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• Homogenization in periodic Coulomb environments d ≥ 2.

• A phase transition of effective constant in two dimensions.

• Homogenization in periodic Coulomb environments d ≥ 3.



Coulomb potentials in Rd

• Let d ≥ 2 and σ(d) be the surface volume of the unit ball:

σ(d) = 2πd/2/Γ(d/2).

• Let Ψd be the σ(d)
2 times fundamental sol of −1

2∆ in Rd:

Ψd(x) =

{
1

d−2|x|
2−d (d ≥ 3)

− log |x| (d = 2)

• We call Ψ the d-dimensional Coulomb potential.

• The Coulomb force given by Ψ is then

∇Ψd(x) = −
x

|x|d
.
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Lattice:

• For v1, . . . ,vd ∈ Rd we define the d-dim lattice L and torus T:

L = {
d∑

i=1

nivi ; ni ∈ Z (i = 1, . . . , d)}, (1)

T = {
d∑

i=1

tivi ; ti ∈ [0,1) (i = 1, . . . , d)}.

• We take vi such that |T| = 1.
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Total Coulomb force

• We put one particle with unit charge at each site on the lattice L.
• The total Coulomb force acting at x ∈ Rd is then

b(x) = lim
q→∞

∑
|x−si|<q,

si∈L

−∇Ψd(x− si) = lim
q→∞

∑
|x−si|<q,

si∈L

x− si
|x− si|d

• b is a periodic function with singularity at each si ∈ L.

• More precisely,

b(x) = lim
q→∞

∑
si∈L

φq(x− si)
x− si

|x− si|d
. (2)

Here φq(x) = φ(x/q), 0 ≤ φ ≤ 1, φ(x) = φ(|x|), and φ ∈ C∞
0 (Rd),

φ(x) =

{
1 |x| ≤ 1

0 |x| ≥ 2.
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Homogenization of diffusion in periodic Coulomb environment

• We put a particle Xt with the same charge as each site si.

• For x ∈ Rd, let Xx
t ∈ Rd be the solution of

dXx
t = dBt +

β

2
lim
q→∞

∑
|Xx

t −si|<q

si∈L

Xx
t − si

|Xx
t − si|d

dt, Xx
0 = x.

Here B is d-dimensional Brownian motion, β is inverse temperature.

Lem 1.There exists a symmetric matrix γ
β
eff such that for all x

lim
ε→∞

εXx
t/ε2

=
√
γ
β
effBt weakly in C([0,∞);Rd) (3)

0 < γ
β
eff < E for all β ≥ 0.

• The constant matrix γ
β
eff is called effective conductivity.

• γ
β
eff is given by a sol of Poisson equation and variational formula.

• 0 < γ
β
eff follows from comparison with periodic homogenization of

reflecting Brownian m.
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Homogenization of diffusion in periodic Coulomb environment

• We assume that γ
β
eff is a scaler matrix.

• If L is a d-dim cubic lattice or the triangular lattice in d = 2,

then this is the case.

• We remove m-particle t1, . . . , tm from L.
• Let L⋄ be the defect lattice:

L⋄ = L\{t1, . . . , tm}.
• For x ∈ T, let Y x

t ∈ Rd be the solution of

dY x
t = dBt +

β

2
lim
q→∞

∑
|Y x
t −si|<q

si∈L⋄

Y x
t − si

|Y x
t − si|2

dt, Y x
0 = x.

• Simulation!!
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Homogenization of diffusion in a defect lattice: a phase transition

• We remove m-particle t1, . . . , tm from L.
• Let L⋄ be the defect lattice:

L⋄ = L\{t1, . . . , tm}.
• For x ∈ T, let Y x

t ∈ Rd be the solution of

dY x
t = dBt +

β

2
lim
q→∞

∑
|Y x
t −si|<q

si∈L⋄

Y x
t − si

|Y x
t − si|2

dt, Y x
0 = x.

Thm 1 (a phase transition).Assume d = 2. Let

γ0(β) = trace(γβeff).

Then γ0(β)/m is a critical point in the following sense:

lim
ε→∞

εY x
t/ε2

=

{
not 0 if β < γ0(β)/m

0 if β ≥ γ0(β)/m.
(4)

Moreover, 0 < γ0(β) < 2.
• γ0(0) = 2. So if γ0(β) is strictly decreasing in β, then these exists
a unique γ(L) such that γ(L) = γ0(β).

• γ(L) depends only on the lattice.

7



Homogenization of diffusion in Coulomb environment

• In the previous theorem, the limit dynamics starts at the origin.

We consider a different type of initial condition. That is,

x ̸= 0.

• We also specify the limit SDE.

• For this it is convenient to rewrite Xε,x and Y ε,y as follows:

X
ε,x
t = εX

x/ε
t/ε2

, Y
ε,y
t = εY

x/ε
t/ε2

Then

dX
ε,x
t = dBt +

β

2
lim
q→∞

∑
|Xε,x

t −εsi|<q

si∈L

X
ε,x
t − εsi

|Xε,x
t − εsi|2

dt, X
ε,x
0 = x

dY
ε,yε
t = dBt +

β

2
lim
q→∞

∑
|Y ε,yε
t −εsi|<q

si∈L⋄

Y
ε,yε
t − εsi

|Y ε,yε
t − εsi|2

dt, Y
ε,yε
0 = yε

8



Homogenization of diffusion in Coulomb environment

• Consider a subsidiary SDE in R2:

dUy
t =

√
γ
β
effdBt −

mβ

2

Uy
t

|Uy
t |2

dt, Uy
0 = y. (5)

Thm 2. Let d = 2. Assume initial starting points yε satisfy

lim
ε→0

yε = y ∈ R2.

