Asymptotic expansion of the density for hypoelliptic rough differential equation

This talk is based on a joint work with Yuzuru Inahama

Nobuaki Naganuma (Osaka University) September 2nd, 2019

Setting and known result

Let w be a d-dim. fractional Bm with Hurst parameter $1/4 < H \le 1/2$.

Here we study an RDE driven by w:

$$dy_t = \sum_{i=1}^d V_i(y_t) dw_t^i + V_0(y_t) dt, \quad y_0 = a \in \mathbf{R}^n.$$

♣ It is known that, under the Hörmander condition (A1), y_t admits a smooth density $p_t(a, a')$ for every t > 0, i.e.,

•
$$a' \mapsto p_t(a, a')$$
 is smooth,

•
$$P(y_t \in A) = \int_A p_t(a, a') \, da'.$$

Main result (Inahama and N.)

Let $a \neq a'$. Assume (A1)–(A4). Then, we have the following asymptotic expansion as $t \searrow 0$:

$$p_t(a,a') \sim \exp\left(-\frac{\|\bar{\gamma}\|_{\mathfrak{H}}^2}{2t^{2H}}\right) \frac{1}{t^{nH}} \left\{\alpha_0 + \alpha_{\lambda_1} t^{\lambda_1 H} + \cdots \right\}.$$

Here,

• $\bar{\gamma}:$ "unique minimizer" in the CM space $\mathfrak{H},$

•
$$0 = \lambda_0 < \lambda_1 < \cdots$$
:
indexes belonging to $\Lambda_4 \subset (\mathbf{Z} + H^{-1}\mathbf{Z}) \cap [0, \infty)$,

- α_0 is a certain positive constant,
- α_{λ_j} (j = 1, 2, ...) are certain real constants.

(A1) Hörmander cond. at the initial point

🐥 Set

$$\mathcal{V}_m = egin{cases} \{V_i \mid 1 \leq i \leq d\}, & m = 0, \ \{[V_i, U] \mid U \in \mathcal{V}_{m-1}, 0 \leq i \leq d\}, & m \geq 1, \ \mathcal{V} = igcup_{m=0}^{\infty} \mathcal{V}_m, \ \mathcal{V}(x) = \{W(x) \in \mathbf{R}^n \mid W \in \mathcal{V}\}. \end{cases}$$

(A1) $\mathcal{V}(a)$ linearly spans \mathbb{R}^n .

(A2) Unique minimizer

A Recall that $\mathfrak{H} \hookrightarrow C^{q\text{-var}}$ for some $q \in [1, 2)$. For $\gamma \in \mathfrak{H}$, let $\phi_t^0 = \phi_t^0(\gamma)$ be a sol. to Young ODE $d\phi_t^0 = \sum^d V_i(\phi_t^0) \, d\gamma_t^i, \qquad \phi_0^0 = a \in \mathbf{R}^n.$ • Set $K_a^{a'} = \{ \gamma \in \mathfrak{H} \mid \phi_1^0(\gamma) = a' \}$ for $a' \neq a$. Assume

(A2) $\exists ! \, \bar{\gamma} \in K_a^{a'}$ which minimizes \mathfrak{H} -norm $\| \bullet \|_{\mathfrak{H}}$, $\{\bar{\gamma}\} = \underset{\gamma \in K_a^{a'}}{\arg \min} \|\gamma\|_{\mathfrak{H}}.$

(A3) Non-degeneracy for Malliavin mat.

♣ The map $\mathfrak{H} \ni \gamma \mapsto \phi_1^0(\gamma) \in \mathbf{R}^n$ is Fréchet diff. $D\phi_1^0(\gamma)$ stands for the derivative, i.e.,

 $D\phi_1^0(\gamma) = (D[\phi_1^0(\gamma)]^1, \dots, D[\phi_1^0(\gamma)]^d) \in (\mathfrak{H}^*)^d.$

♣ Define the deterministic Malliavin covariance matrix $Q(\gamma) = (Q(\gamma)_{kl})_{1 \le k, l \le n}$ by

$$Q(\gamma)_{kl} = \langle D[\phi_1^0(\gamma)]^k, D[\phi_1^0(\gamma)]'
angle_{\mathfrak{H}^*}.$$

