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e Homogenization in periodic Coulomb environments d > 2.
e A phase transition of effective constant in two dimensions.

e Homogenization in periodic Coulomb environments d > 3.



Coulomb potentials in R?

e Let d > 2 and o(d) be the surface volume of the unit ball:
o(d) = 27Td/2/|_(d/2).

e Let W, be the @ times fundamental sol of —3A in R%:

25lz2~d (d > 3)

Val@) = {— log |z| (d =2)

e We call W the d-dimensional Coulomb potential.

e The Coulomb force given by W is then
V\lfd(az) — —x—.
||



Lattice:

e For vi,...,vy € R% we define the d-dim lattice L and torus T:
d
L:{Znin’? n, €Z (1=1,...,d)},
i=1

d
TI{ZQV@; t; €[0,1) i=1,...,d)}.
1=1

e We take v; such that |T| = 1.

(1)



Total Coulomb force
e We put one particle with unit charge at each site on the lattice L.
e T he total Coulomb force acting at x &€ RY is then

r — 55

= |im —VVv — = |im
2—sil <, a—sil<a,
S,L'EL S,L'E]L

e b is a periodic function with singularity at each s; € L.

e More precisely,

b(zx) = IIm Z gpq(aj—sz)

SZEL

Here ¢q(z) = ¢(z/q), 0 < v <1, p(z) = ¢(|z]), and ¢ € CF(RY),

_ )1 Jz[ <1
S0(9’:)_{0 x| > 2.

— S
|z — s4|¢

(2)



Homogenization of diffusion in periodic Coulomb environment

e We put a particle X; with the same charge as each site s;.
o For x € RY, let X € R? be the solution of

dszdBt—I—é lim > Xy = s dt, XX =x
' 2 =00 XX —gd 7 O
| XX —sil<q
SiEL
Here B is d-dimensional Brownian motion, S is inverse temperature.

Lem 1. There exists a symmetric matrix ’ygfr such that for all X
8I|_>n(’>1O eXZ(/SQ = ngth weakly in C([0,00); R (3)

0<~2. < E forall > 0.

e [ he constant matrix ’ygff is called effective conductivity.

o ygfr IS given by a sol of Poisson equation and variational formula.

e 0K vgfr follows from comparison with periodic homogenization of
reflecting Brownian m.



Homogenization of diffusion in periodic Coulomb environment
e We assume that ngf IS a scaler matrix.
e If L is a d-dim cubic lattice or the triangular lattice in d = 2,
then this is the case.

e We remove m-particle t1,...,tm from L.
e Let Lo, be the defect l|attice:

Lo = L\{t1,...,tm}
o For x € T, let Y* € RY be the solution of

dYX = dB —I—élim Y i = si dt.  YX=x
t t 2 q—00 |YX—S'|2 ’ 0O — ™
Y —s51<q ¢ ¢

S,I:E]Lo

e Simulation!!



Homogenization of diffusion in a defect lattice: a phase transition

e We remove m-particle t1,...,t,m from L.
e Let Lo, be the defect lattice:

Lo = L\{t1, ... tm}.
o For x € T, let Y* € R? be the solution of

dY = dB +§|im Z Yi s dt. YX=x
t - t 2q—>OO |YX—8|2 ’ O _ .
Y —s;1<q t ¢
SZE]LO

Thm 1 (a phase transition). Assume d = 2. Let

Y0(8) = trace(va).
Then vo(B)/m is a critical point in the following sense:

y _{notO if 8 < 0(B)/m )

lim €Y’ —
E— 00 t/52

0 if B> vo(B8)/m.

Moreover, 0 < vo(B) < 2.
e 70(0) = 2. So if yg(B) is strictly decreasing in 3, then these exists

a unique v(LL) such that ~v(IL) = ~vo(B).
e v(IL) depends only on the lattice.



Homogenization of diffusion in Coulomb environment

e In the previous theorem, the limit dynamics starts at the origin.
We consider a different type of initial condition. That is,

X #= 0.
e \We also specify the Ilimit SDE.
e For this it is convenient to rewrite X&* and Y¢&Y as follows:

EX _ _yX/e &Y _ X/
XX =Xyl Ve =evl

T hen

Xs,x_ ‘
dX”_dBmL@nm > D T

2 q—o0 X7 — es4)?
|X§’X—esz|<q t Z|
SiEL
€,Ye
B Y, 7 —e€s; ey
dYsys_dBt—l——Hm E: ¢ dt, YV =y,
2 g—00 Ve — s 0

67
Y, e _es;l<q
SZ'E]LQ



Homogenization of diffusion in Coulomb environment
e Consider a subsidiary SDE in R2:

mp Ug
dt, UY =vy. 5

Thm 2. Let d = 2. Assume initial starting points y- satisfy

AU} = \/ verrdB: -

imy. =y € R2.
e—0

T hen
lim Y¢&Ye = UY. (6)

e—0
Let o =inf{t > 0; Uy = 0}. Then
Ploc <o0)=1 for all 8> 0.
Furthermore,
P(Uy =0 forallt>oc)=1 for B >~y(B)/m.