Then

lim
ϵ→0

Y ε,yε = Uy. (6)

Let σ = inf{t > 0;Uy
t = 0}. Then

P (σ < ∞) = 1 for all β > 0.

Furthermore,

P (Uy
t = 0 for all t ≥ σ) = 1 for β ≥ γ0(β)/m.
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Proof of Homogenization of diffusion in Coulomb environment d = 2
Proof: Recall d = 2. Then

dX
ε,x
t = dBt +

β

2

1

ϵ
b(
1

ϵ
X

ε,x
t )dt,

dY
ε,yε
t = dBt +

β

2

1

ϵ
b(
1

ϵ
Y

ε,yε
t )dt−

β

2

Y
ε,yε
t

|Y ε,yε
t |2

dt

• Periodic homo + Girsanov formula
• Mosco convergence + Lower & Upper schemes of Dirichlet forms
• Chen-Croydon-Kumagai th + heat kernel estimates

• The origin is treated as ”boundary”. Uniqueness of Dirichlet forms
• The modulus process |U |yt = |Uy

t | satisfies the Bessel SDE:

d|U |yt =

√
γ0(β)

2
dBt −

γ0(β)

2

1

2
(1−

2mβ

γ0(β)
)

|U |yt
(|U |yt )2

dt (7)

|U |y0 = |y|.

Here γ0(β) = trace(γβeff) and B is one-dimensional Brownian motion.
• Phase transition follows from (7).
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Homogenization of diffusion in Coulomb environment: d ≥ 3

Thm 3. Let d ≥ 3. Assume initial starting points yε satisfy

lim
ε→0

yε = y.

Then for each 0 ≤ β < ∞

lim
ϵ→0

Y
ε,yε
t =

√
γ
β
effBt + y.

Proof: • Rewrite SDE as

dY
ε,yε
t = dBt +

1

ε
b(
Y

ε,yε
t

ε
)− εd−2β

2

m∑
i=1

Y
ε,yε
t − εti

|Y ε,yε
t − εti|d

dt.

Remark: If we replace the Coulomb potentials by Ruelle’s class po-

tentials, then the limit is always non-degenerate for d ≥ 2.
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Homogenization of diffusion in random Coulomb environment: d = 2

• S: Configuration space over Rd (Unlabeled particle space)

S = {s =
∑
i

δsi ; si ∈ Rd, s(|s| < r) < ∞ (∀r ∈ N)}

• µ: point process (PP) on Rd. i.e. prob meas. on S.
• A lattice L can be regarded as a periodic point process, and each
site si is regarded as a particle.

• Let µgin be the Ginibre point process.
• µgin is a translation invariant point process on R2.
• µgin can be regarded as a Gibbs measure with interaction potential

− 2 log |x|.
• Very loosely, µgin is a translation invariant measure on (R2)N such
as

µgin(
∏
i∈N

dsi) =
1

Z

∞∏
i<j

|si − sj|2
∏
k∈N

dsk

This is of course not rigorous at all.
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Correlation functions & determinantal point proceses

• ρn is called the n-correlation function of µ w.r.t. Radon m. m if∫
A
k1
1 ×···×Akm

m

ρn(xn)
n∏

i=1

m(dxi) =

∫
S

m∏
i=1

s(Ai)!

(s(Ai)− ki)!
dµ

for any disjoint Ai ∈ B(S), ki ∈ N s.t. k1 + . . .+ km = n.

• µ is called the determinantal PP generated by (K,m) if its n-

corraltion fun. ρn is given by

ρn(xn) = det[K(xi, xj)]1≤i,j≤n (8)

• Ginibre PP S = C. µgin is generated by (K, g)

K(x, y) = exȳ g(dx) = π−1e−|x|2dx
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Log derivative of µ
• Let µx be the (reduced) Palm m. of µ conditioned at x

µx(·) = µ(· − δx|s(x) ≥ 1)

• Let µ[1] be the 1-Campbell measure on Rd×S:

µ[1](A×B) =

∫
A
ρ1(x)µx(B)dx (9)

• dµ ∈ L1(Rd×S, µ[1]) is called the log derivative of µ if∫
Rd×S

∇xfdµ
[1] = −

∫
Rd×S

fdµdµ
[1] (10)

for all f ∈ C∞
0 (Rd) ⊗ D. Here ∇x is the nabla on Rd, D is the space

of local smooth functions on S with compact support.
• Very informally

dµ = ∇x logµ[1]

The logarithmic derivative dµgin of the Ginibre point process is

dµgin(x, s) = lim
q→∞

∑
|x−si|<q

x− si
|x− si|2

, where s =
∑
i

δsi
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Homogenization of diffusion in random Coulomb environment

• For a configuration s =
∑

i δsi, we write L[s] = {si}.
• For µgin,0-a.s. s we consider

dXx
t = dBt + lim

q→∞

∑
|Xx

t −si|<q

si∈L[s]

Xx
t − si

|Xx
t − si|2

dt, Xx
0 = x.

Thm 4. For µgin,0-a.s. s ∈ S

lim
ε→∞

εXx
t/ε2

= 0 weakly in C([0,∞);R2) (11)

• The proof is completely different from the periodic case.

• We expect that the same phase transition holds for this case.

• I have not yet prove the positivity of the effective constant for the

original Ginibre point process. That is, “for µgin-a.s. s”.

• If this is done, then the rest is same as the periodic case.
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