Assume
(A3)
$$\exists c > 0 \text{ s.t. } Q(\bar{\gamma}) \geq cl.$$

(A4) Strictly positive

The Hessian of the functional

$$K_a^{a'} \ni \gamma \mapsto \frac{\|\gamma\|_{\mathfrak{H}}^2}{2}$$

at $\bar{\gamma} \in K_a^{a'}$ is strictly positive in the form sense, i.e.,

(A4) If
$$(-\epsilon_0, \epsilon_0) \ni u \mapsto f(u) \in K_a^{a'}$$
 is

• a smooth curve

•
$$f(0) = \overline{\gamma}$$
 and $f'(0) \neq 0$,

then

$$\frac{d^2}{du^2} \frac{\|f(u)\|_{\mathfrak{H}}^2}{2}\Big|_{u=0} > 0.$$

Index set Λ_1

& Write
$$N = \{0, 1, \dots, \}$$
, $N_+ = \{1, \dots, \}$.
Set

• $\Lambda_1 = \mathbf{N} + H^{-1}\mathbf{N} = \left\{ n_1 + \frac{n_2}{H} \mid n_1, n_2 \in \mathbf{N} \right\}.$ • $0 = \kappa_0 < \kappa_1 < \kappa_2 < \cdots$ are all the elements of Λ_1 . \clubsuit For 1/3 < H < 1/2, $\kappa_0, \kappa_1, \ldots, \kappa_6, \ldots$ are equal to $0, 1, 2, \frac{1}{H}, 3, 1+\frac{1}{H}, 4, \ldots$ \clubsuit For 1/4 < H < 1/3, $\kappa_0, \kappa_1, \ldots, \kappa_6, \ldots$ are equal to 0, 1, 2, 3, $\frac{1}{H}$, 4, $1 + \frac{1}{H}$, ... 7 / 29

Index sets Λ_2 , Λ_2' , Λ_3 , Λ_3' and Λ_4

Set Set

•
$$\Lambda_2 = \{\kappa_i - 1 \mid i \ge 1\}.$$

• $\Lambda'_2 = \{\kappa_i - 2 \mid i \ge 2\}.$

Set Set

• $\Lambda_3 = \{a_1 + \dots + a_m \mid a_i \in \Lambda_2\}.$ • $\Lambda'_3 = \{a_1 + \dots + a_m \mid a_i \in \Lambda'_2\}.$

🖡 Set

- $\Lambda_4 = \Lambda_3 + \Lambda'_3 = \{\nu + \rho \mid \nu \in \Lambda_3, \rho \in \Lambda'_3\}.$
- $0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots$ are all the elements of Λ_4 .

Remark and example

Main result (review)

Let $a \neq a'$. Assume (A1)–(A4). Then, we have the following asymptotic expansion as $t \searrow 0$:

$$p_t(a,a') \sim \exp\left(-\frac{\|\bar{\gamma}\|_{\mathfrak{H}}^2}{2t^{2H}}\right) \frac{1}{t^{nH}} \left\{\alpha_0 + \alpha_{\lambda_1} t^{\lambda_1 H} + \cdots \right\}.$$

Here,

• $\bar{\gamma}:$ "unique minimizer" in the CM space $\mathfrak{H},$

•
$$0 = \lambda_0 < \lambda_1 < \cdots$$
:
indexes belonging to $\Lambda_4 \subset (\mathbf{Z} + H^{-1}\mathbf{Z}) \cap [0, \infty)$

- α_0 is a certain positive constant,
- α_{λ_j} (j = 1, 2, ...) are certain real constants.

Assume that $V_0 \equiv 0$ or H = 1/2, 1/3.

. Then we can replace Λ_4 by 2**N** in our main thm, i.e.,

$$p_t(a, a') \sim \exp\left(-\frac{\|\bar{\gamma}\|_{\mathfrak{H}}^2}{2t^{2H}}\right) \frac{1}{t^{nH}} \times \left\{\alpha_0 + \alpha_2 t^{2H} + \alpha_4 t^{4H} + \cdots\right\}$$

as $t \searrow 0$.

♣ When H = 1/2, our main theorem holds. Thus, we reprove the result by Ben Arous (1988) via rough path theory and Malliavin calc.

Our main thm improves a result by Inahama (2016).
Because

- 1. we are working under the Hörmander condition instead of the ellipticity assumption,
- 2. the case $1/4 < H \le 1/3$ is also treated. (We must use the third level rough paths.)

