vk(t) ; k = 1, . . . , n, t ≥ 0 ) is a linear time-change of

Dyson’s Brownian motion.

µn,t :=
1

n

n∑
k=1

δVk(t) (empirical measure, configuration on R)

Hydrodynamic limit of Dyson (e.g. Rogers & Shi (1992))

Let initial configuration satisfy µn,0
weakly−−−→ µ0 with assumptions.

(µn,t ; t ≥ 0 )
law−→ (µt ; t ≥ 0 ) (deterministic)

as Prob(R)-valued stochastic processes.
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dgn,t(z)

dt
=

1

n

n∑
j=1

2

gn,t(z)− Vj(t)
=

∫
R

2

gn,t(z)− u
µn,t(du)

dgt(z)

dt
=

∫
R

2

gt(z)− u
µt(du)

𝑔𝑛,𝑡: ℍ ∖∪𝑗=1
𝑛 𝛾𝑗 0, 𝑡 → ℍ

𝛾1 𝑡
𝛾2 𝑡

𝛾3 𝑡

𝛾4 𝑡

𝑉1 0

hull  𝐹𝑡

𝑔𝑡: ℍ ∖ 𝐹𝑡 → ℍ

𝜇𝑡 𝑑𝑢

𝑛 → ∞

𝑛 = 4

𝑉2 0 𝑉3 0 𝑉4 0

𝑉1 𝑡 𝑉2 𝑡 𝑉3 𝑡 𝑉4 𝑡

(del Monaco & Schleissinger (2016), Hotta & Katori (2018))
7 / 24



Diffusion Limited Aggregation (DLA)

0

∞ℂ
𝐵𝑡
ℂ

0

Question

Is DLA conformally invariant?

Conformally invariant versions:

Hastings–Levitov clusters (e.g. Johansson Viklund, Sola &

Turner (2012))

Iteration of f : Dc → Dc \ P and rotations

Quantum Loewner evolution (Miller & Sheffield (2016))
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Radial case by Pommerenke (1975)
(ft)t≥0 is called a Loewner chain if

∀t, e−tft ∈ SD
0 ≤ s < t⇒ fs(D) ⊂ ft(D)

SD = { f : D→ C ;

f(0) = 0, f ′(0) = 1,

f is univalent }

𝔻
𝑓𝑡 𝔻

𝑓∙
0 𝑓𝑠 𝔻

∂ft(z)

∂t
= zf ′t(z)

∫
R

1 + ze−iξ

1− ze−iξ
νt(dξ), a.e. t ∈ [0,∞).

The evolution family φt,s := f−1
t ◦ fs ∈ Hol(D) of this chain

plays an important role in the proof.
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Chordal case (boundary fixed point)
Let SH be the set of all univalent f : H→ H s.t.

∀η > 0, lim
z→∞, =z>η

(f(z)− z) = 0;

∃cf ∈ [0,∞) s.t. ∀θ ∈ (0, π/2),

lim
z→∞, θ<arg z<π−θ

z(f(z)− z) = −cf .

Remark. cf is the “half-plane capacity” of the hull H \ f(H).

ℍ 𝑓𝑡
∞ ∞

𝑓𝑡 ℍ
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Pick representation
SH is the set of all univalent f : H→ H s.t.

∀η > 0, lim
z→∞, =z>η

(f(z)− z) = 0;

∃cf ∈ [0,∞) s.t. ∀θ ∈ (0, π/2),

lim
z→∞, θ<arg z<π−θ

z(f(z)− z) = −cf .

Key lemma

f ∈ SH if and only if it is univalent on H and

f(z) = z −
∫
R

1

z − ξ
µ(f ; dξ)

for a finite measure µ(f ; ·). In this case,

µ(f ; dξ) = π−1=f(ξ + i0+) dξ

µ(f ;R) = cf
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Chordal case by Goryainov & Ba (1992)
Assume that (ft)0≤t≤T ⊂ SH satisfies

µ(ft;R) = 2(T − t)
0 ≤ s < t ≤ T ⇒ fs(H) ⊂ ft(H)

ℍ 𝑓∙

∞ ∞

𝜙𝑡, 𝑠

𝑓𝑠 ℍ

𝑓𝑡 ℍ

Theorem

For each fixed s, the mapping φt,s := f−1
t ◦ fs satisfies

dφt,s(z)

dt
= −

∫
R

2

φt,s(z)− ξ
νt(dξ), a.e. t ∈ [s, T ).

13 / 24



Very rough sketch of the proof
Note that φt,s ∈ SH. For s ≤ u < v, we have

φv,s(z)− φu,s(z) = φv,u(φu,s(z))− φu,s(z)

= −
∫
R

1

φu,s(z)− ξ
µ(φv,u; dξ)

= −2(v − u)

∫
R

1

φu,s(z)− ξ
µ(φv,u; dξ)

2(v − u)
.

Let u, v → t. Then

µ(φv,u; dξ)

2(v − u)
=
µ(φv,u; dξ)

µ(φv,u;R)

vaguely−−−→ ∃νt(dξ).

