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Summary

In this talk, we discuss the CLT for the partition function in
directed polymers.

When the temperature is sufficiently high, the CLT was
proved in [Comets-Liu 2018 JMAA].

We proved the CLT in the whole L2-region.

Conjecture

Central Limit Theorem ⇔ L2-region
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Setting

(ω(i , x))i∈N,x∈Zd : I.I.D. random variables. (random weights)

Let Πn = {(xi )ni=1 ⊂ Zd | x0 = 0, |xi − xi−1|1 = 1 ∀i}.
Given a path xn ∈ Πn,

H(xn) := −
n∑

i=1

ω(i , xi ). (Hamiltonian)

For β ≥ 0, we assume:

eλ(β) := Eeβω(0,0) <∞.

For β ≥ 0 (inverse temperature),

Wn := (2d)−n
∑

xn∈Πd

e−βH(xn)−nλ(β), (partition function).
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Setting

Given a path xn ∈ Πn,

H(xn) := −
n∑

i=1

ω(i , xi ). (Hamiltonian)

For β ≥ 0, we assume:

eλ(β) := Eeβω(0,0) <∞.

For β ≥ 0 (inverse temperature),

Wn := (2d)−n
∑

xn∈Πd

e−βH(xn)−nλ(β), (partition function).

Given xn ∈ Πn,

Gβn (xn) =
1

Wn
(2d)−ne−βH(xn)−nλ(β), (Gibbs measure).
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L2-region

Notation

Let P and E be the probability measure and its expectation
with respect to (ω(i , x)).

Let Px and Ex be the probability measure and its expectation
with respect to the SRW (Sn)n∈N starting at x .

Let πd := P0(∃n ∈ N>0 such that Sn = 0).

Proposition 1 (d ≥ 3)

There exists β2(d) > 0 such that:

β < β2(d)⇔ λ(2β)− 2λ(β) < log (π−1
d )

Definition 1

L2-region = {β ≥ 0| β < β2(d)}.
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The convergence of the partition function and positivity

Proposition 2 (Bolthausen ’89)

For any β ≥ 0, the following limit exists almost surely:

lim
n→∞

Wn (=: W∞).

If β < β2(d), then

P(W∞ > 0) = 1.

We will prove it later.
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Main results

Theorem 3 (Comets-Liu. ’18, Cosco-N. 19+)

Suppose d ≥ 3 and β < β2(d). Then there exists σ(β) > 0 such
that,

n
d−2
4
Wn −W∞

Wn

distr⇒ N (0, σ(β)2).

Remark
lim

β→β2(d)
σ(β) =∞.
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Main resuls

Theorem 4 (Comets-Liu. ’18, Cosco-N. 19+)

Suppose d ≥ 3 and β < β2(d). Then there exists σ(β) > 0 suchh
that,

n
d−2
4
Wn −W∞

Wn

distr⇒ N (0, σ(β)2).

Corollary 1 (Cosco-N. 19+)

Suppose d ≥ 3 and β < β2(d). Then, for the same σ(β) > 0,

n
d−2
4 (logWn − logW∞)

distr⇒ N (0, σ(β)2).
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Wn is a martingale

Let Fk = σ(ω(l , x)| x ∈ Zd , l ≤ k).

Proposition 5

For any l < k, E[Wk ] = 1 and

Wl = E[Wk | Fl ].

In particuar, by the martingale convergence theorem, the following
limit exists,

lim
k→∞

Wk = W∞ a.s.
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Properties of L2-region

In the L2 region, we can compute

lim
n→∞

EW 2
n =

1− πd
1− πdeλ(2β)−2λ(β)

<∞.

In particular, by the Martingale convergence theorem,

EW∞ = lim
n→∞

EWn = 1.

Proposition 6

If β < β2(d), then
P(W∞ > 0) = 1.

Proof.

By Kolgomorov’s 0-1 Law, it suffices to show P(W∞ > 0) > 0,
which follows from EW∞ = 1.

Shuta Nakajima (Nagoya University)
Gaussian fluctuations for the partition functions of directed polymers.



Setting Main results Proof

High temerature region and L2-region

Definition 2

P(W∞ > 0) = 1 ⇔ high temperature region.

Properties of high temperature region

Diffusivity (Imbrie-Spencer, Bolthausen, Comets-Yoshida)

De-localization (Comets-Shiga-Yoshida)

By the previous result,

L2−region ⊂ high temperature region.
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Martingale CLT

Dk+1 := Wk+1 −Wk .

Fk := σ(ω(m, x)| x ∈ Zd , m ≤ k).

Ek [·] := E[·|Fk ].

Proposition 7

We assume that there exists σ(β) > 0 such that

1 n
d−2
2

∑
k≥n Ek [D

2
k+1]→ σ(β)2W 2

∞ in probability.

2 ∀ϵ > 0, n
d
2E[D2

n+11(n
d−2
4 |Dn+1| > ϵ)]→ 0.

Then,

n(d−2)/4Wn −W∞
Wn

distr⇒ N (0, σ(β)2).
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We only give the proof of 1⃝:

n
d−2
2

∑
k≥n

Ek [D
2
k+1]→ σ(β)2W 2

∞ in probability.

Notations

κ(β) = eλ2(β) − 1, λ2(β) = λ(2β)− 2λ(β).

ek = eβ
∑k

i=1 ω(i ,Si )−kλ(β).
←−
W y

k,l = Py

[
exp

(
β
∑l

i=1 ω(k − i ,Si )− lλ(β)
)]

.

Note that

Ek [D
2
k+1] = κ2(β)

∑
x∈Zd

(E[ek1{Sk+1=x}])
2.
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Let lk = [k1/3]. Then,∑
k≥n

Ek [D
2
k+1] = κ2(β)

∑
k≥n

∑
x∈Zd

(E[ek1{Sk+1=x}])
2

≈ κ2(β)
∑
k≥n

∑
x∈Zd

W 2
lk
(
←−
W x

lk ,k+1)
2P(Sk+1 = x)2.

Proposition 8 (Local Limit Theorem (Sinai, Vargas))

In the L2-region, for any α > 0,

lim
k→∞

max
|x |≤α

√
k
E
[(

E[ek | Sk+1 = x ]−Wlk

←−
W x

lk ,k+1

)2
]
= 0.
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κ2(β)W
2
lk

∑
k≥n

∑
x∈Zd

(
←−
W x

lk ,k+1)
2P(Sk+1 = x)2

≈ κ2(β)W
2
lk

∑
k≥n

∑
x∈Zd

E[(
←−
W x

lk ,k+1)
2]P(Sk+1 = x)2 (homogenization)

≈ κ2(β)W
2
∞
∑
k≥n

∑
x∈Zd

E[W 2
∞]P(Sk+1 = x)2

≈ n−(d+1)/2σ(β)2W 2
∞,

with some σ(β) > 0.
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CLT for the free energy

Using the CLT for the partition function,

n(d−2)/4(logW∞ − logWn) = n(d−2)/4 logW∞/Wn

= n(d−2)/4 log

(
1 +

W∞ −Wn

Wn

)
≈ n(d−2)/4W∞ −Wn

Wn

distr⇒ N (0, σ(β)2),

where we have used the Taylor expansion:

log (1 + x) ≈ x if |x | ≪ 1.
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