Examples

Elliptic case

- $\{V_1(a), \ldots, V_d(a)\}$ linearly spans \mathbb{R}^n ,
- a' is sufficiently close to a,

♣ The "fractional diff. proc." on the Heisenberg group

•
$$d = 2, n = 3.$$

• $V_0 = 0, V_1 = \frac{\partial}{\partial x^1} + 2x^2 \frac{\partial}{\partial x^3}, V_2 = \frac{\partial}{\partial x^2} - 2x^1 \frac{\partial}{\partial x^3}.$

Proof of main result

Malliavin calculus

🖡 Let

- $1 < r < \infty$, $s \in \mathbf{R}$, K: real sep. Hilbert space.
- $\mathbf{D}_{r,s}(K)$: the K-valued Gaussian-Sobolev space.
- The spaces of test functions are defined by
 - $\mathbf{D}_{\infty}(K) = \bigcap_{1 < r < \infty} \bigcap_{s=1}^{\infty} \mathbf{D}_{r,s}(K),$
 - $\ddot{\mathbf{D}}_{\infty}(K) = \bigcup_{1 < r < \infty} \bigcap_{s=1}^{\infty} \mathbf{D}_{r,s}(K),$

The spaces of Watanabe distributions are defined by

- $\mathbf{D}_{-\infty}(K) = \bigcup_{1 < r < \infty} \bigcup_{s=1}^{\infty} \mathbf{D}_{r,-s}(K),$
- $\tilde{\mathbf{D}}_{-\infty}(K) = \bigcap_{1 < r < \infty} \bigcup_{s=1}^{\infty} \mathbf{D}_{n,-s}(K).$

Malliavin calc. for sol. to RDE

- Inahama ('14), Cass-Hairer-Litterer-Tindel ('15):
 - $y_t \in \mathbf{D}_{\infty}(\mathbf{R}^n)$,
 - Under the Hörmander cond. (A1), for every t > 0, y_t is non-degenerate in the sense of Malliavin, i.e.,

det(Malliavin cov. matrix of y_t)⁻¹ $\in L^{\infty-}$.

• Hence, y_t has a smooth density $p_t(a, a')$ for t > 0.

& Due to Watanabe's distributional Malliavin cal.,

$$p_t(a,a') = \boldsymbol{E}[\delta_{a'}(y_t)] = {}_{\tilde{\mathbf{D}}_{\infty}}\langle 1, \delta_{a'}(y_t) \rangle_{\tilde{\mathbf{D}}_{-\infty}}.$$

Scaled (and shifted) RDE

& Let
$$\epsilon \in (0,1]$$
 and $\bar{\gamma} \in \mathfrak{H}$ as in (A2).

♣ The scaled RDE

$$dy_t^{\epsilon} = \sum_{i=1}^d V_i(y_t^{\epsilon}) \epsilon dw_t^i + V_0(y_t^{\epsilon}) \epsilon^{1/H} dt.$$

The scaled and shifted RDE

$$d\tilde{y}_t^{\epsilon} = \sum_{i=1}^d V_i(\tilde{y}_t^{\epsilon}) d(\epsilon w + \bar{\gamma})_t^i + V_0(\tilde{y}_t^{\epsilon}) \epsilon^{1/H} dt.$$

Expresion of $p_t(a, a')$

• $\delta_{a'}(y_1^{\epsilon})$ and $\delta_{a'}(\tilde{y}_1^{\epsilon})$ are well-defined for the same reason as the case without ϵ .

 $\, \$ \, y_{\epsilon^{1/H}} = y_1^{\epsilon} \text{ in law follows from self-similarity of fBm.} \\ \, \$ \, \text{Note} \, \, \delta_{a'}(\tilde{y}_1^{\epsilon}) = \delta_0\left(\epsilon \cdot \frac{\tilde{y}_1^{\epsilon} - a'}{\epsilon}\right) = \frac{1}{\epsilon^n} \delta_0\left(\frac{\tilde{y}_1^{\epsilon} - a'}{\epsilon}\right).$

From the above and the CM formula,

$$p_{\epsilon^{1/H}}(a, a') = \boldsymbol{E}[\delta_{a'}(y_{\epsilon^{1/H}})] = \boldsymbol{E}[\delta_{a'}(y_{1}^{\epsilon})]$$

$$= \exp\left(-\frac{\|\bar{\gamma}\|_{\mathfrak{H}}^{2}}{2\epsilon^{2}}\right) \boldsymbol{E}\left[\exp\left(-\frac{1}{\epsilon}\langle\bar{\gamma}, w\rangle\right)\delta_{a'}(\tilde{y}_{1}^{\epsilon})\right]$$

$$= \exp\left(-\frac{\|\bar{\gamma}\|_{\mathfrak{H}}^{2}}{2\epsilon^{2}}\right) \frac{1}{\epsilon^{n}} \boldsymbol{E}\left[\exp\left(-\frac{1}{\epsilon}\langle\bar{\gamma}, w\rangle\right)\delta_{0}\left(\frac{\tilde{y}_{1}^{\epsilon} - a'}{\epsilon}\right)\right]_{16/29}$$