φt,s := f−1
t ◦ fs

φv,s = φv,u ◦ φu,s, φv,u(z) = z −
∫
R

1

z − ξ
µ(φv,u; dξ)
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Uniformization theorem

Any finitely (multiply) connected domain D̃ is conformally

equivalent to a parallel slit half-plane D = H \
⋃N
j=1Cj .

≅

෩𝐷 𝐷

Question

Can Loewner theory and SLE be constructed on parallel slit

half-planes?
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Komatu–Loewner equation
Single-slit mapping case: Komatu (’50), Bauer & Friedrich

(’04, ’06, ’08), Lawler (’06), Drenning (’11), Chen, Fukushima

& Rohde (’16), Chen & Fukushima (’18)

dgt(z)

dt
= −2πΨDt(gt(z), ξ(t)), Dt = gt(D)

Multi-slits case: Böhm & Lauf (’14), Böhm (’15)

dgn,t(z)

dt
= −

2

n

n∑
k=1

πΨDt(gn,t(z), ξk(t))

𝜉 𝑡

𝐶𝑗,𝑡

𝜕ℍ

𝑔𝑡
𝐷 𝐷𝑡

𝛾 𝑡
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𝐶𝑗,𝑡

𝜕ℍ

𝑔𝑡
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𝛾1 𝑡

𝛾2 𝑡 𝛾3 𝑡
𝐶𝑗
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Brownian motion with darning (BMD)
D = H \

⋃N
j=1Cj

D∗ = D ∪ {c∗1, . . . , c∗N}, m = Lebesgue measure on D∗

Definition (e.g. Chen, Fukushima & Rohde (’16))

BMD is an m-symmetric diffusion on D∗ such that

its killed process in D is the absorbing BM in D;

it admits no killings on {c∗1, . . . , c∗N}.

∗

��������

�	
��

(Construction: Dirichlet form theory) 18 / 24
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dgt(z)

dt
= −2πΨDt(gt(z), ξ(t)), Dt = gt(D)

ΨDt(z, ξ) is defined by the following properties:

z 7→ ΨDt(z, ξ) is holomorphic;

limz→∞ΨDt(z, ξ) = 0;

and

=ΨDt(z, ξ) = K∗(z, ξ) := (BMD Poisson kernel)

= −
1

2

∂

∂~nξ
(BMD Green function).

Cf. simply connected case

ΨH(z, ξ) = −
1

π

1

z − ξ
, =ΨH(x+ iy, ξ) =

1

π

y

(x− ξ)2 + y2

19 / 24



Problems

Multi-slits case: Böhm & Lauf (’14), Böhm (’15)

dgn,t(z)

dt
= −

2π

n

n∑
k=1

ΨDt(gn,t(z), ξk(t)), a.e. t.

Böhm’s method is very complicated and not enough to construct

SLE-like objects.

There are no results known about the Komatu–Loewner

equation with measure-valued driving processes.

My aim

Generalize Goryainov & Ba’s method towards parallel slit half-planes.
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Main results

If f ∈ SD, then

f(z) = z + π

∫
R

ΨD(z, ξ)µ(f ; dξ)

for the finite measure µ(f ; ·) = π−1=f(ξ + i0+) dξ.

Suppose that φt,s : Ds ↪→ Dt satisfies the following:

φt,s ∈ SDs

0 ≤ s < t < u ≤ T ⇒ φu,s = φu,t ◦ φt,s
µ(φt,0;R) = 2t

For each fixed s,

dφt,s(z)

dt
= 2π

∫
R

ΨDt(φt,s(z), ξ) νt(ξ), a.e. t ∈ [s, T ).
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Comment on the proof

f ∈ SD if and only if it is univalent on D and

f(z) = z + π

∫
R

ΨD(z, ξ)µ(f ; dξ)

for a finite measure µ(f ; ·).

The case D = H follows from the Pick representation, but

there are no such formulas on parallel slit half-planes.

Because =(f(z)− z) is a BMD-harmonic function,

=(f(z)− z) = π

∫
R
K∗D(z, ξ)=(f(ξ + i0+)− i0) dξ

(Poisson integral formula).
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Ongoing/future works

A simple proof of the multi-slits Komatu–Loewner equation

On other canonical domains

Multiple SLE on multiply connected domains

[cf. Jahangoshahi & Lawler (2018, arXiv)]

Construction and convergence of critical models on multiply

connected domains

(Only a few results on LERW are known.)

Thank you for your attention!
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Appendix. Construction of BMD

Z: absorbing BM in H • K :=
⋃N
j=1Cj

σK := inf{ t > 0 ; Zt ∈ K }
u(j)(z) := Ez [e−σK ; ZσK

∈ Cj]

We define

E∗(u, v) :=

∫
D

∇u · ∇v dx, ‖u‖21 := E∗(u, u) + ‖u‖2L2(D),

F∗ := C∞c (D) ∪ {u(j)|D ; 1 ≤ j ≤ N }
‖·‖1

= {u|D ; u ∈W 1,2
0 (H), u is constant E∗-q.e. on each Cj }.

Then (E∗,F∗) is a strongly local regular Dirichlet form on

L2(D∗;m).
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