Proof of Homogenization of diffusion in Coulomb environment d = 2

Proof: Recall d =2. Then

1
dX;” = dBy + P b( X€ *)dt,
B . B Y
dYFYe = dB;, + ZZb(ZYFYe)dt — S gt
t t—|_2€ (6 t ) 2|}/rt€,yg|2

e Periodic homo 4+ Girsanov formula
e Mosco convergence + Lower & Upper schemes of Dirichlet forms
e Chen-Croydon-Kumagai th 4+ heat kernel estimates

e T he origin is treated as " boundary”. Uniqueness of Dirichlet forms
e The modulus process U]} = |U/| satisfies the Bessel SDE:

70(/3) 081 2mB, U

2 2T @ qupe®

dlUJ) = dB; —

Ulg = Iyl

Here vo(8) = trace(ygfr) and B is one-dimensional Brownian motion.
e Phase transition follows from (7).

]
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Homogenization of diffusion in Coulomb environment: d > 3
Thm 3. Let d > 3. Assume initial starting points y. satisfy

|im E p— L]
8—)Oy y
I'hen for each O < 8 < o©

lim Y = /72 B +.

e—0

Proof: e Rewrite SDE as
1 Y't€7y€

m €,Ye
YoYe — et
AY;Ye = dBy + ~b( L
g

d—28
— € — dt.
) 2; Vi — ety]?

€

L]

Remark: If we replace the Coulomb potentials by Ruelle’s class po-

tentials, then the limit is always non-degenerate for d > 2.
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Homogenization of diffusion in random Coulomb environment: d = 2
e S: Configuration space over R? (Unlabeled particle space)

S={s=) ds: s R s(|s| <r) < oo (Vr eN)}

(]

e 1. point process (PP) on R%. i.e. prob meas. on S.
e A lattice L can be regarded as a periodic point process, and each
site s; Is regarded as a particle.

e Let ugin be the Ginibre point process.
® Lgin IS @ translation invariant point process on R2.
® Ligin Can be regarded as a Gibbs measure with interaction potential

— 2109 |z|.

e Very loosely, ugin is a translation invariant measure on (R2)N such
as

1 @)
pgin(] | dsi) = Z ][ 1si - s;|° 11 dsx
i€N i<j keN
This is of course not rigorous at all.
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Correlation functions & determinantal point proceses

e p'" is called the n-correlation function of u w.r.t. Radon m. m if

n - N < s(A4;)!
kalx...xAgm pm) 131 ) = /SE (A — k)"

1

for any disjoint A; € B(S), k; e Ns.t. k1 + ...+ kn = n.

e 11 is called the determinantal PP generated by (K,m) if its n-
corraltion fun. p™"™ is given by

p"(xn) = det[K (z;, ;)] 1<i j<n (8)
e Ginibre PP S = C. ugin is generated by (K, g)

K(z,y) = e g(dz) = Lol gy
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Log derivative of u
e Let uy be the (reduced) Palm m. of u conditioned at z

pa(-) = p(- — dzfs(z) > 1)
o Let ulll be the 1-Campbell measure on RZxS:

uaxB) = [ o @)a(B)da (9)
o d, € L1(R?xS, ulll) is called the log derivative of u if
Vefdp =— | rdudp!t! (10)

RAxS RAxS

for all f € Cgo(Rd) ® D. Here V, is the nabla on R%, D is the space
of local smooth functions on S with compact support.
e Very informally

d, = V,log ul!]
The logarithmic derivative dy;, of the Ginibre point process is

dugin(2,8) = lim Y~ i where s = ) "5,
i

q— 00
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Homogenization of diffusion in random Coulomb environment
e For a configuration s = ). 4ds;, we write L[s] = {s;}.
e FOr uginp-a.s. s we consider

X — s
dX* = dB lim L dt, XX =x.
| X7 —s;1<q
s;€L[s]
Thm 4. For pginp-a-S.- s €5
lim eXX, , =0  weakly in C([0,00);R?) (11)
E— 00 t/e

e [ he proof is completely different from the periodic case.

e We expect that the same phase transition holds for this case.

e I have not vet prove the positivity of the effective constant for the
original Ginibre point process. That is, “for pgin-a.s. s".

e If this is done, then the rest is same as the periodic case.
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