Expansion of \tilde{y}_1^{ϵ}

♣ Recall 0 = $\kappa_0 < \kappa_1 < \cdots$ belong to $\Lambda_1 = \mathbf{N} + H^{-1}\mathbf{N}$. ♣ Let $\phi^0 \equiv \phi^0(\bar{\gamma})$ and $\phi^{\kappa_i} \equiv \phi^{\kappa_i}(w, \bar{\gamma})$ for $i \ge 1$ solutions to some differential equations (explained later).

Proposition

It holds that

$$\tilde{y}_1^\epsilon \sim \phi_1^0 + \epsilon^{\kappa_1} \phi_1^{\kappa_1} + \epsilon^{\kappa_2} \phi_1^{\kappa_2} + \cdots$$
 in \mathbf{D}_∞ as $\epsilon \searrow 0$.

Recall the scaled and shifted RDE

$$d\tilde{y}^{\epsilon} = \sigma(\tilde{y}^{\epsilon}) d(\epsilon w + \bar{\gamma}) + b(\tilde{y}^{\epsilon}) \epsilon^{1/H} dt.$$

♣ Let ϕ^0 be a sol to the above eq. with $\epsilon = 0$, i.e.,

$$d\phi^0 = \sigma(\phi^0) \, d\bar{\gamma}.$$

$$\clubsuit \text{ Set } \bigtriangleup \phi = \tilde{y}^{\epsilon} - \phi^{0}.$$

Substituting it into the the scaled and shifted RDE,

$$d(\phi^{0} + \bigtriangleup \phi)$$

$$= \sigma(\phi^{0} + \bigtriangleup \phi) d(\epsilon w + \bar{\gamma}) + b(\phi^{0} + \bigtriangleup \phi) \epsilon^{1/H} dt$$

$$= \sum_{k=0}^{\infty} \frac{\nabla^{k} \sigma(\phi^{0})}{k!} \langle \underbrace{\bigtriangleup \phi, \ldots, \bigtriangleup \phi}_{k}; \epsilon dw + d\bar{\gamma} \rangle$$

$$+ \sum_{k=0}^{\infty} \frac{\nabla^{k} b(\phi^{0})}{k!} \langle \underbrace{\bigtriangleup \phi, \ldots, \bigtriangleup \phi}_{k} \rangle \epsilon^{1/H} dt$$

$$= \int_{k=0}^{\infty} \frac{\nabla^{k} b(\phi^{0})}{k!} \langle \underbrace{\bigtriangleup \phi, \ldots, \bigtriangleup \phi}_{k} \rangle \epsilon^{1/H} dt$$

$$\langle \underbrace{\bigtriangleup \phi, \ldots, \bigtriangleup \phi}_{k} \rangle = \sum_{i_1, \ldots, i_k=0}^{\infty} \epsilon^{\kappa_{i_1} + \cdots + \kappa_{i_k}} \langle \phi^{\kappa_{i_1}}, \ldots, \phi^{\kappa_{i_k}} \rangle$$

 \clubsuit Picking up the terms of order $\epsilon^{\kappa_i},$ we see ϕ^{κ_i} satisfy

$$egin{aligned} &d\phi^0=\sigma(\phi^0)\,dar{\gamma},\qquad \phi^0_0=a,\ &d\phi^1-
abla\sigma(\phi^0)\langle\phi^1,dar{\gamma}
angle=\sigma(\phi^0)\,dw,\qquad \phi^1_0=0,\ &d\phi^{\kappa_i}-
abla\sigma(\phi^0)\langle\phi^{\kappa_i},dar{\gamma}
angle=\cdots,\qquad \phi^{\kappa_i}_0=0. \end{aligned}$$

Expansion of $\delta_0\left(\frac{\tilde{y}_1^{\epsilon}-a'}{\epsilon}\right)$

$$\delta_0\left(\frac{\tilde{y}_1^{\epsilon}-a'}{\epsilon}\right)\sim \delta_0(\phi_1^1)+\epsilon^{\nu_1}\Phi_{\nu_1}+\cdots \quad \text{in } \tilde{\mathbf{D}}_{-\infty} \text{ as } \epsilon\searrow 0.$$

follows from

^{ỹ₁^ϵ - a'}/_ϵ ~ ϵ^{κ₁-1}φ^{κ₁}₁ + ϵ^{κ₂-1}φ^{κ₂}₁ + ··· in D_∞ as ϵ ↘ 0.
 We have already shown this expansion.
 The index set is Λ₃ = {κ₁ - 1, κ₂ - 1, ... }.
 uniform non-degeneracy of ^{ỹ₁^ϵ - a'}/_ϵ

