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Introduction

> IN : a finitely generated group.
_ +1 41 +14 . . .
> 8 ={7 72 »---»7YK } : asymmetric generating set of IV.

ik =1,2,..., K, e, = £1
> B(n) := SV L e ik n € N.
(n) {%1 in k=1,2,...,n ’

> n +— #B(n) : the growth function of N (with S).

Definition.

N is said to be of polynomial volume growth if
#B(n) < Cn4, n €N

holds for some constant C > 0 and some integer A € N.
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Introduction

> NN : finitely generated, of polynomial volume growth
> Xo = (Vo, Ep) : a finite graph

> X = (V, E) : a covering graph of Xy whose covering
transformation group is N (— our model)

Theorem. [Gromov ('81)]

If N is a group of polynomial volume growth, then

3T C N : nilpotent normal subgroup s.t. [N : I'] < 4o0.

#® By employing Gromov's theorem, we may regard X as a
covering graph of a finite graph Xy = I'\ X whose covering
transformation group is T'.

In the following, X : a nilpotent covering graph with T'.
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Introduction

> Consider

N =H3Zz) =

—
o
o =8
=N
8
s
N
m
N
—

1 +£1 0 1 0 O 1 0 +1
withSz{Ol0,0l:I:l,OlO}.
0O 0 1 0 0 1 00 1
The group N is called the 3D discrete Heisenberg group.
— the simplest example of nilpotent groups!

It is known that

#B(n) < Cn*, néeN.
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Interest Long time behaviors of RWs on X.

& Since any spatial scalings cannot be defined on X, we need to
realize X in an appropriate continuous model periodically.

(1) T : abelian = & : X — I' ® R(X R%).
(2) T : nilpotent — & : X — .

Theorem. [Malcév ('51)]

If T : finitely generated, nilpotent, then

3G : nilpotent Lie group s.t. I' & cocpt lattice in G.

Remark T = H3(Z) = G = H3(R) (3D Heisenberg group).
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# Large deviation principles (LDPs) on X have been discussed by
a few authors in a geometric point of view.

> [Baldi & Caramellino ('99)] : LDP on nilpotent Lie groups.

> [Kotani & Sunada ('06)] LDP in the case of crystal lattices.

> [Tanaka ('11)] LDP in the case of nilpotent covering graphs.

]P’w<7'1/n( P(wyp)-p™" ) € A) . _exp ( — ngggIL(g)).

—> 00

centered RW on G
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& Moderate deviation principles (MDPs)?
a2
Po(T1/e, (B(wa) - p7") € A) v exp (=" inf In(g)),

where {a,,}>° ; C (0, c0) satisfies

a
lim — = 400 and lim — = 0.
n—o00 \/_ n—oo n

& MDPs deal with what occurs at any intermediate scalings
between n (LLN-type) and /n (CLT-type).

(Example.) a scaling for laws of the iterated logarithm (LILs):

vVn << b, := /nloglogn << n.

— LILs on X (by applying MDPs with {b,}5° ,)?

Ryuya NAMBA (Ritsumeikan Univ.) LIL on a covering graph Sept. 5, 2019 9/ 20



> p: E — (0,1) : T-invariant transition probability, i.e.,
p(ve) =p(e), veTl,eckE.
This induces an RW on X : (Q4(X), Py, {wn}22 ).

> m: Vo — (0,1] : normalized invariant measure on Vj.

> ®: X — G : periodic realization of X.
> The Lie algebra g = Lie(G) satisfies

L ) ) (+3) (144 <
_ @, [ @1)C9 (i+j4 <),
g—EDg i [9%, gV o
{= {0} (+4+3>r),

=1

and g(tY = [, gD G =1,...,r —1).
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Nilpotent Lie groups

> global coordinates of G (through exp : g — G):
G>g<+— (:c(l),w(2), e ,w(r)) € RM,
where M = Y _, dim g(®).
> dilations (scalar multiplications on G): for ¢ > 0,

TE(ZB(I), @, ..., w(r)) = (sa:(l), 2z, ..., s"”a:(’")).
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RW on g™

> ®: X — G : I'-periodic realization.
> &n = ®(w,) (n=0,1,2,...) : RWon G.
> Ep = log ®(wn)|,0) (n =0,1,2,...) : RWon g,

& LLN on g®:

1
nh_)ngo —En= pr(vp) Pg-a.s.