Estimate of det of Mallavin martrix of \tilde{y}_1^{ϵ}

Defined the Malliavin covariance matrix $Q^{\epsilon} = (Q_{kl}^{\epsilon})_{1 \le k,l \le n}$ of y_1^{ϵ} and $\tilde{Q}^{\epsilon} = (\tilde{Q}_{kl}^{\epsilon})_{1 \le k,l \le n}$ of \tilde{y}_1^{ϵ} by $Q_{kl}^{\epsilon} = \langle Dy_1^{\epsilon,k}, Dy_1^{\epsilon,l} \rangle_{\mathfrak{H}}, \qquad \tilde{Q}_{kl}^{\epsilon} = \langle D\tilde{y}_1^{\epsilon,k}, D\tilde{y}_1^{\epsilon,l} \rangle_{\mathfrak{H}}.$

Remark

$$\epsilon^{-2}\tilde{Q}_{kl}^{\epsilon} = \left\langle D\left(\frac{\tilde{y}_1^{\epsilon,k} - (a')^k}{\epsilon}\right), D\left(\frac{\tilde{y}_1^{\epsilon,l} - (a')^l}{\epsilon}\right) \right\rangle_{\mathfrak{H}}.$$

By borrowing idea in [CHLT15], we can obtain

Proposition

Suppose that (A1) holds. $\exists \mu > 0$. $\exists c = c(r)$ for every $1 < r < \infty$. Then, for every $0 < \epsilon < 1$,

$$oldsymbol{E}[|\det Q^{\epsilon}|^{-r}]^{1/r} < c(r)\epsilon^{-\mu}.$$

Proposition

Suppose that (A1), (A2) and (A3) holds. Then, for every $1 < r < \infty$, we have

$$\sup_{0<\epsilon<1} \boldsymbol{E}[|\det \epsilon^{-2} \tilde{Q}^{\epsilon}|^{-r}]^{1/r} < \infty.$$

Proof. Let

- $\lambda_t = t$,
- $O \subset G\Omega_p(\mathbf{R}^d) \times \mathbf{R} \langle \lambda \rangle$: a small nbhd of (0,0),
- $U_{\epsilon} = \{ w \in \Omega \mid (\epsilon w, \epsilon^{1/H} \lambda) \in O \}.$
- $\clubsuit (A2) \text{ and } (A3) \text{ imply } \boldsymbol{E}[\{\det \tilde{Q}^{\epsilon}\}^{-r}; U_{\epsilon}] \leq (c\epsilon^2)^{-nr}.$
- The CM formula, the Schilder-type LD, the previous proposition imply

$$\begin{split} \boldsymbol{E}[\{\det \tilde{Q}^{\epsilon}\}^{-r}; U^{\complement}_{\epsilon}] &\leq \boldsymbol{E}[\{\det \tilde{Q}^{\epsilon}\}^{-2r}]^{1/2} \boldsymbol{P}(U^{\complement}_{\epsilon}) \\ &\leq \boldsymbol{E}\left[\{\det Q^{\epsilon}\}^{-2r} \exp\left(\left\langle w, \frac{\bar{\gamma}}{\epsilon}\right\rangle - \frac{\|\bar{\gamma}\|^{2}_{\mathfrak{H}}}{2\epsilon^{2}}\right)\right]^{\frac{1}{2}} \exp\left(-\frac{c}{2\epsilon^{2}}\right) \\ &< c\epsilon^{-2nr}. \end{split}$$

Proposition

As $\epsilon\searrow 0$ in $ilde{\mathbf{D}}_{-\infty}(\mathbf{R}^n)$ -topology, we have

$$\delta_0\left(\frac{\tilde{y}_1^{\epsilon}-a'}{\epsilon}\right)\sim\Phi_{\nu_0}+\epsilon^{\nu_1}\Phi_{\nu_1}+\epsilon^{\nu_2}\Phi_{\nu_2}+\cdots$$

Here,

More precisely, $\forall i \in \mathbf{N}, \exists k \in \mathbf{N}_+ \text{ s.t.}$

•
$$\Phi_{\nu_0}, \ldots, \Phi_{\nu_i} \in \bigcap_{1
• $\|\delta_0\left(\frac{\tilde{y}_1^{\epsilon} - a'}{\epsilon}\right) - \left(\Phi_{\nu_0} + \cdots + \epsilon^{\nu_i} \Phi_{\nu_i}\right)\|_{\mathbf{D}_{p,-k}} = O(\epsilon^{\epsilon^{\nu_i+1}})$$$

Expansion of exp $\left(-\frac{1}{\epsilon}\langle \bar{\gamma}, w \rangle\right)$

Expansion of
$$\exp\left(-\frac{1}{\epsilon}\langle \bar{\gamma}, w
angle
ight)$$

Set
$$r^{2,\epsilon} = \tilde{y}_1^{\epsilon} - (\phi_1^0 + \epsilon \phi_1^1)$$
. Then
$$\frac{r^{2,\epsilon}}{\epsilon^2} \sim \epsilon^{-2} \left(\epsilon^{\kappa_2} \phi_1^{\kappa_2} + \epsilon^{\kappa_3} \phi_1^{\kappa_3} + \cdots \right).$$

Note the index set for it is $\Lambda_3 = \{\kappa_2 - 2, \kappa_3 - 2, \dots\}.$

$$\exists \bar{\nu} \equiv \bar{\nu}(\bar{\gamma}) \in \mathbf{R}^n \text{ s.t. } \langle \bar{\gamma}, w \rangle = \langle \bar{\nu}, \phi_1^1(w, \bar{\gamma}) \rangle \text{ for all } w.$$

♣ Under
$$a' = \tilde{y}_1^{\epsilon} \iff a' = a' + \epsilon \phi_1^1 + r^{2,\epsilon}$$
, we have

$$-\frac{1}{\epsilon}\langle \bar{\gamma}, w \rangle = -\frac{1}{\epsilon}\langle \bar{\nu}, \phi_1^1 \rangle = \left\langle \bar{\nu}, \frac{r^{2,\epsilon}}{\epsilon^2} \right\rangle.$$

Proposition

As
$$\epsilon \searrow 0$$
 in $\tilde{\mathbf{D}}_{\infty}(\mathbf{R}^{n})$ -topology, we have
 $\exp\left(-\frac{1}{\epsilon}\langle \bar{\gamma}, w \rangle\right)$ "~" $e^{\langle \bar{\nu}, \phi_{1}^{2} \rangle}(1 + \epsilon^{\rho_{1}} \Xi_{\rho_{1}} + \epsilon^{\rho_{2}} \Xi_{\rho_{2}} + \cdots).$

Here

0 = ρ₀ < ρ₁ < ρ₂ < · · · are elements in Λ'₃,
 Ξ_{ρ_i} ∈ **D**_∞.

♣ To prove this proposition, we use (A4) to ensure integrability of $e^{\langle \bar{\nu}, r^{2,\epsilon} \rangle / \epsilon^2}$ "=" $e^{(\text{quadratic Wiener functoinal})}$.

Conclusion

$$\begin{aligned} \epsilon^{n} \exp\left(\frac{\|\bar{\gamma}\|_{\mathfrak{H}}^{2}}{2\epsilon^{2}}\right) p_{\epsilon^{1/H}}(a, a') \\ &= \mathbf{E} \Big[\exp\left(-\frac{1}{\epsilon} \langle \bar{\gamma}, w \rangle \right) \delta_{0} \left(\frac{\tilde{y}_{1}^{\epsilon} - a'}{\epsilon}\right) \Big] \\ &= \mathbf{E} \Big[e^{\langle \bar{\nu}, \phi_{1}^{2} \rangle} (1 + \epsilon^{\rho_{1}} \Xi_{\rho_{1}} + \epsilon^{\rho_{2}} \Xi_{\rho_{2}} + \cdots) \\ & \times \left(\delta_{0}(\phi_{1}^{1}) + \epsilon^{\nu_{1}} \Phi_{\nu_{1}} + \epsilon^{\nu_{2}} \Phi_{\nu_{2}} + \cdots \right) \Big] \\ &= \alpha_{0} + \alpha_{1} \epsilon^{\lambda_{1}} + \alpha_{2} \epsilon^{\lambda_{2}} + \cdots . \end{aligned}$$

Here, $0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots$ are elements in Λ_4 .

♣ By setting $\epsilon = t^H$, we see the assertion.

Thank you for your attention.