& Fori,j=1,2,...,d, we have
. 1 xT o o
Jim ~E”[(Zn — pr(1))i(En — pr(1))s] = (@i, @i,

where {w;1,ws,...,wq} C Hom(gM,R) : a fixed basis.
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Construction of the Albanese metric on g

homolog|ca| dlrectlon
- [(5 (X0, ), (- )

,
/\ Tp = Z p(e)m(o(e))e / dual
S ecEp t
S~ ___ PR

HI(X07

f|n|te Hom(g(l) ]R
Xo = (Vb, Eo)
dual
/ g=T1(G)

exp
® J (wmp:= D ple)m(o(e))w(e)n(e)
(periodically) o

No coordinates —{w, ) (M 7p)
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MDP on a path space

Forn =1,2,... and 0 < t < 1, we define

nt — [nt]

n 1 _ — —
zZ{™M = ;(E[nt]—nPR(Vp))+ (Eing+1 —Ent) — Pr(7p))-

n

Proposition (N. '19)

The sequence of AC([0, 1], g™)-valued r.v.'s {Z(™}2° | satisfies
an MDP on AC([0,1],g")) with the good rate function

I(h) := /01 a*(h(t)) dt, h € ACo([0,1],g™V),

h 1
where a*() = S(37A,A), Aeg®.

d
t,7=1

> % = ((wirwilp)i g < S0 = ((Xis X;)g0)

v
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From ACy([0,1],g™) to G

> Forn=1,2,..., we set
Cn —exp(Z( )) = Ti/a, (exp (E —npR('yp))).

& By the contraction principle, the sequence {(,,}°°, satisfies an
MDP with a good rate function I, : G — [0, oo] defined by

Ini(g) := inf {I(h)| exp(h1) = g, h € ACo([0,1],g™M)}.
& However, our target process is {En}fle given by
&n == T1/a, <£n : exp(—nPR(vp)))-
— {{, 352, and {£,,}52 , are very “close” due to

10g(€n)|g(1) = IOg(En)lg(l)’ n € N.

Ryuya NAMBA (Ritsumeikan Univ.) LIL on a covering graph Sept. 5, 2019



MDP on X

> The transfer lemma now implies the desired MDPs on X.

Theorem. (N, '19)

The sequence of G-valued r.v.’s {£,,}3° , satisfies an MDP with the
rate a2 /n and a good rate function I; : G — [0, co]. Namely,

aff 7 < lim —~ logP,(Z, € A
— I M(g)_n%o;% og w<£n€ )

< Tm - logPy(€, € A) < — inf In(g)
n gceA

for A € B(G).
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Application of MDPs to LILs

& We aim to show LILs on X by applying MDPs for

b, := /nloglogn, n=1,2,....

‘ Related works\
> [Crépel-Roynette ('77)] : LILs on H3(R).
> [Caramellino—Vincenzo ('01)] : LILs on nilpotent Lie groups.

& However, LILs on nilpotent covering graphs have not been
obtained (even in the case of crystal lattices!).

& We state LILs on X by characterizing the set of all Py-a.s. limit
points of

&, = Ti/p, (€n - exp(—mpr(7p))), n=1,2,...

as n — o0.
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Application of MDPs to LILs

& We can show that

K :={h € ACo([0,1];6™) | I(h) < 1}
= {P,-a.s. limit points of {Z(™}> _}.

— Key : lim dist(Z(™, K) = 0, P,-a.s.

> K. :={h € ACo([0,1];gM) |dist(h, K) >}, &> 0.
> Since K is cpt and I is lower-semiconti., we know

36 =05(e) >0st. inf I(h) >1+38.
heK.
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Application of MDPs to LILs

® Then one has

oo oo
S P, (dist(z<2’”>,K) > s) =Y P.(2®M € K.)
m=1 m=1
oo
S Z e—(1—+-<5)10g10g2m
m=1
1 > 1

< oo,

where we used the upper estimate of MDP for the 2nd line.

& The Borel-Cantelli lemma leads to the desired a.s. convergence.
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Main theorem

& It follows from the continuity of exp : ¢ — G that

K:={g9€G|Im(g) <1}
= {P;-a.s. limit points of {¢,, = exp(Z{n))}ff’zl .

& Since {{,}52, and {£,,}22, are very “close”, we obtain

Theorem. (N, '19)

Let IC be the set of all P,-a.s. limit points of

gn = Tl/\/m(é’n : eXp(_npR(’Yp)))v n=12,....

Then we obtain

K={g€G|In(g) <1}.
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